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Abstract—Configuration synthesis is a fundamental technology
in the context of self-driving networks, aimed at mitigating
network outages by intelligently and automatically generating
configurations that align with network intents. However, existing
tools often fall short in meeting the practical requirements
of network operators, particularly in terms of generality and
scalability. Moreover, these tools disregard manual configuration
which remains the primary method employed for daily network
management. To address these challenges, this paper introduces
ConfigReco, a novel, versatile, and scalable configuration recom-
mendation tool tailored for manual configuration. ConfigReco
facilitates the automatic generation of configuration templates
based on the network operator’s intent. First, ConfigReco lever-
ages existing configurations as input and models them using a
knowledge graph. Second, graph neural networks are employed
by ConfigReco to estimate the significance of nodes within
the configuration knowledge graph. Lastly, configuration recom-
mendations are made by ConfigReco based on the computed
importance scores. A prototype system has been implemented
to substantiate the effectiveness of ConfigReco, and its per-
formance has been evaluated using real-world configurations.
The experimental results demonstrate that ConfigReco achieves
a coverage rate of 93.35% while concurrently maintaining a
redundancy rate of 23.07% within a configuration knowledge
graph comprising 890, 464 edges and 40, 885 nodes. Furthermore,
ConfigReco exhibits high scalability, enabling its applicability
to arbitrary datasets, while simultaneously providing efficient
recommendations within a response time of 1 second.

Index Terms—network management, configuration synthesis,
graph neural network, knowledge graph, configuration recom-
mendation

I. INTRODUCTION

N self-driving networks, one of the key areas of digital

twins, network configuration plays a crucial role in the
development and operation such as fault detection, network
optimization, and network automation [1]-[7]. Network con-
figuration contains distributed network protocols with different
parameters (Figure 1), which determine the correct implemen-
tation of network functions. However, managing configuration
is challenging and brittle [2], leading to severe network
outages [6]-[8]. To this end, there is an increasing trend in
configuration synthesis [1]-[4] which automatically generates
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network-wide configurations that satisfy routing policies [1],
[2] and network management objectives [3].

Existing configuration synthesis tools effectively address
human-induced misconfigurations and intelligent network con-
figuration. However, they face practical limitations for three
main reasons. (i) Poor generality: Many synthesis tools support
only a limited set of routing protocols (e.g., OSPF and BGP
[2], [3]), resulting in operators having to manually configure
other unsupported network protocols (Figure 1). Manual in-
tervention becomes necessary for handling these uncovered
protocols. (ii) Limited scalability: Data-driven synthesis tools
like Aurora [4] may struggle to adapt to datasets with diverse
configurations in terms of size and protocol distribution. SMT-
based tools like NetComplete [2] may have efficiency issues
in large-scale or realistic networks. (iii) Lack of interpretabil-
ity: Synthetic configurations differ wildly from hand-crafted
ones [2]. Synthesis tools provide limited means to interpret
them, making it difficult for operators to understand how
configurations are generated and rarely deploy them. These
limitations of existing tools make manual configurations still
the preferred approach in daily network management. For
example, operators manually edit configuration templates, add
new services or devices, and update existing configurations.
However, existing tools lack assistance for manual configu-
ration modifications. Although embedded network operating
systems (NOS) offer completion functions for internal con-
figuration commands based on initials, they fail to provide
comprehensive suggestions or generate corresponding configu-
ration segments based on user input. For example, in Figure 2a,
the built-in completion function can complement command
policy-statement based on its first letter p. However, it cannot
recommend the sub-command POL of policy-statement or the
entire configuration segment.

