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Abstract—Network configuration plays a vital role in quality
assurance of network services, requiring considerable effort and
time. Automatic network configuration approaches are promising
due to their capacity to automatically generate and verify
configurations. However, these methods suffer from drawbacks
such as generated configuration content being largely unknown
to network operators and inefficient for large-scale networks.
Manual configuration is thus still the primary way of managing
networks. To facilitate editing processes of manual configuration,
a network-wide tool for recommending custom keywords is in ur-
gent need. In this paper, we propose a keyword recommendation
tool that recommends custom keywords across various network
devices. We observe that network devices of the same type and
role tend to have a unified template and similar configurations,
which enables recommending custom configurations between
them. However, the vision entails the following three challenges.
First, configurations need to be modeled accurately. Second,
a wide variety of network protocols need to be supported.
Third, relationships between custom keywords might be implicit
and difficult to find. To address the challenges, we first built
a configuration knowledge graph that could accurately model
configurations, extract latent relationships between keywords,
and generate explainable recommendations. Then we applied
a recommendation framework to the graph for appropriate
keyword recommendations. Lastly, to validate the performance,
we conduct recommendations on real configurations over 26, 000
times. Experiment results indicate that the overall coverage rate
for matching expected configurations reaches 79.396%, and the
redundancy rate is less than 20%.

Index Terms—network management, configuration synthesis,
manual network configuration, knowledge graph, configuration
keyword recommendation

I. INTRODUCTION

OPERATORS deploy a wide variety of networks in differ-
ent application scenarios such as backbone network [1],

[2], Internet of Things (IoT) [3], and datacenter [4]. However,
it takes extensive effort and time to configure a network of
various network devices such as routers [1], [2], [5], [6] and
filters [7]–[9]. Automatic approaches thus become increas-
ingly popular including parameter optimization [3], [10]–[13],
configuration synthesis [1], [2], [6], [14]–[16], and network
verification [17]–[25]. Configuration synthesis automatically
generates configurations out of network policies. While net-
work configuration verification inspects if the network will
behave as expected.
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Promising as automatic configuration approaches are, the
current drawbacks limit their usage to a narrow scope (such
as configuring only router filters [16]) and impede their wide
adoption by network operators [26]. First, due to the black-box
solver, the generated configurations and implemented policies
are largely unknown to operators, which poses a serious chal-
lenge for subsequent maintenance as illustrated in Figure 1a
(Configuration Synthesis). Second, most synthesis methods are
not scalable. For large-scale networks with more than a few
hundred nodes, they are inefficient. For example, SyNET [6]
spends more than 24 hours synthesizing configurations for a
network with 64 nodes [2], [6]. More importantly, existing
methods support limited routing protocols, such as OSPF
and BGP [2], [6], [16]. However, there are usually multiple
different protocols deployed in the network (Figure 1b). Op-
erators have to manually configure other network protocols
that are not supported by the synthesis approaches. Therefore,
automatic configuration has not been widely adopted yet.
Manual configuration still plays the primary role in most
scenarios [10], [16], [27], [28].

Compared to automatic configuration, there are significantly
fewer tools dedicated to manual configuration which requires
extensive editing of manual templates and configuration files.
One such tool is tab completion functionality, which is embed-
ded in most networked devices [29]. It simplifies the manual
editing process to a certain degree by automatically filling in
partially typed internal configuration keywords (commands).
However, internal keywords are predefined and only account
for a small proportion of the whole configuration. The vast
majority of configurations are customized by the operator
during the editing of the configuration or template. In addition,
custom configurations scattered across multiple devices are
also affected by device type and role. For example, only
switchers can configure VLAN/VxLAN. Recommendations
that do not take this into account lead to invalid configurations
or potential security issues. Therefore, we ask the question that
can we recommend network-wide configurations in manual
network configuration?

In this paper, we provide an affirmative answer to the
question by proposing NetCR, a network-wide configuration
recommendation tool. The process is depicted in Figure 1a
(Manual Configuration). NetCR first extracts and analyzes
existing configurations based on the existing configurations.
Then, it recommends configuration keywords through a de-
signed recommendation framework. Since operators imple-
ment the network policies manually, they avoid unknown
configurations. In addition, we observe that operators tend
to use a unified template and similar configurations across
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Fig. 1. Different configuration approaches and network protocols and technologies. Fig. 1a: illustration of differences between configuration synthesis
(automated configuration) and manual configuration. Fig. 1b: the various network protocols and technologies.

network devices of the same type for management purposes
[16], [30]. Such configuration similarity significantly reduces
the difficulty of configuration recommendation and makes
recommending configurations for devices of the same type
more acceptable to operators. We could thus recommend
appropriate configurations for devices with the same role.

