
IEEE TRANSACTIONS ON COMPUTERS 1

Distributed Sketch Deployment for Software
Switches

Kejun Guo, Fuliang Li, Member, IEEE, Jiaxing Shen, Member, IEEE,
Xingwei Wang, Member, IEEE and Jiannong Cao, Fellow, IEEE

Abstract—Network measurement is critical for various net-
work applications, but scaling measurement techniques to the
network-wide level is challenging for existing sketch-based solu-
tions. In software switches, centralized deployment provides low
resource usage but suffers from poor load balancing. In contrast,
collaborative measurement achieves load balancing through flow
distribution across software switches but requires high resource
usage. This paper presents a novel distributed deployment frame-
work that overcomes the limitations above. First, our framework
is lightweight such that it splits sketches into segments and allo-
cates them across forwarding paths to minimize resource usage
and achieve load balancing. This also enables per-packet load
balancing by distributing computations across software switches.
Second, through a novel collaborative strategy, our framework
achieves finer-grained flow distribution and further optimizes
load balancing. Third, we further optimize load balancing by
eliminating the mutual influence among forwarding paths. We
evaluate the proposed framework on various network topologies
and different sketches. Results indicate our solution matches the
load balancing of collaborative measurement while approaching
the low resource usage of centralized deployment. Moreover,
it achieves superior performance in per-packet load balancing,
which is not considered in previous deployment solutions.

Index Terms—software switches, sketch, network measure-
ment, distributed deployment, load balancing.

I. INTRODUCTION

A. Background and Motivations

NETWORK measurement serves as the foundation for
various network applications, such as traffic engineering,

congestion control, and anomaly detection [2]–[5]. Existing
sketch-based solutions have been widely used due to their
ability to achieve high accuracy with low memory usage.
However, in the context of data centers and backbone net-
works, the network topologies are often too large and complex
to measure. Nevertheless, existing sketches primarily focus
on individual points without considering network-wide traffic
measurement. Therefore, to achieve network-wide traffic mea-
surement, sketch-based solutions require deployment policies
which mainly consist of collaborative measurement [6]–[10],
and centralized deployment [11], [12].

A preliminary version of this work was presented at the IEEE International
Conference on Computer Communications (INFOCOM’24) [1], May 2024.

Kejun Guo, Fuliang Li and Xingwei Wang are with the School of
Computer Science and Engineering, Northeastern University, Shenyang
110169, China. E-mail: kejunguo@163.com, lifuliang@cse.neu.edu.cn,
wangxw@mail.neu.edu.cn.

Jiaxing Shen is with the School of Department of the School of Computing
and Decision Sciences, Lingnan University, Hong Kong, China. E-mail:
jiaxingshen@LN.edu.hk.

Jiannong Cao is with the School of Department of Computing, Hong Kong
Polytechnic University, Hong Kong, E-mail: csjcao@comp.polyu.edu.hk.

As shown in Fig. 1a, collaborative measurement involves
each switch in the network measuring a subset of flows to
achieve load balancing. However, it is limited to the following
two aspects:

• High resource usage: In collaborative measurement,
each switch in the network measures a subset of flows
and each packet performs a complete sketch operation
at a certain switch. To achieve load balancing, nearly all
switches deploy sketches to participate in the measure-
ment process. In programmable switches like Tofino [13],
resources are allocated statically. Since each packet per-
forms a complete sketch operation at a certain switch,
all switches deploying the sketch in the network must
reserve hash units and Stateful ALUs (SALUs) for a
complete sketch, which results in high resource usage. It
becomes even worse when multiple sketches are required
to support various tasks.

• Poor per-packet load balancing: Collaborative mea-
surement suffers from per-packet load imbalance, as
each packet undergoes a complete sketch operation at
a certain switch rather than having all switches along
the forwarding path jointly perform the sketch operation.
Collaborative measurement divides traffic by flow granu-
larity, causing severe load imbalance between switches
handling elephant flow versus mouse flow. Per-packet
load balancing is thus crucial, as it distributes multiple
hash computations and memory accesses for each packet
evenly across multiple switches. This reduces the impact
of varying flow sizes, thereby further optimizing load
balancing.

As shown in Fig. 1b, centralized deployment involves
deploying sketches on core switches, which can be obtained
through historical traffic statistics or network topology. Since
the sketch is only deployed on core switches, centralized
deployment minimizes resource usage. However, it is limited
to the following three aspects:

• Poor load balancing: Centralized deployment concen-
trates the measurement load and resource usage on core
switches, resulting in an unbalanced distribution between
the core switches and other switches.

• Poor per-packet load balancing: Similar to collabo-
rative measurement, each packet undergoes a complete
sketch operation in a certain switch, leading to per-packet
load imbalance.

