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Abstract—Network measurement plays a critical role in nu-
merous network applications that rely on fundamental flow pro-
cessing tasks such as frequency estimation, heavy hitter detection,
and distribution estimation. Sketch has emerged as an efficient
approach for network measurement due to its low overhead.
However, most sketch-based solutions target static windows while
enabling sliding window-based measurement remains an open
challenge. This paper introduces two novel general frameworks
applicable to diverse sketch models for sliding window-based
network measurement: a traditional sliding window frame-
work and a fine-grained flow-level framework. The traditional
framework divides the window into parts and uses centralized
flushing to remove expired parts. The flow-level framework
tracks timestamps to maintain exact flow characteristics over one
period, preventing truncation. To optimize memory usage, a bit-
wise adaptive allocation algorithm allows dynamic borrowing of
unused counter bits. The frameworks are evaluated on sketches
for different flow processing tasks. Results show the frameworks
are widely generalizable, reduce error substantially compared to
existing approaches, and provide more efficient memory usage.

Index Terms—Sketch, approximate estimate, sliding window.

I. INTRODUCTION

A. Background and Motivations

Network measurement is the basis of various network
applications, including traffic engineering, anomaly detection
and congestion control [1], [2]. They rely on fundamental flow
processing tasks such as frequency estimation, heavy hitter
detection, and distribution estimation. Existing sketch-based
solutions have been widely used due to their ability to achieve
high accuracy with low memory usage. Due to low memory
usage, sketch can be stored in programmable switch or cache.

In practical applications, people tend to focus on the most
recent flows. For example, in intrusion detection systems, it
is more concerned about recent attacks. Therefore, sliding
window-based sketch solutions are proposed for this purpose.
However, for high-speed and massive flows, this presents a
challenge as the sliding window requires maintaining the flow
state to promptly clear outdated flows. There have been a few
sliding window algorithms for sketches, like Sliding sketch [3],
S-ACE [4], and so on [5]–[12]. However, they are limited to
the following three aspects:
• Poor generality: The first is the limitation of the mea-

surement task. ECM [7] and SWCM [8] are based on CM
sketch [13] only for frequency estimation and frequency
distribution estimation. WCSS [9] and CELL [10] focus on
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Fig. 1: Two types of the sliding window.

heavy hitter detection. The second is the limitation caused
by the framework itself. Although Sliding sketch [3] and
Hopping sketch [6] claim that they are general frameworks,
we find that they are only general to sketches with k-
hash model. For single hash and complex sketches (Hash-
pipe [14], Elastic sketch [15], and so on), they are no longer
general. We will use an example to explain the problem of
Sliding sketch in detail in Section III-C.

• Coarse granularity: We refer to the sliding windows in
those previous papers as traditional sliding windows. Fur-
thermore, the traditional sliding window is coarse-grained.
As shown in Fig. 1, with four seconds as a period, the
query is executed at the tenth second. The traditional sliding
window is to obtain the flow characteristics between the
sixth and tenth seconds. But only the flows that start
before the sixth second and end after the tenth second has
gone through a complete period, and the rest of the flows
have not gone through a complete period. In other words,
traditional sliding windows only have good estimates for
persistent flows (Flow 2), while they have poor estimate
for ephemeral flow (Flow 1). However, in existing applica-
tions, ephemeral flows are always in the majority. The flow-
level sliding window has good estimates for both persistent
and ephemeral flows. We emphasize that flow-level sliding
window makes sense. For example, in recommendation
systems, we make recommendations based on each user’s
behavior in the recent period, terminating at the last activity
of each user rather than the current query time.

• Poor memory utilization: Due to the need to clear outdated
flows, the existing sliding window algorithm often requires
additional buckets, like Sliding sketch. But the existing on-
chip memory resources are precious. Although there are
solutions like SEAD [16], SALSA [17], and so on [18]–[20]
that perform compression optimizations on counters, there



are various limitations. For example, in SEAD, large count
values cannot utilize unused bits of small count values. In
SALSA, the merging of small count values with large count
values may introduce errors.

B. Our Proposed Solution and Contribution

In order to overcome the above shortcomings, we pro-
pose the two general sliding window framework and the bit-
wise adaptive allocation algorithm respectively. We apply our
framework to evaluate on five sketches of three tasks.

Contribution I: We propose two sliding window frame-
works. To address the issue of poor generality in the traditional
sliding window, we propose a noval traditional sliding window
framework, which is simple and effective to adapt to most
sketches. Our framework is similar to the Sliding sketch [3].
The difference is that we adopt a solution of centralized
refreshing instead of scanning. K-hash sketches, single-hash
sketches and complex sketches all can be extended to sliding
window models by our framework.

To address the issue of coarse granularity, we propose the
fine-grained flow-level sliding window framework, which can
obtain the characteristics of the flow over one complete period
at any given time. On each insertion, we clear outdated flows
based on timestamps to record the characteristics of the flow
over one complete period.