Our vision, however, entails three challenges when applied
to reality. First, we need to choose an intermediate approach
for the model configuration that accurately captures the syntax
and semantics of the configuration. Second, since there are
usually multiple routing protocols in a network, the proposed
approach should support different network protocols. Third,
a keyword may exist in multiple configurations with different
configuration branches. Given such a keyword, recommending
keywords that do not differentiate between device types and
different branches will result in invalid configurations or
security issues.

To address the challenges, NetCR first builds a configuration
knowledge graph based on existing configurations. Knowledge
graphs are widely used in different recommendation areas to
generate effective and explainable recommendations [31], [32].
NetCR parses configurations into the atomic form of knowl-
edge triple to ensure the certainty and uniqueness of configura-
tion, such as {ospf, ospf cost, 10} that means the OSPF link
cost values are 10. NetCR supports arbitrary configuration and
protocol by building knowledge triple. Lastly, NetCR applies a
recommendation framework based on configuration similarity
to avoid invalid configurations.

To validate the performance of NetCR, we conduct exten-
sive experiments on real configurations over 26, 000 times.
The experimental results indicate that the overall coverage
rate of NetCR reaches 79.396% and the redundancy rate is
less than 20%. More than half of the configurations have a
coverage rate of over 95%. High coverage rates guarantee the
recommendation efficiency of NetCR during manual editing.
In summary, our contributions are three folds:

TABLE I
NOTATIONS.

Symbol Description
C a configuration file
G a knowledge graph
K configuration knowledge {h, l, t}
h head entity
l relations between head and tail entities
t tail entity

R, r recommended keyword
F, f parent keyword
S, s children keyword of F
X intersection set of all S
Y union set of all S
IF impact factor

• We propose efficient algorithms to analyze different con-
figurations and model them as a unified configuration
knowledge graph.

• We propose a configuration knowledge graph based rec-
ommendation framework to recommend configuration.

• We implement NetCR and validate its performance in real
configurations.

We first show the overall design (§ II) and details of NetCR
including the construction knowledge graph (§ III) and rec-
ommendation framework (§ IV), followed by the experiment
results (§ V). Then we summarize related works (§ VI) and
conclude this paper (§ VII) in the last two sections.

II. DESIGN OVERVIEW

This section overviews the design of NetCR. Figure 2
presents the build process of the association configuration
knowledge graph. Figure 3 shows the recommendation work-
flow of NetCR that consists of Input, Recommendation Frame-
work, and Output. The main symbols used in this paper are
shown in Table I.

Build Configuration Knowledge Graph Figure 2 illus-
trates the steps to build a configuration knowledge graph, the
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Fig. 2. The process of building an association configuration knowledge graph.

details of which are in Section III. First, NetCR takes existing
configurations as input. Network topology can be the extra
input, indicating the connection relationships between network
devices and helping NetCR divide device roles. Secondly, the
configuration of each device (C1, C2, · · · , Cn) is translated
into configuration knowledge by pre-defined ontology (Step
1) described in Section III. NetCR then constructs configura-
tion knowledge graphs (GC1 , GC2 , · · · , GCn ) for each device.
Finally, NetCR analyzes the association relationships of key-
words in these configuration knowledge graphs and links them
to build the association configuration knowledge graph (Step
2). In addition, we provide the interpretability of recommended
results based on the constructed knowledge graph, making
them more convincing (Figure 9).

Recommendation workflow of NetCR Figure 3 shows the
workflow NetCR, which is implemented in Section IV. NetCR
takes incomplete configurations as the input (Figure 3a).
Antecedent configuration keywords such as filter and neighbor
belong to the parent keyword set F = {f1, f2, · · · , fn}.
The input configuration fragment contains at least one parent
keyword f , such as filter. NetCR sets the keywords requiring
to be complemented as R = {r1, r2, · · · , rn}, which is repre-
sented by the symbol “?”. Figure 3b shows the recommenda-
tion framework of NetCR, including Secondary Classification
Tag, Impact Factor Calculation, and Top-N Recommendation.
Based on the configuration knowledge graph G, NetCR first
performs a keyword secondary classification tag to evaluate
the configuration branches of all fork keywords, such as the
chassis node shown in Figure 5b. NetCR then locates the F
on the knowledge graph and calculates the impact factor IF
of each child keyword based on the secondary classification
tag. After the recommendation framework calculation, NetCR
outputs R in order of IF from highest to lowest (Top-N
recommendation).

NetCR takes the independent configuration keyword as the
minimum recommended unit. Depending on the context of
the parent node, NetCR outputs configuration fragments (e.g.,
filter) including multiple keywords or individual configuration
keywords (e.g., neighbor) as shown in Figure 3c.