• Redundant measurement: Due to lack of collabora-
tive strategy, some flows may traverse multiple switches

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 2

V5 V6

V1 V2 V3 V4

16.6% 16.6%

16.7% 16.7% 16.7%16.7%

Proportion of the measured flow

Achieving load balancing by distributing flows.

(a) Collaborative measurement.

V5 V6

V1 V2 V3 V4
Minimizing resource usage by deploying at the core switch.

(b) Centralized deployment.

V5 V6

V1 V2 V3 V4

Achieving load balancing by distributing sketch segments.

(c) Distributed deployment.

Fig. 1. Comparison of three different sketch-based network-wide deployment solutions in leaf-spine network topology.

TABLE I
COMPARISON OF EXISTING SOLUTIONS AND DESIGN GOALS.

Advantages Centralized
Deployment

Collaborative
Measurement Our Goal

Low Resource Usage
√

×
√

Load Balancing ×
√ √

Per-Packet Load Balancing × ×
√

where the sketch is deployed, leading to redundant mea-
surements.

B. The Proposed Solution and Contributions

As presented in Table I, centralized deployment exhibits
low resource usage but suffers from load imbalance, while
collaborative measurement achieves load balancing but entails
high resource usage. In this paper, as shown in Fig. 1c,
we propose to divide the existing sketch into segments and
deploy them across multiple switches. It could strike a balance
between resource usage and load balancing while ensuring per-
packet load balancing. The previous distributed deployment
solution most similar to ours is DISCO [14]. However, DISCO
overlooks the interactions between forwarding paths in real
network topologies and the finer-grained flow distribution,
leading to severe switch load imbalance. And DISCO is
limited to heavy hitter detection and certain sketches, lacking
generalizability to other scenarios. Moreover, DISCO requires
substantial domain expertise for deployment. Lastly, DISCO
lacks rigorous theoretical analysis of feasibility. To summarize,
the contributions of our proposed distributed sketch deploy-
ment are illustrated as follows.

Contribution I: lightweight distributed deployment
framework for sketch. We introduce the lightweight dis-
tributed deployment framework for sketch, aiming to com-
bine the benefits of centralized deployment and collaborative
measurement. The proposed framework achieves low resource
usage, load balancing, and per-packet load balancing. By
leveraging the concept of the k-hash independent model, we
divide the existing sketch into segments and deploy them
across multiple switches. Each switch stores a segment of
the sketch, performs partial hash calculations and memory ac-
cesses, and the measurement of each packet is collaboratively
completed by multiple switches. This approach ensures low

resource usage, load balancing, and per-packet load balancing.
Additionally, distributed deployment offers the potential to
expand resource utilization beyond the constraints of existing
single-point sketches.

Contribution II: collaborative distributed deployment
framework for sketch. To address issues such as load im-
balance in complex topologies, we propose the collaborative
distributed deployment framework for sketch, which further
optimizes the load balancing. Our collaborative strategy sup-
ports distributing a flow across multiple switches, whereas
previous strategies allocated a flow to a single switch. Specifi-
cally, each switch maintains a value indicating the percentage
of flows it needs to measure. Subsequently, flow distribution is
performed using our collaborative strategy, which determines
whether measurement should be performed on this switch
based on hash value and values stored in the switch. This
further optimizes load balancing.

Contribution III: optimal distributed deployment frame-
work for sketch. To eliminate the mutual influence between
forwarding paths, we propose the optimal distributed deploy-
ment framework for sketch, which further optimizes the load
balancing. Unlike collaborative distributed deployment frame-
work, within the switch, we maintain a separate percentage
value for each forwarding path, thereby eliminating mutual
influence between forwarding paths and achieving improved
load balancing.

Contribution IV: extensive experimental verification.
To validate the effectiveness of our proposed solutions, we
conducted comprehensive experiments across three different
topologies and four kinds of sketches. The results demonstrate
that our approach surpasses current state-of-the-art techniques,
achieving low resource usage, optimal load balancing, and per-
packet load balancing.

II. RELATED WORK

In this section, we provide background on different types of
sketches and prior work on network-wide traffic measurement.

A. Different Kinds of Sketches

Sketch is a kind of probabilistic data structure. Classic
sketches support single-point deployment without considering
the possibility of distributed deployment. According to the
supported queries, we classify them into three kinds.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 3

1) Sketches for Membership Queries: Membership query
checks whether a flow is present. A typical membership query
sketch is Bloom Filter [15]. Bloom Filter consists of k equal-
length register arrays, and each register array is associated
with a hash function. When inserting a flow, Bloom Filter
maps it into k registers through k hash functions and sets the
mapped bits to 1. When querying a flow, it checks the mapped
bits of the k hashes, reporting true only if all are 1. Bloom
Filter come with a unilateral error, resulting in false positives.
In other words, a flow present in a Bloom Filter is certainly
reported as true; however, a flow not present in the Bloom
Filter may also result in false positives. Recently, variants of
Bloom Filter have been proposed to meet the requirements of
different applications such as CBF [16], DBF [17], EBF [18],
and NBF [19].