Contribution II: We propose the bit-wise adaptive alloca-
tion algorithm for counters. We base this on two facts: 1) Since
network traffic is skewed, most of the counters in sketch have
small count values. 2) Despite the presence of hash collisions,
we realize that the probability of several consecutive buckets
containing elephant flows is low. Therefore, we let multiple
counters share a register array, which can be adaptively oc-
cupied between counters according to their count values. Our
proposed bit-wise adaptive allocation algorithm can minimize
the error by letting large counts take advantage of unused bits
from small counts. Our solution preserves the count values as
losslessly as possible.

Contribution III: We apply our framework to evaluate on
five sketches of three tasks. The experimental results show that
our framework is general, fine-grained, and has a high memory
utilization. And the accuracy of existing sketch without sliding
window support is much higher than other sliding window
algorithms after using our framework.

II. RELATED WORK

In this section, we present various sketches that can be used
in our framework, as well as state-of-the-art probabilistic data
structures for sliding window and approximate estimate.

A. Sketch

Sketch is a kind of probabilistic data structure. At the
cost of allowing a certain amount of error, sketch achieves
high accuracy with low memory usage. Conventional sketches
support fixed window queries and do not support sliding
window model. The existing sketch supports a variety of
flow processing tasks. In this paper, we focus on the three

most fundamental tasks: frequency estimation, heavy hitter
detection and frequency distribution estimation. Frequency
estimation counts the number of packets in a flow. Typical
sketches for frequency estimation include CM sketch [13],
Elastic sketch [15], HeavyGuardian [21] and so on. Heavy hit-
ter detection identifies flows exceeding a frequency threshold.
Sketches that support heavy hitter tasks include Hashpipe [14],
Heavykeeper [22] and so on [23]. Frequency distribution
estimation obtains the distribution characteristics of all flow
frequencies. Sketches that support frequency distribution esti-
mation tasks include Mrac [24], FlowRadar [25] and so on.

B. Sliding Window Model

The existing traditional sliding windows for sketch fall into
two main categories. One category is sliding window only
for a specific sketch or flow processing task, like S-ACE [4],
CELL [10] and so on [7]–[9]. The other category is the general
framework, which is generic for various sketches and flow
processing tasks, such as Sliding sketch [3] and Hopping
sketch [6] and so on [5]. Currently, the most typical sliding
window solution is Sliding sketch, which mainly makes use
of the characteristics of k-hash model. Sliding sketch uses
a scanning pointer to go through sketch one bucket by one
bucket repeatedly to ensure that there is always a mapped
bucket that records the frequency of queried flows in a slice
very close to the sliding window.

C. Optimizations on Counters

Most approximate estimation solutions improve memory
utilization by exploiting the skewed characteristics of network
traffic, like SEAD [16], SALSA [17], BitSense [18] and so
on [19], [20]. SALSA merges overflowing ones with their
neighbors to represent larger numbers. We realize that merging
neighbors with higher counts with neighbors with lower counts
may cause unacceptable errors in single hash model sketch.
Under the premise of simultaneously supporting both increase
and decrease, the state-of-the-art solution is SEAD. Inspired
by floating-point number representation, SEAD uses some sign
bits to adjust the magnitude of the counters, enabling the
counters to represent larger values. However, it fails to utilize
unused bits in other counters.

III. SLIDING SKETCHES

In this section, we propose two sliding window frameworks:
the traditional sliding window framework and the flow-level
sliding window framework.

A. Definitions of Sliding Window

We give the formal definitions of the traditional sliding
window and the flow-level sliding window respectively.

Definition 1. Traditional sliding window: Traditional sliding
window with length N means the union of the packets that
arrive in the last N time units.

Definition 2. Flow-level sliding window: Flow-level sliding
window with length N means the union of the packets that
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Fig. 2: Two categories of sketch models.

arrive in the last N time units for the flow e, which takes the
last time that the flow e appears as the end time.

B. Sketch Model

Sketches are divided into two categories: k-hash model and
non-k-hash model. The details are as follows:

1) K-hash model: As shown in Fig. 2a, the k-hash model
sketches consist of k segments, where each segment contains
multiple elements and is associated with a hash function. The
elements within a segment are called buckets, which could
be bits, counters, or key-value pairs depending on specific
sketches. When a flow is inserted, it is updated in k segments
through k hash functions. Insertion is performed independently
for each mapped bucket. The updates of each segment are
mutually independent, and each segment can be considered as
a copy of the traffic statistics characteristics.

2) Non-k-hash model: Non-k-hash model sketches may be
the variety of complex sketches. The updates of each segment
are not independent. And non-k-hash model sketches do not
store multiple copies like k-hash model, but only store a
certain flow in one or some bucket. As shown in Fig. 2b,
we take Hashpipe [14] as an example. When inserting a flow,
in the first segment, key-value pairs in the mapping bucket are
directly replaced. In the subsequent segments, if the flow key
matches the stored key in the mapping bucket, we increase
the count value in the mapping bucket. Otherwise, we evict
key-value pairs with the smaller count value towards the next
segment and repeat the same operation. It is evident that the
key-value pair corresponding to each flow is not stored in all
segments.