III. BUILD ASSOCIATION CONFIGURATION KNOWLEDGE
GRAPH

The section describes the process of building an association
configuration knowledge graph G in detail (Figure 2). A
knowledge graph is denoted by G consisting of knowledge
K. K is in the form of triples denoted by {h, l, t}, where h
denotes the head entity, l denotes the relation between head
and tail entities, and t denotes the tail entity. Depending on
the context, any configuration keyword can be resolved to h,
l, and t.

A. Configuration Ontology

The knowledge graph G is divided into ontology and data
layer logically. An ontology defines how knowledge is exacted
and stored in data layer. Since the configuration manuals
define the function, format, parameters, view, and default of
each keyword in detail, we directly define the configuration
ontology described by OWL (Web Ontology Language) to
parse configurations. Figure 4 shows the configuration on-
tology used by NetCR. We define classes to store head and
tail entities, such as Router and Interface. ObjectProperty
and DataProperty are relations, and their difference is that
ObjectProperty links other classes, while DataProperty refers
to its properties. Range denotes the type of tail entities. We
show how ontology works and how data is stored through a
simple configuration example, and the partial configurations
of router R1 are as follows:

hostname R1
interface FE0/0
ip address 192.168.12.1 255.255.255.0

R1 and FE0/0 are stored in Router and Interface classes,
respectively. Based on the ontology, configuration knowledge
triples extracted from R1’s configurations are as follows:

{R1, interface, FE0/0}
{FE0/0, ipAddress, 192.168.12.1/24}

R1 and FE0/0 are connected by the interface (Object-
Property), and FE0/0 uses ipAddress (DataProperty) to
store its IP address. To implement quick classification and
inference, these triples are stored ultimately by OWL language
as follows:

:R1 rdf:type owl:NamedIndividual ,
:Router ;
:interface :FE0/0 .
:FE0/0 rdf:type owl:NamedIndividual ,
:Interface ;
:iPAddress :192.168.12.1/24 ;

It is important to note that knowledge triples and OWL
codes can both build a configuration knowledge graph. We
implement fast configuration queries and reasoning via OWL.

B. Configuration Parse

We now describe the configuration parsing process in Step
1 (Figure 2). Configuration language belongs to DSL (Domain
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chassis{

   redundancy{

      routing-engine 0 master;

      graceful-switchover;}

   alarm{

     management-ethernet{

     link-down ignore;}

             }

   }

(a) Configuration Snippet (b) Configuration Knowledge Graph

chassis

redund

ancy
alarm

Configuration 

branch
“{”

contain

routing-

engine

graceful-

switchover

contain

manageme

nt-ethernet

link-down ignore0 master

contain

contain

param

eter

contain

contain

parameter

sibling sibling 

sibling 

chassis

redund

ancy
alarm

Configuration 

branch
“{”

contain

routing-

engine

graceful-

switchover

contain

manageme

nt-ethernet

link-down ignore0 master

contain

contain

param

eter

contain

contain

parameter

sibling 

sibling 

Fig. 5. An example of the configuration knowledge graph.

Specific Language), which has unique structural characteristics
and semantic relations, such as the R1’s configurations. DSL’s
hierarchical structures and relations are implied in the fixed
sentence pattern to realize the corresponding “function”, which
represents the execution target of configuration statements. A
configuration statement consists of multiple keywords to im-
plement “function”. Therefore, NetCR takes the configuration
keywords as the smallest units, decomposes these statements
hierarchically, and converts them into knowledge triples based
on the configuration ontology, such as the configuration knowl-

edge of R1.
To handle more complex configurations (Figure 5a) and

maintain the original semantics and syntax, NetCR defines
extra relations to parse the strict hierarchical structure of
configurations and indicates the position relationships of key-
words, such as contain, sibling, and parameter shown in
(Figure 5b). It is important to note that since the extra relations
do not belong to any configuration file, they are just defined
for better parsing configurations. Therefore, they will not
be recommended to the operator as configuration keywords.
An example of a configuration snippet and corresponding
configuration knowledge graph is shown in Figure 5. The
configurations in Figure 5a are converted into configuration
knowledge as follows.

{chassis, contain, redundancy}
{chassis, contain, alarm}
{redundancy, sibling, alarm}
{alarm, sibling, redundancy}
{redundancy, contain, routing-engine}
{routing-engine, parameter, 0 master}
...

NetCR determines the configuration branch according to the
symbol pair “{ }”, and it defines extra relation contain to re-
place “{”, such as {chassis, contain, redundancy}. redundancy
and alarm are parsed into two separate configuration branches
of parent node chassis, and extra relation sibling indicates their
relationship (Figure 5b). In addition, extra relation parameter
represents values and states of the parent keyword such as
{routing-engine, parameter, 0 master}.