2) Sketches for Frequency Estimation: Frequency estima-
tion counts the number of packets in a flow. Typical frequency
estimation sketches include CM sketch [20], CU sketch [21]
and CO sketch [22]. The CM sketch comprises k equal-length
counter arrays, where each array uses a hash function. When
inserting a flow, CM sketch maps it into k counters via the k
hashes, incrementing each counter by 1. When querying a flow,
it checks the k mapped counters and reports the smallest value.
CO sketch and CM sketch are similar. The difference lies in
how they handle insertion and query. When inserting a flow,
for each mapped counter, CO sketch increments or decrements
it probabilistically. When querying a flow, it checks the k
mapped counters and returns the median of these values as
the estimate. To improve memory utilization given skewed
traffic, recent sketches split flows by size such as Tower
sketch [23], Elastic sketch [24], One sketch [25], BitSense [26]
and HeavyGuardain [27].

3) Sketches for Heavy Hitter Detection: Heavy hitter de-
tection identifies flows exceeding a frequency threshold. A
typical example is the MV sketch [28], comprising k rows
of bucket arrays. The MV sketch uses the majority vote
algorithm for insertion. When querying a flow, it checks the k
mapped buckets and returns the minimum value. MV sketch
provides high recall and precision. There are also some other
sketches that perform well, such as HeavyKeeper [29], Space
Saving [30], and Unbiased Space Saving [31].

B. Sketch Deployment for Network-Wide Traffic Measurement

The existing sketch network-wide deployment solutions are
mainly centralized deployment [11], [12], collaborative mea-
surement [6]–[10], and distributed deployment solutions [14].

Centralized deployment is to deploy sketch at core switches,
which can be obtained through historical traffic statistics or
network topology. It is modeled as an integer linear program-
ming problem, and the switch aggregating traffic is selected
for sketch deployment. Centralized deployment has the lowest
resource usage but results in a poor load-balancing effect.

Collaborative measurement means that each switch in the
network measures a subset of flows, which has an excellent
load-balancing effect. But all collaborative measurement solu-
tions suffer from extensive resource usage and per-packet load
imbalance. Currently, the most typical collaborative measure-

e

h1(e)

h2(e)

h3(e)

Update

Update

Update

Segment

Segment

Segment

Bucket

Fig. 2. An illustration of k-hash independent model sketch where k = 3.

ment solution is NSPA [6] that maintains a sampling probabil-
ity for each switch. If the packet is not metered by one of the
preceding switches on the forwarding path, a hash calculation
is required to determine whether to perform the measurement.
If the packet has not been metered until the egress switch,
the packet will be metered at the egress switch. NSPA has a
good load-balancing effect. Although Distributed Sketch [32]
claims to be a distributed framework, we find that it still
needs to reserve the hash units and SALUs for a complete
sketch. Therefore, it is more like a collaborative measurement
solution. There are many other existing collaborative solutions,
such as DCM [7], CFS [8], CountMax [9], and HiFi [10].

DISCO [14] is a recent distributed deployment solution
that is most relevant to our proposed solution. However, our
framework differs from DISCO in four key aspects. First,
DISCO overlooks the interactions between forwarding paths in
real network topologies and the finer-grained flow distribution,
leading to severe switch load imbalance. Second, DISCO is
limited to heavy hitter detection and certain sketches, which
could not be easily extend to other scenarios. Third, for
any given topology and traffic data, DISCO cannot directly
provide an intuitive deployment solution, requiring domain
expertise. Fourth, DISCO lacks rigorous theoretical analysis
of feasibility.

III. DISTRIBUTED SKETCH DEPLOYMENT FRAMEWORK:
BASIC VERSION

In this section, we propose the lightweight distributed
deployment framework for sketch, which only requires net-
work operator to deploy the sketch segment on the specific
switches. Firstly, we introduce a common model that many
sketches use. Secondly, we give baseline solutions and our
observations. Finally, based on this common model, we present
the lightweight distributed deployment framework for sketch.

A. Sketch Model

Sketch has various data structures. One of the most ad-
vanced classes is the k-hash independent model. The details
of this model are illustrated as follows.

Data structure: As shown in Fig. 2, the k-hash independent
model sketch consists of k segments, where each segment
contains multiple elements and is associated with a hash
function. The elements within a segment are called buckets,
which could be bits, counters, or key-value pairs depending
on specific sketches.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 4

V1 V2 V3 V4

native sketch

V5 V6 V7 V8

V9 V10 V11 V12

Fig. 3. A distributed sketch deployment solution in leaf-spine topology.