C. Traditional Sliding Window Framework

In the non-k-hash model, let’s discuss the problem in
Sliding sketch [3]. First, non-k-hash model sketches do not
store multiple copies like the k-hash model sketches, which
fundamentally undermines the effectiveness of Sliding sketch.
This is because Sliding sketch relies on having copies of the
interested flows in each of the k segments to ensure that
there is always a segment that records queried flows in a

Algorithm 1: Insertion in Traditional Sliding Window

1 pos = hash(e) mod row;
2 cur part← (Tcur−Tinit)

N
d

mod (d+ 1);
3 if last part ! = cur part then
4 last part← cur part;

// Centralized flushing.
5 Sketch.clear(all bucket, cur part);
6 end
// The mapping bucket position is pos.

7 Sketch.insert(pos, cur part);

slice very close to the sliding window. Second, in the non-k-
hash model sketches, there is a problem of duplicate scanning
in Sliding sketch. We still take Hashpipe as an example. As
shown in Fig. 2b, assuming we have completed the scanning
of Segment 1 and are about to scan (E, 2) in Segment 2. At
this moment, a packet p arrives, which displaces (B, 400) from
Segment 1 to the position of (E, 2) in Segment 2, resulting
in an exchange between (B, 400) and (E, 2). In this scenario,
Sliding sketch will rescan the previously scanned (B, 400),
which will significantly underestimate the count value of B.

Our framework combines the strategies of both Sliding
sketch [3] and S-ACE [4]. Unlike Sliding sketch, we adopt
a solution of centralized flushing instead of scanning for
generality. Our framework is different from S-ACE in two
respects. First, S-ACE equally divides period to place a special
data structure called virtual aging counter. We emphasize that
we will not simply divide the period equally to place the same
sketch but only expand the necessary fields. For example,
in Hashpipe, we only expand the count field but not the
flow key field. It is necessary to accumulate the count as
the overall count to perform the insertion. In other words,
we maintain only one sketch within the sliding window and
do not maintain a separate sketch for each part, which is not
explicitly clarified in S-ACE. Second, S-ACE only supports
frequency estimation task and a special data structure called
virtual aging counter. Our framework enables most sketches
to support sliding window to support almost all tasks.

Inspired by above solutions, we propose our solution:
Initialization: Suppose a period is N seconds. In order to

obtain the flow characteristics of the most recent period, we
divide a period into d parts. Every part is for N

d seconds. We
always maintains the last d+1 parts. We use row to represent
the number of buckets. We use cur part and last part to
represent the current and previous part of the bucket, and
initialize cur part and last part to zero. We use Tcur to
represent the current system time and Tinit to represent the
time when the sketch starts to execute the task.

Insertion: For the incoming flow e, we treat the d + 1
parts as a large bucket and perform the normal sketch insert
operation. As shown in Alg. 1, we calculate the position of
the cur part and execute the insertion.

Case 1: If cur part is equal to last part, the flow is still
located in this part. We just perform the normal sketch insert



Algorithm 2: Query in Traditional Sliding Window

1 pos = hash(e) mod row, s← (Tcur−Tinit) mod N
d

N
d

;

2 cur part← (Tcur−Tinit)
N
d

mod (d+ 1), ans← 0;
3 for j ∈ range [0, d] do
4 ans + = bucket[pos][j];
5 end
6 ans − = s×bucket[pos][(cur part+1) mod (d+1)];
7 return ans;

operation.
Case 2: If cur part is not equal to last part, the last part

has been completely out of a period. The cur part of all
buckets in sketch is cleared and the value of last part is
updated to cur part. Finally, we just perform the normal
sketch insert operation.

Query: As shown in Alg. 2, we calculate cur part and
fit parameter s. The entire sketch only needs to calculate
cur part and s once. For query at integer multiples of N

d ,
we support perfect query by summing the latest d parts. For
queries at any time, we support the time-unbiased query.

In summary, we mainly adopt a solution of centralized
flushing. In the traditional sliding window, it is general for both
k-hash model and non-k-hash model sketches. Simultaneously,
for query at integer multiples of N

d , we support perfect query.
For query at any time point, we support the time-unbiased
query.

D. Flow-Level Sliding Window Framework

In addition to traditional sliding windows, in some practical
scenarios, people expect to get the statistics of the flows
through a complete period. The main problem we need to solve
is how to maintain a period of state for every flow individually.