The configuration parsing algorithm is shown in Algorithm
1, which takes configuration files C1, C2, · · · , Cn as input.
NetCR creates a root node for each configuration file, which
serves as the starting node for the configuration knowledge
graph (line 1 - line 2). NetCR parses configuration statements
based on the current node and extracts configuration keywords
and parameters to create new nodes (line 3 - line 5). NetCR
updates nodes according to the end symbol (line 6 - line 12).
Such as “chassis {” shown in Figure 5, the parent node of
redundancy points to chassis instead of “{”. Finally, NetCR
returns configuration knowledge graph G1, G2, · · · , Gn for
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Algorithm 1 Configuration Parse Algorithm.
Input: C1, C2, · · · , Cn

Output: G1, G2, · · · , Gn

1: for each configuration file C1, C2, · · · , Cn do
2: Create gi < Ci, root > as the root node of Gi;
3: for all configuration statement in Ci do
4: Parse keywords cmd and parameters p;
5: Create node gi+1 < cmd, p > as the children of gi;
6: if end symbol is “{” then
7: gi ← gi+1;
8: else if end symbol is “}” then
9: gi+1 ← gi;

10: end if
11: end for
12: end for
13: Return G1, G2, · · · , Gn;

filter{
    input cos-ipv6;
    output cos-ipv6;
}

 (a) Configuration Snippet A 

filter cos-ipv6{
   term management {
     from {
      destination-port [ssh telnet];
      }
     then{
      forwarding-class realtime-traffic;     
      }
   }

  (b) Configuration Snippet B 

Fig. 6. An example of association keywords, and they appear on different
configuration branches of the same parent keyword.

association keyword analysis (line 13).

C. Association keyword Analysis

We analyze the association relationships between keywords
based on the G1, G2, · · · , Gn (Step 2 shown in Figure 2),
which are aggregated to build the association configuration
knowledge graph G.

Figure 6 shows two configuration snippets A and B. Con-
figuration snippet A defines the used traffic policies. Three
keywords filter, input, and output form associative relation-
ships, such as <filter, input> and <filter, output>. Since input
and output are usually configured in pairs and have the same
parameter, they are always preferentially analyzed together
when recommending. However, filter in configuration snippet
B contains a new keyword cos-ipv6, which is a common
parameter of input and output. The addition of configuration
snippet B complicates the recommendation. When filter serves
as recommendation input, we need to analyze which keyword
is the desired keyword. Therefore, we should explore all
hidden association keyword relations that exist in different
configurations, linking them for unified analysis.

To find the association characteristics between keywords,
NetCR uses Algorithm 2 to mine the association relationships
between keywords. NetCR first initializes the mapping triple
to record the frequency of keywords and parameters in all
configuration knowledge graphs (line 1 - line 2). NetCR then
traverses all nodes in G1, G2, · · · , Gn, finds all keywords
and parameters, and updates the mapping triple (line 3 - line

Algorithm 2 Mine keyword association relationship.
Input: G1, G2, · · · , Gn

Output: library Lib
1: Initialize keyword cmd, parameter p, and frequency num;
2: Initialize the mapping triple < p, cmd, num >;
3: for all G1, G2, · · · , Gn do
4: Search all nodes in depth-first traversal;
5: for each non root node ni do
6: Update < pni

, cmdni
, num+ = 1 >;

7: end for
8: end for
9: for all parameter p do

10: Add < p, cmd, num > to library Lib when num ≥
numdefault;

11: end for
12: Return Lib;

chassis{
  redundancy{
     failover;
     graceful-switchover;
  }
}

(a) New Configuration Snippet
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Fig. 7. An example of the aggregating different knowledge graphs.

8). NetCR counts their frequency num, and it then decides
whether to record keyword pairs according to the constant
numdefault set by the operators (line 9 - line 11). NetCR uses
the constant numdefault to filter low-frequency keywords,
reducing the calculation and accelerating recommendation.
The operator can reset numdefault based on their expert expe-
riences and requirements, such as the number of devices. Fi-
nally, Algorithm 2 outputs the keyword library Lib that records
high-frequency keyword pairs. NetCR links G1, G2, · · · , Gn

based on Lib to build the association configuration knowledge
graph G.

D. Association Configuration Knowledge Graph

NetCR aggregates G1, G2, · · · , Gn into the final association
configuration knowledge graph G. An example of aggregating
different knowledge graphs is shown in Figure 7. NetCR
randomly selects a foundation graph Gi from G1, G2, · · · , Gn,
then aggregates other graphs based on Gi, such as NetCR
takes Figure 5b as the foundation graph. A new configuration
knowledge graph is shown in Figure 7a. NetCR retrieves
the configuration structures and skips the common keywords
between them, such as redundancy. There is a new keyword
failover that does not exist on the foundation graph. NetCR
checks its association pair in library Lib and attaches it to the
foundation graph based on its context. If all G1, G2, · · · , Gn

are processed, there are still keyword pairs that have not been
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attached to the foundation graph. NetCR creates a new root
node to connect them and the foundation graph.