In addition, we observe that devices of the same type,
such as routers, have the feature of configuration similarity.
As reported in a survey, 90% of network operators imple-
ment unified configuration management by maintaining simi-
lar/identical configurations across devices of the same type [3].
They deploy similar/identical configurations by using uniform
templates embedded in scripts, or by replicating configurations
verbatim (such as security policy). Configurations from exist-
ing devices of the same type are more acceptable to operators
when writing new configuration files. Thus, a practical and
interesting research question motivated by configuration simi-
larity and the aforementioned challenges is: Can we design a
configuration recommendation tool for manual configurations
to cover different network protocols and scale to any datasets?
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In this paper, we provide an affirmative answer to the
question by proposing ConfigReco, a general and scalable
configuration synthesis tool that recommends configuration
templates based on the operator’s intent. A configuration
template is a file with multiple segments for different network
functions as shown in Figure 2a. Configuration commands
form a vast space distributed among segments. ConfigReco
explores the existing configuration space to identify templates
in the network and recommends the matching template based
on configuration similarity.

Our vision, however, faces three challenges in reality. First,
accurately capturing configuration semantics and syntax is es-
sential to avoid invalid configurations in the formal language of
networks. Second, certain configuration commands are unique
to specific devices, while conflicting functions can coexist in
the same place (e.g., accept/reject in Figure 2a). Understand-
ing the context of configuration commands is crucial to prevent
errors and security issues. Third, determining the appropriate
recommendation range is important. A wide range may (e.g.,
multiple segments) introduce unexpected configurations, while
a narrow scope like a single command may not fulfill operator
needs.

To address the challenges, we capture the semantics and
syntax of existing configurations by translating them into
configuration knowledge. We then build a configuration knowl-
edge graph that explores the configuration space by allow-
ing neighbors on the graph to be evaluated. A three-layer
graph neural network (GNN) estimates the importance of
neighbors based on a specified command as the central node
(Figure 3). Configuration segments independently implement
network functions (Figure 2a). Therefore, the configuration
template’s segments serve as minimal recommendation units,
with the first command (e.g., policy-statement) as the central
node. Multiple inputs yield different configuration recommen-
dations for desired network functionality (Figure 2b). Lastly,
recommendations consider configuration similarity to ensure
efficiency and operator acceptance.

To validate the performance of ConfigReco, we randomly
recommend 10, 000 times in the real-world configuration from
Internet2 [9]. The experimental results indicate that the overall
coverage rate of ConfigReco reaches 93.35% with a redun-
dancy rate of 23.07%. In summary, our contributions could be
summarized as three folds:

e We are the first to propose a recommendation tool to
recommend configuration templates for manual configu-
ration.

e We present the design and implementation of ConfigReco
using a knowledge graph and graph neural network to
generate the configuration template for a newly added
configuration file.

e We implement a prototype system and verify its perfor-
mance in real-world configurations.

We first present the background (Section II). Then, we show
the design overview (Section III) and details of ConfigReco
(Section 1V), followed by the experiment results (Section V).
Finally, we discuss related works (Section VI) and conclude
(Section VII).
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Fig. 1. A campus network with different devices running various protocols.

II. BACKGROUND

This section first introduces a campus network with com-
mon protocols and then describes the background of the
knowledge graph and GNN.

A. Campus Network

Figure 1 shows a campus network that includes three differ-
ent autonomous systems (ASes), each running a large number
of network protocols. Network operators usually divide ASes
(campuses) by network function. For instance, Campus A
controls access to the external/internal network. Typically, de-
vices in the same autonomous system (AS) communicate with
the internal gateway protocol (IGP) like OSPF, while ASes
communicate with each other via border gateway protocol
(BGP). Existing tools can effectively synthesize partial routing
protocols (e.g., OSPF [2], [3] and BGP [1]-[3]), but there are
still other protocols like VLAN/VXLAN that require manual
intervention.

B. Knowledge graph and GNN

Recently, the knowledge graph and GNN have attracted
increasing attention in fields such as relation extraction [10]
and importance estimation [11].