Baseline: We introduce the baseline that implements the
flow-level sliding window, resembling our traditional sliding
window framework. The difference is that we need to maintain
2d + 1 parts in a bucket. For flow e, the 2d + 1 parts
within the bucket can be represented as bucket[hash(e) mod
row][0 : 2d]. The bucket[hash(e) mod row][(cur part −
d) mod (2d + 1) : cur part] within the bucket is the
statistics of the current period, and the remaining d parts are
the statistics of the previous period. If there exists a part
p in bucket[hash(e) mod row][(cur part − d) mod (2d +
1) : cur part], and both bucket[hash(e) mod row][p] and
bucket[hash(e) mod row][(p−d)mod (2d+1)] are non-zero,
we consider bucket[hash(e) mod row][(p−d) mod (2d+1) :
p] as statistics for a period of flow e.

Obviously, baseline is impractical. On one hand, baseline
exhibits excessively high memory usage. On the other hand,
flows that do not reach one period may be misidentified.
For example, assume that the flow e starts from the end of
bucket[hash(e) mod row][(p − d) mod (2d + 1)] and ends
at the beginning of bucket[hash(e) mod row][p]. Even if the
flow has not completed a full period, it may still be erroneously
identified.

Algorithm 3: Insertion in Flow-Level Sliding Window

1 pos = hash(e) mod row;
2 cur part← (Tcur−Tstart)

N
d

mod (d+ 1);
3 if Tfinal < Tcur −N and Tfinal! = 0 then
4 Sketch.clear(pos, all part);
5 Tstart, Tfinal ← 0;
6 end
7 if Tfinal == 0 then
8 Sketch.insert(pos, 0);
9 Tstart, Tfinal ← Tcur;

10 end
11 else if Tcur − Tstart <

N
d × (d+ 1) then

12 Sketch.insert(pos, cur part);
13 Tfinal ← Tcur;
14 end
15 else
16 Sketch.clear(pos, [0 : cur part]);
17 Sketch.insert(pos, cur part);
18 temp[0 : d]← bucket[pos][0 : d];
19 for j ∈ range [0, d] do
20 bucket[pos][d− j]←

temp[(cur part− j + d+ 1) mod (d+ 1)];
21 end
22 Tstart+ = (cur part+ 1)× N

d ;
23 Tfinal ← Tcur;
24 end

To solve the above problems, we propose our solution.
Initialization: We divide a period into d parts. Every part

is for N
d seconds. We always maintains the last d + 1 parts.

We use row to represent the number of buckets. For flow
e, the d + 1 parts within the bucket can be represented
as bucket[hash(e) mod row][0 : d]. At the same time, we
maintain two additional timestamps for every bucket: Tstart

and Tfinal, which represent the system time of the arrival
of the first packet and the arrival of the last packet in this
bucket respectively. We initialize them to zero. We use Tcur

to represent the current system time.
Insertion: For the incoming flow e, we perform insertion

based on Alg. 3.
Case 1 (line 3-6): When Tfinal < Tcur − N , the flow

recorded in the current bucket is outdated. We clean the bucket.
Case 2 (line 7-10): When the timestamp is zero, it indicates

that the flow e has arrived at the bucket for the first time. We
insert it into the first part and assign the current system time
Tcur to Tstart.

Case 3 (line 11-14): When Tcur−Tstart <
N
d ×(d+1), the

bucket is not yet full. First, we calculate cur part to determine
which part the flow e should be inserted into the bucket. Then,
we insert the flow e into that part of the bucket. Finally, we
update Tfinal to the current system time Tcur.

Case 4 (line 15-24): Otherwise, it indicates that the flow
in the current bucket has exceeded one period. Our purpose
is to maintain the flow characteristics within the most recent



Algorithm 4: Query in Flow-Level Sliding Window

1 ans← 0, pos = hash(e) mod row;
2 for j ∈ range [0, d] do
3 ans+ = bucket[pos][j];
4 end
5 if Tfinal − Tstart ≥ N then
6 s← Tfinal−Tcur−N

N
d

;
7 ans− = s× bucket[pos][0];
8 end
9 return ans;

period. First, we clear several outdated parts before insertion.
Then, we shift the parts in the bucket and arrange them in
ascending order of time. Finally, we update Tstart to Tstart+
(cur part + 1) × N

d , and update Tfinal to the current time
Tcur. This ensures that the flow that reaches one period can
get its characteristic within the most recent period.

Query: As shown in Alg. 4, we accumulate all the count
values in the bucket. To ensure time-unbiased queries, we
calculate fit parameter s.

In summary, we achieve the fine-grained flow-level sliding
window that supports a complete period of query at any time.
Even for flows that do not reach a period, our framework can
give the count value and the elapsed time of the flow. It is
general for most sketches, extending them to flow-level sliding
window. We only need to execute a query once per period to
obtain the statistics of the most recent complete period for
each flow. At the same time, our framework can incorporate
two additional features into existing sketches: providing the
time range of the flows and flow rate. Since we have added
timestamps, it becomes straightforward to obtain the time
range of the flow and calculate the flow rate.