E. Recommendation Interpretability

Each node and edge within the knowledge graph can serve
as an explanation for query objects, thereby constituting their
associated knowledge. Moreover, presenting the source of
each recommended keyword adds a higher level of credibility
compared to solely providing recommendation results. By
analyzing the explanatory content provided, operators can
assess the accuracy of current recommendation outcomes.
Consequently, we elucidate specific recommended results by
extracting context from the knowledge graph that pertains to
them, encompassing their parent, sibling, and child nodes. We
implement a visual prototype system by Neo4j [33] shown
in Figure 8, which is divided into four parts. Part 1 and
Part 4 provide the information about the knowledge graph
and node, respectively. Part 2 provides an interactive query
interface. Part 3 is a real-time visualization window that
displays the configuration knowledge graph based on the
query constraints. A practical explanation example is shown in
Figure 9. NetCR explains family inet by showing its context.
As an extra option, NetCR can explain its context through
textual descriptions. For example, the graphical representation
of knowledge triple {family, instance of, family inet} is
shown in Figure 9, and its textual description is that “family
inet is an instance of family class”. Interpretability allows
the operators to understand why keywords are recommended,
increasing the reliability of recommendation results.

IV. RECOMMENDATION FRAMEWORK

This section presents the recommendation framework of
NetCR. Figure 3 shows a simple example of the configuration
recommendation. NetCR takes different parent nodes filter and
neighbor as input. NetCR outputs a configuration fragment and
a single keyword based on their context, respectively.

However, there are more complex situations in practice.
Figure 10 shows the node family with three different con-
figuration snippets. There are multiple branch configurations
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Fig. 9. The visual explanation of keyword family inet.

of node family, and each sub-branch has a different config-
uration composition. In detail, family has three sub-branches
including two inet and one inet6, and each inet has differ-
ent configurations. Different configuration branches make it
impossible to rely on library Lib alone to make accurate
recommendations, such as the recommended result for family
might be a configuration fragment or a single configuration
keyword. We need to analyze all possible branches based on
the input to find the expected keywords. Therefore, we design
a recommendation framework to improve the recommendation
coverage rate that includes the expected keywords, including
Secondary Classification Tag, Impact Factor Calculation, and
Top-N Recommendation. According to the composition of their
descendants, NetCR uses the secondary classification tag to
classify sub-keywords with the same parent node. These tags
will be used as the basis for impact factor calculation. NetCR
calculates the IF via a statistical algorithm and outputs N
keywords according to the IF .
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family inet{

    mtu 9174;

    filter{

     input backbone-in;

     output interface-out;       

     }

}

    

   Configuration Snippet A  

family inet{

    mtu 9180;

}

             Configuration Snippet B

family inet6{

    address 2001:da8:1:11::2/64 9180;

}

             Configuration Snippet C

Fig. 10. keyword family with three different child node structures.

A. Secondary Classification Tag

NetCR implements the secondary classification tag to ana-
lyze the composition of configuration branches with the same
parent node. Such as the configuration branch of parent node
family shown in Figure 10, NetCR labels the configuration
content contained in family inet and family inet6 with
secondary classification tags. When family is used as input,
NetCR analyzes which configuration snippet is more suitable
to be recommended based on these tags. A parent keyword is
denoted by F . All children set of F in different configurations
are denoted by S1, S2, · · · , Sn. The child nodes of each Si in
S1, S2, · · · , Sn have the form Si = {si1, · · · , sij}. If the branch
configurations of keyword F are different, they have the form:

S1 ∩ · · · ∩ Sn ⇒ {s11, · · · , s1j} ∩ · · · ∩ {sn1 , · · · , snm} = ∅

To further describe the configuration composition of keyword
F , we set two additional sets X and Y . X is the intersection
of S and has the form:

X = {{s11, · · · , s1j} ∩ · · · ∩ {sn1 , · · · , snm}}

where X denotes the keywords that must exist in the con-
figuration branches of keyword F . Y is the union set of S
and represents all possible children of F . The tag type set is
defined by Tag = {Tag1, Tag2, · · · , Tagi}, and its priority
decreases as the sequence number increases. Tag1 represents
that the current keyword must be the children of F , and
it usually serves as the label for X . Tag2 means that the
current keyword may be the children of F . {Tag3, · · · , Tagi}
represents the other constituent cases, whose purpose is to
be able to completely label all children of F . Based on the
above sets, the secondary classification algorithm is shown in
Algorithm 3. NetCR first finds all branch nodes in G. For each
branch node like family, NetCR records all its configuration
branching cases and counts its total number in G (line 1 - line
4). NetCR then computes the rate for each S of F (line 5 -
line 6). Finally, NetCR tags these keywords (line 7 - line 14).