Knowledge Graph A knowledge graph (KG) is a multi-
relational graph used to represent and store knowledge, where
nodes correspond to entities, and edges correspond to rela-
tions between head and tail entities. The central concepts
of a knowledge graph are entities and relationships. Entities
represent concrete objects or abstract concepts in the real
world (such as people, places, and things), while relationships
represent the connections and associations between entities.
Entities and their relations constitute knowledge. For example,
a configuration knowledge (Figure 2a) is denoted by <policy-
statement, contain, POL>, where policy-statement and POL
are head and tail entities respectively, and contain is the
relation between them. KG enables semantic reasoning and
inference over knowledge. By leveraging the semantic associa-
tions between entities and relations in the graph, it can perform
inference to discover new knowledge, fill knowledge gaps, or
verify knowledge consistency. KGs such as DBpedia [12] have
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Fig. 2. The design overview of ConfigReco. Fig 2a shows the existing configurations used to construct the knowledge graph. Fig 2b shows the incomplete
configurations inputted by operators. Fig 2c shows the architecture of ConfigReco. Fig 2d shows the output based on the incomplete configurations shown in

Fig 2b.

proven to be highly practical resources and have been applied
in different areas, such as explainable recommendation [13].

GNN Graph Neural Networks, as a sub-field of artificial
intelligence (AI), are a class of deep learning methods de-
signed to perform learning and inference tasks on graphs.
Graph Neural Networks can learn node-level, edge-level, and
graph-level representations by aggregating information from
neighboring nodes and edges, providing an easy way to exploit
the structural information to enhance learning and inference
tasks [10], [11], [14]. Generally, in a GNN with L layers,
an operator can specify L based on the characteristics of the
current graph-structured data. [ denotes the current layer, and
each node ¢ in I-th layer (I > 1) receives the new feature
vectors from (I-1)-th layer. Then each node ¢ updates itself by
aggregating those feature vectors from their neighbors in the
l-th layer. The feature vectors of the 0O-th layer can be given
flexibly by the operators (Scoring Network shown in Figure 3).
In addition, we can assign labels to specific nodes, designating
them as central nodes to better accomplish the training task
[11]. It allows the model to focus on these nodes, making them
more influential in the GNN learning process.

III. DESIGN OVERVIEW

In this section, we first present the design overview of
ConfigReco shown in Figure 2, including input, model archi-
tecture, and output. The detailed implementation is shown in
Section IV.

Input The input is divided into (a) Existing Configurations
and (b) Incomplete Configurations. ConfigReco constructs the
knowledge graph and trains the recommendation dataset based

on existing configurations. Figure 2a shows partial configura-
tions in Juniper format, with curly braces and indentations to
indicate the configuration hierarchy, while other formats like
Cisco use indentation. We can quickly split each configura-
tion segment based on these curly braces and indentations.
For incomplete configurations, operators can customize them
according to their intent, and then ConfigReco recommends
configurations based on them.

Model Architecture ConfigReco consists of three compo-
nents (i) Knowledge Graph, (ii) Three-layer GNN, and (iii)
Recommendation Dataset. ConfigReco first constructs a con-
figuration knowledge graph based on existing configurations,
transforming the configurations into graph-structured data.
Second, a three-layer GNN is applied to the configuration
knowledge graph to estimate the importance scores of the
central nodes (e.g., prefix-list). Finally, the scores of all cen-
tral nodes and their children constitute the recommendation
dataset.

Output ConfigReco matches the input incomplete config-
urations in the dataset and outputs the configuration template
with the highest score. Note that some existing parameters
are replaced by pre-defined keywords, such as 10.9.0.0/16 is
replaced by the keyword IP/Submask. These parameters are
usually meaningless in a new configuration file. For example,
the network interface names of the current device differ. More
importantly, it prevents the matching from failing due to
different parameters during recommendations.

IV. DESIGN DETAIL

We present the design details of ConfigReco in this section.
We first present the knowledge graph construction, followed by
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the GNN implementation. Finally, we show the configuration
recommendation.