IV. BIT-WISE ADAPTIVE ALLOCATION ALGORITHM

In this section, we propose a bit-wise adaptive allocation
algorithm to sketch containing counters, which dynamically
allocates the number of bits based on the count values.

A. Algorithm and Operations

It is well known that network traffic is highly skewed.
To ensure that counters do not overflow, the number of bits
occupied by counters must be set according to the number of
bits occupied by the maximum count value, which results in
wastage of bits for small count values.

Our proposed solution is based on two key facts: 1) Since
network traffic is highly skewed, most of the counters in sketch
have small count values. 2) Despite the presence of hash
collisions, we realize that the probability of several consecutive
buckets containing elephant flows is low. Therefore, we allow
several counters to share a set of bits, with each counter
adaptively using bits based on its count value.

Initialization: In previous sketch, each bit array occupies
32 or 64 bits as a counter. We use n to represent how many
counters share a bit array. As shown in the Fig. 3, the array
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Fig. 3: Example of Bit-wise Adaptive Allocation Algorithm.

consists of a total of 64 bits. Four counters share this array
(n = 4), which can be read in a single operation on most
computers. We use row to represent the number of bit arrays.
For a given array of bit arrays bit array[0 : row − 1], each
bit array is divided into three fields: count bits, count, and
index. count bits denotes the number of bits occupied by the
count value. count denotes the count value. index denotes
the counting unit. We fix the number of bits occupied by
count bits and index. The counting units represented by
count bits and index can be user-defined. In this paper, we
specify that the counting unit represented by count bits is
1, and the counting unit represented by index is a power of
2. Therefore, assuming the maximum count value occupies
32 bits, in Fig. 3, each count bits and index occupy 5
bits. Initially, the remaining bits are evenly distributed among
count.

Increase: For the incoming flow e, we get the value of
index. We use this value as an exponent of 2 and calculate the
result. Then we probabilistically decide whether to accumulate
count mapped to by e. If no accumulation occurs, the process
ends directly. Otherwise, as shown in Alg. 5:

Case 1 (line 2-4): If count mapped to by e does not
overflow, count is added directly.

Case 2 (line 5-37): Otherwise, it indicates an overflow of
count mapped to by e. Firstly, we obtain the remaining bits
(remainder) of the other count as well as the additional bits
needed (need bits) after the accumulation of count mapped
to by e. Then, there are two cases:
• Case 2.1 (line 6-23): When remainder ≥ need true, there

are still available bits in other count. Therefore, we just
borrow the remaining bits from the other count and update



Algorithm 5: Increase in Bit-wise Adaptive Allocation
Input: count bits : bit array[0 : row − 1][0 : n− 1]

count : bit array[0 : row − 1][n : 2n− 1]
index : bit array[0 : row − 1][2n]
pos 1← [hash(e) mod row × n] // n
pos 2← hash(e) mod n

1 temp← bit array[pos 1];
// Such as inc = 1 in CM sketch.

2 if temp[n+ pos 2] + inc < 2temp[pos 2] then
3 temp[n+ pos 2]+ = inc;
4 end
5 else
6 remainder ← 0, remain bits[0 : n− 1]← 0;
7 flag ← False;
8 for j ∈ range [0, n− 1] do
9 if j == pos 2 then continue ;

10 remain bits[j]←
temp[j]− ⌈log2 temp[n+ j]⌉;

11 remainder+ = remain bits[j];
12 end
13 need bits←

⌈log2 (temp[n+ pos 2] + inc)⌉ − temp[pos 2];
14 if remainder ≥ need bits then flag ← True ;
15 j ← 0;
16 while need bits > 0 and j < n do
17 min bits← min(remain bits[j], need bits);
18 need bits− = min bits;
19 temp[j]− = min bits;
20 temp[pos 2]+ = min bits;
21 j+ = 1;
22 end
23 if flag then temp[n+ pos 2]+ = inc ;
24 else
25 index add←

⌈
need bits

n

⌉
;

26 temp[pos 2]+ = index add× n;
27 temp[2n]+ = index add;
28 for j ∈ range [0, n− 1] do
29 temp[j]− = index add;
30 if j == pos 2 then
31 temp[j + n]← temp[j+n]+inc

2index add ;
32 continue;
33 end
34 temp[j + n]← temp[j+n]

2index add ;
35 end
36 end
37 end
38 bit array[pos 1]← temp;

count bits.
• Case 2.2 (line 24-36): When remainder < need true, the

available bits of other count are still not enough. Firstly, we
perform the same steps as in Case 2.1. Then, we increment
index to enhance the maximum count value that count can
accommodate. Finally, we subtract the value of index from

Algorithm 6: Decrease in Bit-wise Adaptive Alloca-
tion
// Such as dec = 1 in HeavyKeeper.