B. Impact Factor Calculation

When NetCR finishes tagging keywords, NetCR utilizes
these tags to calculate the IF . The greater the IF of the key-

Algorithm 3 Secondary classification tag.
Input: G
Output: G with tags

1: for each branch keyword F in G do
2: Record all F ’s children set S = {S1, · · · , Sn} by <

F, {S} > ;
3: Count the number of F by SumF ;
4: end for
5: Calculate each Num that the number of same children in

< F, {S} >;
6: Update rate of Sn by < F, Sn,

Numn

SumF
>;

7: for each Fi in < F, {S} > do
8: Tag Tag1 to {X} ;
9: Tag Tag2 to {Y } ;

10: for Numi

SumF
from high to low do

11: If the current node is not tagged, it is tagged Tagi;
12: end for
13: end for
14: Return G;

word, the higher the probability of becoming the recommended
keyword r. The IF is calculated in the form:

IF =
1

(
⃗

ratef1 , · · · ,
⃗

ratefi ) · ( ⃗ratem1 , · · · , ⃗ratemj )

n∑
1

ratefi = 1,

n′∑
1

ratemj = 1

where f is the current input keyword, m is f ’s child node
and sibling node of r, rate = num

sum denotes the proportion

shown in Algorithm 3, ⃗
ratef1 , · · · ,

⃗
ratefi is the rate that f

appears in G alone, and ⃗ratem1 , · · · , ⃗ratemj is the rate that f

and m appear simultaneously. Since ⃗
ratef1 , · · · ,

⃗
ratefi is fixed,

A higher value of ⃗ratem1 , · · · , ⃗ratemj will increase the value
of IF , meaning m is more valuable for recommendation.

C. Top-N Recommendation

NetCR supports taking a single parent node f , such as
filter, or a configuration snippet containing multiple f , such
as the configuration snippet shown in Figure 3.

NetCR achieves the configuration recommendations accord-
ing to the following steps shown in Figure 11 :

• Begin: NetCR takes the incomplete configuration snippet
Cs as input. Cs can include parent nodes, sibling nodes,
and child nodes of r, and it contains at least one parent
node f .

• Process 1: NetCR checks whether f has multiple chil-
dren r (multiple configuration branches). If No, NetCR
recommends r according to the keyword library Lib. Oth-
erwise, NetCR checks the auxiliary condition. Auxiliary
condition refers to all nodes except the f and its child
node.

• Process 2: NetCR checks whether Cs can be used as the
auxiliary conditions. If No, it means Cs only contains
the parent node f and its child nodes, NetCR calculates
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Begin

f  has
 multiple r 

Yes

Auxiliary 
condition

No

Instance in G

Yes No

Yes No

Recommend r 
based on Lib

Recommend 
r based on IF

Recommend 
r based on IF

Recommend r 
based on 
IF_instance

End

Fig. 11. The recommendation process of NetCR.

Algorithm 4 Recommendation Algorithm.
Input: G, Cs

Output: Ccomplment

1: Initialize Ccomplment and locate the parent node F in Cs;
2: Build the configuration knowledge graph of Cs;
3: Record the sibling nodes {sn1, · · · , snn} of r in Cs;
4: for all F in G do
5: Record ri under the longest match {sn1, · · · , snn};
6: Calculate and record < ri, IFi, Tagi >;
7: end for
8: Take < rmax, IFmax, Tagmax > with the maximum

value IFmax;
9: Ccomplment ∩ rmax;

10: for all children S of rmax do
11: if rmax and S have Tagmax label then
12: Ccomplment ∩ S;
13: end if
14: end for
15: Return Ccomplment;

the IF of each child node and recommends r based on
IF . Otherwise, NetCR checks the instance of Cs in G.

• Process 3: NetCR matches all instances Cs in G, such
as parsing Cs into a tree structure and matching it on G.
If the match fails (No), NetCR calculates the IF of f ’s
child nodes and recommends r based on IF . Otherwise,
NetCR calculates the IFinstance of each instance, and the
keyword with a maximum IFinstance is recommended.

NetCR adopts the configuration recommendation algorithm
(Algorithm 4) to implement the above process. Operators take
incomplete configurations Cs as input and output correspond-
ing configurations Ccomplment (Figure 3). NetCR first locates
all parent nodes in Cs, parses configurations Cs, creates the
corresponding configuration knowledge graph, and records the
sibling nodes of r (line 1 - line 3). NetCR then finds out all
possible r and records each IF and Tag, and it selects the
r with the maximum impact factor (line 4 - line 9). Finally,
NetCR relies on Tag to confirm sub-keywords of r such as
the input’s sub-keyword shown in Figure 3c. If they exist,

NetCR takes them as input (line 10 - line 15).