A. Knowledge Graph Construction

We first transform the existing configurations into configura-
tion knowledge in the form of triples. Configuration commands
serve as head and tail entities, and they are linked by custom
keywords (e.g., contain) to form knowledge triples. We ac-
curately capture configuration semantics through knowledge
in atomic form, and ensure the accuracy of configuration
syntax through the graph structure formed by multiple relevant
knowledge. Since we only need the entities and the relations
between them to build a knowledge graph, we can generalize
to arbitrary configuration datasets. The partial configurations
shown in Figure 2a are converted into knowledge as follows.

<R1l, contain,
<prefix-list,

prefix—-list>
fatherOf, NETS>

where R1 denotes the current device/file name. We define
auxiliary keywords to help build triples, which will not be
recommended by ConfigReco as configurations to network
operators. For example, we use the keyword contain to indicate
which central nodes are included by the current device and
keyword fatherOf to denote the sub-commands.

Based on the configuration knowledge, ConfigReco cre-
ates a configuration knowledge graph managed by the graph
database management system Neo4j. For example, <R/, con-
tain, prefix-list> are added into the graph database as follows:

MATCH (a:Keyword {name:’R1’}),
(b:Keyword {name:’prefix-list’})
MERGE (a)-[:contain]—> (b)

where ConfigReco creates head node R/ and tail node prefix-
list, linking them by the relation contain. Finally, a config-
uration knowledge graph example is shown in Figure 2. To
reiterate, ConfigReco only needs to capture the semantics
and syntax of configurations, rather than simulating network
protocols. Thus, ConfigReco can support arbitrary network
protocols.

B. GNN implementation

Figure 3 shows the three-layer GNN model employed by
ConfigReco to estimate importance scores. In general, GNN
propagates information among neighbors through node em-
bedding, causing entities and their neighbors to influence one
another. Therefore, an entity can combine its current neighbors
for better representation. For example, policy-statement can
be combined with POL to better represent its position in the
current configuration space. In node importance estimation,
the importance of a node is jointly determined by its multi-
layer neighbors, such that rule is the three-layer neighbor of
policy-statement.

A single GNN explores the direct neighbors (Layer 1) of
a node and directly aggregates the importance scores of the
neighbors (Figure 3b [14]). GNN, however, with multiple lay-
ers can explore more neighbors, making the importance score
more reliable [11]. In addition, most configuration commands

have no more than three layers of neighbor depth, such as
prefix-list has only two-layer neighbors. Therefore, the three-
layer neighbors of the central node are sufficient to cover a
large number of configuration contents, and we design a three-
layer GNN to estimate the importance score. In addition, we
adopt multiple score aggregation (SA) heads in each SA layer
as multiple SA heads to be helpful for the model performance
and the stability of optimization procedure [11].

Scoring Network GNN naturally allows us to train a model
with flexible adaptation by scoring the network using pre-
defined importance scores. We design two different scoring
networks to better capture the influence of the central node
and its neighbors on each other in the configuration space.

e Scoring Network A: We calculate the dependence of the
central node @ on its neighbor j by W}, = Tﬂng))
num(i, j) denotes the number of < ¢, >, where ¢ and j
are configured together. num(i) denotes the total number
of 7 in configurations.

e Scoring Network B: We calculate the dependence of the
neighbor j on the central node i by W}, = Tfm((jf))
The weight W is inputted into the corresponding layer of GNN
as the initialization importance score such as s{(j;). Note that
the initial score of the central node 4 is set to 0 in this paper.
In addition, W is used to calculate the attention coefficient or.