1 temp← bit array[pos 1], temp[n+ pos 2]− = dec;
2 remainder ← 0, remain bits[0 : n− 1]← 0;
3 for j ∈ range [0, n− 1] do
4 remain bits[j]← temp[j]− ⌈log2 temp[n+ j]⌉;
5 remainder+ = remain bits[j];
6 temp[j]− = remain bits[j];
7 end
8 if remainder < n or temp[2n] == 0 then return;
9 else

10 sub← min(
⌊
remainder

n

⌋
, temp[2n]);

11 temp[2n]− = sub;
12 for j ∈ range [0, n− 1] do
13 temp[j]+ = sub, temp[j + n]× = 2sub;
14 end
15 add←

⌊
remainder−n×sub

n

⌋
;

16 remainder add← remainder−n× (sub+ add);
17 for j ∈ range [0, n− 1] do
18 temp[j]+ = add;
19 if remainder add > 0 then
20 temp[j]+ = 1, remainder add− = 1;
21 end
22 end
23 end
24 bit array[pos 1]← temp;

all count bits and update count.
Decrease: Similar to Increase, we probabilistically decide

whether to decrease count. If no reduction occurs, the process
ends directly. Otherwise, we should determine whether the
freed bits allow the value of index to be reduced. We get
the number of all available bits (remainder) and the value of
index.

Case 1 (line 1-8): If remainder < n or index == 0, it
implies that there is no way to decrease the value of index.

Case 2 (line 9-23): Otherwise, we can reduce the value of
index to improve the accuracy of count. Firstly, we calculate
sub which represents the maximum value by which index can
be decreased. Secondly, we decrement index by sub. Then, we
update each count bits to count bits+sub. And we multiply
all count by 2sub. Finally, we distribute the remaining bits
evenly.

Query: We just need to multiply the mapped count value
by 2index.

The core of our solution lies in bit-wise adaptive allocation.
On one hand, it minimizes errors by allowing large count
values to utilize unused bits from small count values. On
the other hand, our solution strives to preserve all count
values as losslessly as possible. Our proposed solution does
well to reduce memory usage through the bit-wise adaptive
allocation. Taking the maximum count occupying 32 bits
as an example, Memory = 32 × n is transformed into



Memory = log2 32 × (n + 1) + allocated bits. The first
half of the expression represents the fixed overhead of our
solution, which can be reduced by changing the counting
units of count bits and index fields. The second half of the
expression represents the allocated memory size. People can
set allocated bits according to the memory situation.

B. Example

As shown in Fig. 3, the counting unit represented by
count bits is 1, and the counting unit represented by index is
a power of 2. Therefore, each count bit and index occupy 5
bits. And all count occupy 39 (64−5×5 = 39) bits together.
We can get the corresponding count based on the number of
bits recorded in count bits. We only present key examples.

Case 2.1 in Increase: When count[3] overflows (511 +
4095 ≥ 29), we check whether there are enough unused bits
for count[3] to use. For example, the number of unused bits
in count[1] is 1 (10 − ⌈log2 400⌉ = 1). count[3] still needs
4 (⌈log2 4606⌉ − 9 = 4) bits. There are enough unused bits
for count[3] to use. Therefore we perform a borrow operation
from other count. This operation expands the bit occupancy
of count[3], thereby increasing the maximum count value
count[3] can accommodate.

Case 2.2 in Increase: When count[2] overflows (600 +
8000 ≥ 210), count[2] still needs 4 (⌈log2 8600⌉−10 = 4) bits
and other count also don’t have unused bits (remainder =
0). Therefore, we increment index by

⌈
4

n=4

⌉
to enhance the

maximum count value that count can accommodate. Then, we
update all count bits and count.

Case 2 in Decrease: When count[0] is cleared to zero,
we find that the bits released by count[0] is 13, which are
enough to decrease index (

⌊
13

n=4

⌋
≥ index value). Since a

smaller index leads to higher accuracy in count, we decrease
the value of index while updating count bits and count.

V. PERFORMANCE EVALUATION

In this section, we apply two types of sliding window
models to five sketches: CM sketch [13], Elastic sketch [15],
HeavyKeeper [22], Hashpipe [14] and Mrac [24]. We compare
them with the state-of-the-art sliding window algorithms under
the same memory usage. We also analysis the impact of the
number of parts.

A. Experimental Setup

Traces:We use anonymous IP tracking collected from
CAIDA in 2018 [26]. We read 20 million packets and set
the length of the sliding window N = 2.5 million. In the case
of aggregation with source IP, there are about 70k flows. We
carry out experiments in count-based sliding windows. The
unit of window size in count-based sliding windows is packet
arrival. Each packet arrival can be regarded as a unit time.

Implementation: Our algorithm and all others are imple-
mented in C++. We use k to represent the number of hash
functions and d to represent the number of parts of a bucket.
We always maintain d + 1 parts in a bucket. We use n to
represent how many counters share a given bit array and set

TABLE I: Abbreviations of algorithms in experiments.