V. EVALUATION

A. Experiment Setup

The configuration ontology of NetCR is created by Protégé
[34], the knowledge graph is managed by Neo4j [33], and a
snapshot of a visual prototype system is shown in Figure 8.
NetCR is performed on a machine with a 2.90 GHz Intel Core
i5 CPU and 8GB RAM.

Dataset We run extensive experiments on network configu-
rations from Internet2 [35]. We divide all configurations into
Small and Large based on the configuration size.

• Small: There are an average of 24 devices, and the
average number of configuration lines for each device
is 1260.

• Large: There are an average of 10 devices, and the
average number of configuration lines for each device
is 8236.

In addition, the constant numdefault in Algorithm 2 is set
to 1, meaning that all configuration keywords are retained.
NetCR constructs a highly complex knowledge graph based
on these configurations and evaluates its performance against
this knowledge graph.

Recommendation For each recommendation, we ran-
domly intercept configurations from the original configuration
Coriginal as input, such as a configuration keyword or a con-
figuration fragment. We simulate the manual process of writing
configurations by automatically inputting these configurations
line by line into NetCR. Subsequently, NetCR computes
and recommends configurations based on the provided input.
Depending on the configuration sizes, Small recommends over
9, 000 times, and Large recommends over 17, 000 times.

Evaluation Metric We split the recommended configura-
tions R (output) into two parts Rcoverage and Rredundancy.
Rcoverage denotes the configurations that exist in the orig-
inal configuration Coriginal, while Rredundancy denotes the
configurations that do not exist in the original configuration
Coriginal. We evaluate and focus on the performance of NetCR
from the following three aspects.

• The coverage rate. We calculate the coverage rate of
NetCR by Rcoverage

Coriginal
. The coverage rate reflects the rec-

ommendation effectiveness of NetCR. The higher the
coverage rate, the more accurate the recommendation. If
the recommendation is a single configuration keyword
rather than a configuration segment, then the coverage
rate is equivalent to the accuracy rate.

• The redundancy rate. We calculate the redundancy rate
of NetCR by Rredundancy

Coriginal
. The redundancy rate is a sig-

nificant metric that reflects the configuration composition
with the highest IF based on the input. Consequently,
redundant configurations can serve as valuable bench-
marks for operators to comprehensively enhance their
configurations.

• Runtime. We document the time dedicated to building
knowledge graphs and providing configuration recom-
mendations. The analysis of runtime can provide us with
deeper insights into NetCR’s performance.
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Fig. 12. The coverage rates of NetCR. Fig. 12a shows the redundancy rates
under different coverage rates. Fig. 12b shows the average coverage rate.

B. Coverage and Redundancy Rate Analysis

We first discuss the coverage and redundancy rate shown in
Figure 12. Keyword Types denotes the keyword at the current
coverage rate, such as parameter, and there are 215 keyword
types in total. Recommendations represents the proportion of
recommendations at the current coverage. Figure 12a shows
75% of the keywords achieve more than 80% coverage rate,
they account for 61.46% of the total number of recommen-
dations, and their average redundancy rate is below 20%. In
particular, 54.35% of the keywords achieve 100% coverage
rate, and the maximum redundancy rate does not exceed 22%.
Keywords with coverage rates from 0 to 50% have the highest
redundancy rate of 64.28%, but they only account for 8.85%
of keyword types and 10.37% of total recommendations,
respectively. The experimental results depicted in Figure 12a
demonstrate that NetCR achieves a high coverage rate while
simultaneously maintaining a low redundancy rate within the
majority of recommendations. That is, NetCR can implement
recommendations effectively. Figure 12b shows the average
coverage rate of NetCR. The average coverage rate of NetCR
in a small network size is higher than that of a large network
size. The increase of configuration leads to the decrease of
recommendation coverage rate, but NetCR still achieves an
average coverage rate of at least 79.396% (Large) with a
redundancy rate of less than 20%. It should be noted that
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Fig. 13. The experimental results of top 10 most recommended keywords.
Fig. 13a shows their maximum recommendations and Fig. 13b shows their
coverage and redundancy rate.

redundant keywords also exist in the current network, and
they do not mean that they are the wrong recommendations.
Through redundant keywords, operators can further analyze
the configuration of the existing network.