Score Aggregation The score aggregation of the central

node ¢ at the [ layer is denoted by follows:

\Y
—

o= S Netwark 0
sy (1) + 2 afy x sp,(5), 1>

where h denotes an index of an SA head, NNV is the number of
1’s neighbours in the [ layer, and ai’j is the attention coefficient
of ¢ to j [14] calculated as follows:

wor — _cap(LeakyReLU @ W' (f)[[W'(f;)))
Y S en exp(LeakyReLU @ W fi)[|[W(fi)]))

where LeakyReLU 1is an activation function commonly used
in artificial neural networks, d is a weight vector, f; is
the feature vector of node ¢ in the current graph dataset,
‘T represents transposition, and || denotes the concatenation
operation. In this paper, we replace @’ [W'(f;)||W'(f;)] with
Wi = ”:ﬂszj)) and W}, = ’;L"J;’n(gg) in the scoring networks A
and B, respectively. The attention coefficient o determination
of which neighbors should be concerned by assigning weights
that indicate their importance to the central node. We use the
attention coefficient to focus on configuration commands that
are frequently configured with the central node, avoiding rare
configurations being ignored.

When all the SA heads are computed, we calculate their
average value (Average and Final Aggregation) and transform
it to the next layer. After the final aggregation, the importance
score of the central node ¢ and its neighbors are stored in
the recommendation dataset by a pre-defined data structure
D! . We make configuration recommendations based on the
recommendation dataset.

Configuration Recommendation Let D! be the data
structure to store the score of the central node 7 and its

neighbors, where m denotes the record index. Based on the

2
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Fig. 3. An illustration of node importance estimation. Fig 3a: The three-layer GNN model employed by ConfigReco to estimate importance scores. Fig 3b:
Estimation of the importance of node ¢ based on the neighbor j at a single score aggregation layer.

input (Figure 2b), We recommend configurations based on the
following two rules:

1. Prefer longer matching sequences;

2. Prefer higher importance score.
For example, we first locate the input “prefix-list NETS” in
the DPrefivlist. We then search the records in DPist that
contain neighbor NETS and subsequently select the one with
the highest score from among them. If matching NETS fails,
we preferentially select the record with the highest score.

V. EVALUATION
A. Experiment Setup

We implement ConfigReco in Java and Python and create a
prototype system through Neo4j that manages the constructed
knowledge graph and visualizes the specified configurations.
We compare the recommendation performance of ConfigReco
and GAT [14]. GAT is a graph attention network with a single-
layer neural network that operates on graph-structured data.
ConfigReco and GAT perform on a server with three 2.30
GHz Inter(R) Xeon(R) Gold 5218 CPU and 16GB RAM.

Dataset We run extensive experiments on real-word net-
work configurations from the Internet2. There are 34 devices,
of which 24 devices have an average configuration statement of
1260 and 10 devices have an average configuration statement
of 8236. In addition, we divide four datasets (C'S1 to CS4)
according to the configuration similarity, they range in con-
figuration size from 18,388 to 112,600 lines shown in Table I,
and each dataset contains at least two protocols (such as BGP
and OSPF). We run 10,000 configuration recommendations
randomly on each dataset.

Recommendation For each recommendation, we randomly
intercept existing configurations as input. We set three different

input lengths, Lengthl, Length2, and Length3. Lengthl
only contains the central node, while Length2 and Length3
contain one and two neighbours, respectively. For example,
the length of input prefix-list NETS (Figure 2b) belongs to
Length2. Note that in practice, an operator might enter a
completely new configuration command as the central node.
Since it does not exist in the dataset, ConfigReco would return
NULL. ConfigReco does not update this new command for two
important reasons. First, it could have been an error command
entered by the operator. Second, a new configuration command
needs to be treated with caution, as it can cause extensive
configuration changes and network outages [2], [3], [6].

Performance Let Y be the original configurations, and
X = {Zrec, Trea} denotes the recommendation configurations.
ZTre. denotes the configurations that exist in Y and x,.qq
denotes the redundancy configurations that do not exist in
Y. We evaluate the performance of ConfigReco from the
following three aspects.

o The coverage rate. We calculate the coverage rate of
ConfigReco by “t£=. The coverage rate reflects the ef-
fectiveness of ConfigReco recommendation. The higher
the coverage rate, the more accurate the recommendation.

o The redundancy rate. We calculate the redundancy rate of
ConfigReco by #%¢. The redundancy rate is an important
metric, which reflects the configuration composition with
the highest importance score based on the input. Thus,
redundant configurations can provide an important refer-
ence for operators to complement the configuration more
completely.

e Runtime. We record the time spent on knowledge graph
construction and configuration recommendation. The run-
time can give us more insight into ConfigReco’s perfor-
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TABLE I
THE CONSTRUCTED KNOWLEDGE GRAPH BASED ON THE DATASETS
DIVIDED BY configuration similarity.