Abbreviation Full name
TBSW Traditional Sliding Window + Bit-wise Adaptive Allocation
FBSW Flow-Level Sliding Window + Bit-wise Adaptive Allocation

Baseline Baseline in Section III-D
SI Sliding Sketch [3]

ECM Exponential Count-Min Sketch [7]
SWCM Splitter Windowed Count-Min Sketch [8]
WCSS Window Compact Space-Saving [9]

Lambda λ-sampling Algorithm [27]

2 4 6 8 10
Memory Usage(MB)

0

1

2

3

A
R

E

TBSW-CM-1
TBSW-CM-3

TBSW-CM-5 TBSW-CM-7

(a) ARE.

2 4 6 8 10
Memory Usage(MB)

0

2

4

6

8

A
A

E

TBSW-CM-1
TBSW-CM-3

TBSW-CM-5 TBSW-CM-7

(b) AAE.

Fig. 4: Experiments with the CM sketch on parameters d.

n = 4. We use an array of length 64 bits, which can be read
and written in a single operation on most computers. We don’t
use the bit-wise adaptive allocation algorithm for the light part
of Elastic sketch. For the k-hash model sketches, we set k=10,
which refers to the setting of Sliding Sketch [3]. For ECM,
SWCM, WCSS, and Lambda, the parameters are set according
to the recommendation of the authors. The abbreviations of
algorithms in experiments are shown in Table I.

Metrics: We measure the metrics whenever the window
slides N

10d . We use the average value to represent the experi-
ment result at given parameter setting.

• Average Relative Error (ARE): 1
n

∑n
i=1
|fi−f̂i|

fi
, where n

is the number of flows, and fi and f̂i are the actual and
estimated flow sizes respectively.

• Average Absolute Error (AAE): 1
n

∑n
i=1

∣∣∣fi − f̂i

∣∣∣, where

n is the number of flows, and fi and f̂i are the actual and
estimated flow sizes respectively.

• Recall Rate: Recall Rate refers to the ratio of reported
true instances.

• Precision Rate: Precision Rate refers to the ratio of true
instances reported.

B. Experiments on System Parameters

In this section, we analyze the connection between d and
memory usage.

TBSW-CM: As shown in Fig. 4, our results show the ARE
of TBSW-CM-1 is about 1.5, 4.6 and 9.6 times lower than
TBSW-CM-3, TBSW-CM-5 and TBSW-CM-7 respectively
when the memory is set to 2MB, but the ARE of TBSW-
CM-7 is about 5.4, 1.9 and 1, 2 times lower than TBSW-
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Fig. 5: Experiments with the HeavyKeeper on parameters d.
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Fig. 6: Frequency estimation on traditional sliding window.

CM-1, TBSW-CM-3 and TBSW-CM-5 respectively when the
memory is set to 10MB.

TBSW-HK: As shown in Fig. 5, our results show that recall
rate and precision rate do not differ much when the memory
resources exceed 200KB. The ARE of TBSW-HK-1 is the
smallest among TBSW-HK-1, TBSW-HK-3, TBSW-HK-5 and
TBSW-HK-7 when the memory is set to 100KB, but the ARE
of TBSW-HK-1 is the biggest among TBSW-HK-1, TBSW-
HK-3, TBSW-HK-5 and TBSW-HK-7 when the memory is
set to 500KB.

At small memory, the smaller the value of d is, the higher
the accuracy is. However, as the memory increases, the larger
the d is, the higher the accuracy is. But the effect caused by d
is becoming less and less significant. Therefore, when memory
resources are small, we recommend setting the value of d to be
small. As memory resources increase, we recommend setting
the value of d to be larger. In the following experiments, we
set d = 3.

C. Experiments on Frequency Estimation

1) Traditional Sliding Window Framework: We compare
6 approaches: TBSW-CM, TBSW-Elastic, SI-CM, SI-Elastic,
ECM [7] and SWCM [8]. These include k-hash models and
non-k-hash models.

ARE and AAE: As shown in Fig. 6a, in the k-hash
models, our results show that the ARE of TBSW-CM is
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Fig. 7: Frequency estimation on flow-level sliding window.

about 8.5, 402 and 167 times lower than SI-CM, ECM and
SWCM respectively when the memory is set to 2MB. In the
non-k-hash models, the ARE of TBSW-Elastic is about 2,
1850 and 770 times lower than SI-Elastic, ECM and SWCM
respectively. As shown in Fig. 6b, in the k-hash models, our
results show that the AAE of TBSW-CM is about 5.4, 206 and
85 times lower than SI-CM, ECM and SWCM respectively
when the memory is set to 2MB. In the non-k-hash models,
the AAE of TBSW-Elastic is about 2.4, 400 and 170 times
lower than SI-Elastic, ECM and SWCM respectively.

2) Flow-Level Sliding Window Framework: We compare 2
approaches: FBSW-CM and Baseline-CM.