Figure 13 shows the top 10 most recommended keywords
and their coverage and redundancy rates. term has the highest
number of recommendations with 4695 times, and it reaches a
99% coverage rate and 12.7% redundancy rate. Among these
frequently recommended keywords, the lowest coverage is
group, but it also has a 68% coverage rate with a 17% redun-
dancy rate. The experimental results in Figure 13a mean that
they are widely distributed in different configuration branches.
Moreover, the higher coverage rate and lower redundancy rate
shown in Figure 13b indicate NetCR can effectively match
them by calculating impact factors based on the secondary
classification tag.

Figure 14 shows the partial keywords with more than 95%
coverage rate and their proportion to the total number of rec-
ommendations. Due to configuration similarity, a large number
of keywords appear repeatedly in configurations, resulting in
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Fig. 14. The information of keywords with more than 95% coverage rate.
Fig. 14a shows their types and Fig. 14b shows their proportion to the total
number of recommendations.

their high coverage rate (Figure 14a). In Figure 14b, the total
proportion of these keywords is as high as 22%. Among them,
the keyword term has the highest recommendation ratio of
17%. Combined with the experimental results in Figure 12a,
the total proportion of keywords with more than 50% coverage
rate is 89.64%, meaning that it is feasible for NetCR to make
recommendations based on configuration similarity.

C. Run Time

Figure 15 shows the total run time of NetCR, where
Formalization presents the whole process of configurations
from configuration parse to secondary classification tag, and
Recommendation denotes the time of implementing configu-
ration recommendations. On the small network size, which
has 24 devices with an average of 1260 configuration lines.
NetCR formalizes all configurations in 1.2 seconds, it makes
9, 292 configuration recommendations in 1 second, and its
total time is less than two seconds. Run time increases
with the configurations. For the large network size, which
has 10 devices with an average of 8236 configuration lines.
NetCR takes nearly 4 seconds to formalize configurations

Formalization Recommendation

0

1

2

3

4

Fig. 15. The run time of NetCR.

and implements 17, 545 configuration recommendations in 1
second. In summary, NetCR can parse and implement over
26, 000 recommendations within 6 seconds, which satisfies the
recommendation requirements of operators in real-time.

VI. RELATED WORKS

Configuration synthesis Multiple works [1], [2], [6], [7],
[15], [16], [30] have shown how to automatically synthesize
configurations out of network policies, avoiding misconfig-
uration caused by manual configuration. Partial synthesizers
support only a single network protocol, such as Genesis
[15] (static routing), Propane/PropaneAT [1], [30] (BGP), and
Jinjin [7] (ACL). While other synthesizers like SyNet [6],
NetComplete [2], and AED [16] support multiple routing
protocols. In particular, NetComplete [2] and AED [16] can
incrementally synthesize configurations.

Practical constraints of the above works, such as inter-
pretability and generality, have prompted operators to opt for
manual configurations instead of automatically generated ones.
Our work focuses on aiding operators in manually modifying
configurations and can serve as a practical complement to the
aforementioned configuration works.

Configuration verification Verifiers are divided into control
plane verification and data plane verification. Control plane
verifiers have employed several approaches for simulating the
configurations, such as Datalog [17], abstract interpretation
[18], [19], [21], probability verification [22], explicit-state
model checking [36], SMT coding [20], and difference calcu-
lation [24], [25]. Compared to control plane verification, data
plane verifiers [14], [23], [37]–[42] directly check the data
plane forwarding information, such as forwarding information
base (FIB), to verify network invariants like blackhole-freedom
and loop-freedom.

Our work focuses on parsing and recommending configura-
tions rather than verifying them. Moreover, our approach can
work seamlessly with configuration verifiers. We guarantee the
correctness of configurations through them, which ultimately
enables us to make recommendations based on error-free
configurations.
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VII. CONCLUSION

In this paper, we present the design of NetCR, the net-
work configuration recommendation tool focusing on assisting
network operators in editing configurations manually. NetCR
models the configurations through the knowledge graph and
performs keyword association analysis to aggregate all con-
figuration knowledge graphs. NetCR then proposes a rec-
ommendation framework to recommend configurations. In
addition, NetCR explains recommendation results based on the
knowledge graph by providing context information such as the
parent and sibling nodes. We implement a prototype system
based on real network configurations. Experimental results
show that NetCR implements configuration recommendations
over 26, 000 times within 6 seconds and achieves a coverage
rate of at least 79.396% with a redundancy rate of less than
20%. The keywords with more than 95% coverage rate account
for more than half of the recommendation results, and the
total proportion of keywords with more than 50% coverage
rate is 89.64%. The experimental results confirm that NetCR
can effectively recommend matched keywords based on the
proposed recommendation method.

The demand for network intelligent management is steadily
increasing. In future work, we will explore whether artificial
intelligence models, such as the Large Language Model, can
recommend and synthesize configurations more effectively
than existing ones.
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