[oF} CL Edge Node CT (s) | RT (s)
CS1 18388 695535 23702 589.5 0.22
CS2 31831 890464 40885 992.3 0.28
CS3 46313 1033325 59136 1470.4 0.49
CS4 | 112600 | 3792997 | 146081 | 3621.4 0.82
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Fig. 4. The average coverage rate of ConfigReco and GAT.

mance.

B. Numerical Analysis

Knowledge graph construction Table I shows the knowl-
edge graph constructed by ConfigReco, including the four
different datasets C'S1 to C'S4, CL (configuration line), edge,
node, CT (construct time), and RT (recommendation time).
The construction time of the knowledge graph is equivalent
to the extraction time of configuration knowledge. Both CT
and RT are positively related to the number of configuration
lines and configuration complexity. ConfigReco can parse
18, 388 line configurations in 10 minutes based on our server
hardware. Or it can resolve 112,600 line configurations in
1 hour and build a knowledge graph with 3792,997 edges
and 146,081 nodes. Finally, ConfigReco can recommend
configurations within 1s in all datasets.

Coverage Rate Figure 4 shows the average coverage rate
of ConfigReco and GAT, where ConfigReco is higher than
GAT. First, the coverage rate and input length are positively
correlated, resulting in Length3 obtaining the highest cover-
age rate. Such as in C'S4, ConfigReco achieves the lowest
coverage rate of 76.55% under Lengthl, and it grows to
86.59% at Length3. Second, the coverage rate decreases with
the size of the dataset. The coverage rate of Length2 and
Length3 in datasets C'S1 and C'S2 both exceed 90%, with
the highest reaching 92.32% and 93.35%, respectively. They
are reduced to 84.77% and 86.59% respectively in C'S4. With
the increase in database size, such as from 18, 388 lines (C'S1)
to 112,600 lines (C'S4), more configuration templates with
complex structures can be matched leading to a decrease in
coverage rate. However, ConfigReco still achieves at least a
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Fig. 5. The average redundancy rate of ConfigReco and GAT.

coverage rate of 76.55% after 10,000 recommendations, and
the coverage rate can be optimized by increasing the input
length or adopting more layers to explore further neighbors.
Finally, the coverage rate of ConfigReco is higher than that of
GAT, which has a maximum coverage rate of only 30.68%.
This result suggests that a GNN with more layers that can
aggregate scores from more neighbors makes the results more
accurate and reliable.

Redundancy Rate Figure 5 shows the redundancy rate
of ConfigReco and GAT, where GAT achieves the smallest
redundancy rate. Contrary to the coverage rate, the redundancy
rate decreases with input length and is positively related to the
dataset. ConfigReco obtains the smallest redundancy rate of
13.30% (Length3 and C'S1), at which point it has a coverage
rate of 91.35%. When ConfigReco achieves the lowest cov-
erage rate of 76.55%, it achieves the highest redundancy of
34.78%. Although GAT has the lowest redundancy rate (3.95%
to 9.258%), it also has the lowest coverage rate.

To sum up, ConfigReco has a redundancy rate of 23.07%
while achieving the highest coverage rate of 93.35% (Length3
and CS2). Even with a six-fold increase in dataset size
(18,388 to 112,600 lines), ConfigReco still achieves a cov-
erage rate of 86.59% after 10,000 recommendations, which
can be optimized by modifying model parameters. It demon-
strates that ConfigReco can implement effective configuration
recommendations for any size dataset. Moreover, ConfigReco
only needs the configuration context to build the knowledge
graph and does not need to simulate network protocols. From
this, ConfigReco can be scaled to arbitrary datasets.