ARE and AAE: As shown in Fig. 7a, our results show that
the ARE of FBSW-CM is about 3.3 times lower than Baseline-
CM respectively when the memory is set to 3MB. As shown
in Fig. 7b, our results show that the AAE of FBSW-CM and
Baseline-CM is nearly equal.

D. Experiments on Heavy Hitter Detection

1) Traditional Sliding Window Framework: We compare 8
approaches: TBSW-HK, TBSW-Elastic, TBSW-Hashpipe, SI-
HK, SI-Elastic, SI-Hashpipe, WCSS [9] and Lambda [27].
These include k-hash models and non-k-hash models.

ARE and AAE: As shown in Fig. 8a, our results show that
the ARE of TBSW-HK is about 3, 10 and 8 times lower than
SI-HK, Lambda and WCSS respectively when the memory is
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Fig. 8: Heavy hitter detection on traditional sliding window.
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Fig. 9: Heavy hitter detection on flow-level sliding window.

set to 200KB. The ARE of TBSW-Elastic is about 3, 15 and 12
times lower than SI-Elastic, Lambda and WCSS respectively.
The ARE of TBSW-Hashpipe is about 5, 20 and 16 times
lower than SI-Hashpipe, Lambda and WCSS respectively. As
shown in Fig. 8b, our results show that the AAE of TBSW-HK
is about 2.2, 9.4 and 14.5 times lower than SI-HK, Lambda
and WCSS respectively when the memory is set to 200KB.
The AAE of TBSW-Elastic is about 3.5, 12.2 and 18.9 times
lower than SI-Elastic, Lambda and WCSS respectively. The
AAE of TBSW-Hashpipe is about 4.8, 15.3 and 23.7 times
lower than SI-Hashpipe, Lambda and WCSS respectively.

Recall Rate and Precision Rate: As shown in Fig. 8c,
our results show that the recall rate of TBSW-HK is about
15% and 60% higher than SI-HK and Lambda respectively
when the memory is set to 200KB. The recall rate of TBSW-
Elastic is about 15% and 60% higher than SI-Elastic and
Lambda respectively. The recall rate of TBSW-Hashpipe is
about 65% higher than Lambda respectively. As shown in Fig.
8d, our results show that the precision rate of TBSW-HK,
TBSW-Hashpipe and SI-HK is close to 1. The precision rate
of TBSW-Hashpipe is about 10% higher than SI-Hashpipe.
The precision rate of TBSW-Elastic is always higher than SI-
Elastic.

2) Flow-Level Sliding Window Framework: We compare 2
approaches: FBSW-HK and Baseline-HK.

ARE and AAE: As shown in Fig. 9a, our results show that
the ARE of FBSW-HK is about 4.2 times lower than Baseline-
HK respectively when the memory is set to 300KB. As shown
in Fig. 9b, our results show that the AAE of FBSW-HK is
about 3.5 times lower than Baseline-HK respectively when
the memory is set to 300KB.

Recall Rate and Precision Rate: As shown in Fig. 9c, our
results show that the recall rate of FBSW-HK is about 20%
higher than recall rate of Baseline-HK respectively when the
memory is set to 300KB. As shown in Fig. 9d, our results
show that the precision rate of FBSW-HK and Baseline-HK
is approximately equal.

E. Experiments on Real-time Frequency Distribution Estima-
tion

1) Traditional Sliding Window Framework: With the mem-
ory set to 1 MB, we compare 4 approaches: TBSW-CM,
TBSW-Mrac, SI-CM and SI-Mrac. These include k-hash mod-
els and non-k-hash models.

Real-time Frequency Distribution: As shown in Fig. 10a,
the estimated frequency distribution of TBSW-CM and TBSW-
Mrac is closer to the real frequency distribution, while that of
the SI-CM and SI-Mrac suffers from large errors.

2) Flow-Level Sliding Window Framework: With the mem-
ory set to 1 MB, we compare 4 approaches: FBSW-CM,
FBSW-Mrac, Baseline-CM and Baseline-Mrac.
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Fig. 10: Real-time frequency distribution.

Real-time Frequency Distribution: As shown in Fig. 10b,
the estimated frequency distribution of FBSW-CM and FBSW-
Mrac is closer to the real frequency distribution. The Baseline-
CM and Baseline-Mrac deviates from the true distribution of
frequencies by a large margin.

VI. CONCLUSION

Network measurement in sliding window is an important
and challenging work. Although there are some sliding win-
dow algorithms, they have the limitations of poor generality,
coarse-grained, and poor memory utilization. In this paper,
we present the two general framework for the sliding window,
and the bit-wise adaptive allocation algorithm. We use our
framework to three fundamental queries in sliding window:
frequency estimation, heavy hitter detection, and frequency
distribution estimation. Experimental results show that after
using our framework, the above sketches that do not support
sliding window achieves much higher accuracy and much
lower memory usage than the current state-of-the-art.
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