VI. RELATED WORK

Configuration Synthesis Synthesizers aim to generate low-
level network configurations from high-level network intents
by using their own DSL (Domain-Specific Language) or
existing techniques. Aurora [4] focuses on tuning configuration
parameters for LTE/5G cellular networks. Aurora [4] identifies
important parameters from existing/historical configurations
through a supervised machine-learning approach and performs
performance-based filtering to make conformity-based rec-
ommendations. However, recommending existing parameters
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for network protocols (such as BGP and OSPF) may lead
to network errors, such as routing loops and black holes.
Propane [1] introduces RIR (Regular Intermediate Represen-
tation) to express constraints on intents. However, Propane
[1] is limited to BGP protocol and cannot handle dynamic
configuration changes. NetComplete [2] and AED [3] support
multiple routing protocols (static route, OSPF, and BGP),
and they can synthesize configurations incrementally based on
existing configurations. Although their practicability improves,
NetComplete [2] may be very slow or fail to complete for large
networks, and AED [3] is difficult to support other protocols.
The state-of-the-art synthesizer Aura [15] that a production-
level synthesis system for datacenter routing policies, sup-
porting BGP and OpenR routing protocols. Aura [15] enables
network operators to express high-level intents to be automat-
ically configured into the switch policy implementation with
minimal reconfiguration.

Configuration Verification Verifiers play an important role
in the field of networking by ensuring the correctness and
consistency of configurations and network intents. Network
configuration verifiers can be divided into control plane [5],
[7] and data plane [6], which differ in terms of the scope
of verification and focus. Control plane verifiers [5], [7]
focus on the control plane of network devices, primarily
validating the configurations and intents to ensure their be-
havior in the network aligns with expectations. Control plane
verifiers typically simulate or model network devices and
their configurations to validate and check for errors, conflicts,
and inconsistencies. This helps prevent network failures and
security vulnerabilities caused by configuration errors before
actual deployment. Control plane verifier Tiramisu [5] models
configurations by abstract interpretation based on the graph,
and it supports multiple routing protocols such as OSPF, BGP,
and VLANSs. Tiramisu [5] can verify if policies hold under
failures for various real-world and synthetic configurations
within 2.2s. However, it is not optimized for configuration
changes and needs to restart the simulation from scratch
when configuration changes. The incremental verifier DNA [7]
has been proposed to address this challenge, which uses the
differential network analysis to identify differences in end-to-
end forwarding behaviors arising from control plane changes.
For data plane verifiers, they directly check the forwarding
information like FIB (Forwarding Information Base) to verify
network invariants like blackhole-freedom and loop-freedom.
APKeep [6] can achieve sub-millisecond verification time,
which is much faster than the control plane verifiers. In
addition, it has addressed the problem of EC (equivalence
class) explosion problem by incrementally maintaining the
minimum number of ECs via a modular network model PPM
(Port-Predicate Map). Compared to the control plane verifiers,
the data plane verifiers are closer to the true forwarding
behavior of network devices, which helps to detect potential
issues such as packet loss when devices handle real traffic.

VII. CONCLUSION

This paper introduces ConfigReco, a novel configuration
recommendation tool. ConfigReco leverages a knowledge

graph to model network configurations instead of relying
on simulations, enabling support for arbitrary network pro-
tocols. ConfigReco considers the configuration segment as
the minimum recommended unit, capable of independently
implementing a network function. The central node is defined
as the first configuration command within each segment. By
employing a three-layer GNN, ConfigReco explores the neigh-
bors of the central node and computes their importance scores.
Consequently, ConfigReco matches operator intents and pro-
vides configuration recommendations based on these scores.
Experimental results demonstrate that ConfigReco achieves a
coverage rate of 93.35% with a redundancy rate of 23.07%,
delivering recommendations within 1 second.
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