Insertion: When inserting a flow e, the k-hash independent
model sketch maps it into k buckets through k hash functions,
one in each segment. Insertion is performed independently for
each mapped bucket.

It should be noted that the sketches such as CU sketch [21]
and Hashpipe [33] are not a k-hash independent model because
multiple insertions are not independent.

B. Baseline Solutions and Our Observations

To motivate our design, we first introduce two baseline
solutions and illustrate them using network examples. As
shown in Fig. 3, it is a typical leaf-spine network topology
consisting of 4 spine switches and 8 leaf switches. Each pair
of leaf switches at the ends of each forwarding path send
24 flows with each other. Let’s take the k-hash independent
model sketch that needs to perform three hash calculations
and memory accesses as an example (k = 3). Previous
practice has proved that it is good enough for the k-hash
independent model sketch to perform 2-3 hash calculations
in the network. The resources of the programmable switch are
allocated statically. In the k-hash independent model sketch,
we use the Tofino switch to measure the number of hash units
that need to be used, which is about three times the number of
SALUs. Therefore, for the convenience of comparison, we use
the number of SALUs to represent the resource usage of the
k-hash independent model sketch. Since the measurement load
depends on the number of flows measured by the switch and
the number of hash calculations that need to be performed
by the sketch within the switch, we use the product of the
two to represent the measurement load. We use the standard
deviation of the number of hash calculations or memory
accesses to reflect the per-packet load balancing, performed by
each packet on each switch in its forwarding path. We calculate
the standard deviation of per-packet load balancing on every
path and then take the average. For example, in the leaf-
spine topology shown in Fig. 3, flows between leaf switches
traverse two leaf switches and one spine switch. In centralized
deployment, sketch is deployed at the spine switches. In a k-
hash model sketch with k = 3, each flow will perform 0,
0, and 3 hash computations and memory accesses at the two
leaf switches and one spine switch, respectively, resulting in
a per-packet load standard deviation of 1.41. Table II gives a
comparison of different solutions for measurement load and
resource usage.

TABLE II
COMPARISON OF DIFFERENT SOLUTIONS IN LEAF-SPINE TOPOLOGY.

Solutions Resource Usage
(Number of SALUs)

Load Standard
Deviation

Per-Packet Load
Standard Deviation

CD 12 1901 1.41
NSPA 36 0 1.41
LDD 12 0 0

The first solution is centralized deployment (CD) [11], [12].
Sketch is deployed on the switches with the most concentrated
traffic in the network. In leaf-spine topology, we deploy the
complete sketch on all spine switches (V 9-V 12). In other
words, a complete sketch of three segments is deployed on
each spine switch. Only the spine switches need to reserve 3k
hash units and k SALUs. It minimizes overall resource usage
but provides no load balancing.

The second solution is collaborative measurement. Each
switch in the network measures a subset of flows. We take
the state-of-the-art NSPA [6] as an example. The complete
sketch of three segments is deployed on all switches (V 1 -
V 12), and each switch measures a subset of the flows. Each
switch needs to reserve 3k hash units and k SALUs. NSPA
has a good load-balancing effect, but it does not take into
account the limitations of switch resources and the possibility
of sketch segments allocation. Inspired by this, we propose
the distributed deployment solution.

The third solution is our proposed lightweight distributed
deployment framework for sketch (LDD). It leverages the
inherent parallelizability of k-hash independent sketches. LDD
distributedly deploys the k sketch segments across switches
along forwarding paths. This realizes two key benefits: First,
by allocating one segment per switch, LDD achieves resource
efficiency equaling centralized deployment and load balancing
effect equivalent to collaborative measurement. Second, LDD
provides per-packet load balancing by involving all switches
equally in measurement. A potential concern is that in previous
sketch, the flow sets for each sketch segment are identical,
whereas in our distributed deployment, the individual sketch
segments may have different flow sets. In Section VII, we
provide a mathematical proof that this difference in flow sets
does not compromise the accuracy of the sketch.

C. Lightweight Distributed Deployment Framework for Sketch

Collaborative measurement only considers load balancing
by dividing flows and ignores the possibility of load balancing

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 5

24

24

24

24

24

48 24 0

0

V1 V2 V3 V4

V5

V6

V7

(a) Deployment Solution-I.

24

24

24

24

24

0 24 24

24

V1 V2 V3 V4

V5

V6

V7

(b) Deployment Solution-II.

Fig. 4. Deployment satisfies Objective-I and II. The black numbers represent
switch’s measurement load. Solution-II that satisfies Objective-III is more load
balanced.

by splitting sketch segments. Our proposed solution is based
on two key facts: 1) k-hash independent sketches allow parallel
computing since each segment operate independently, and
2) forwarding paths contain multiple switches. We leverage
these by dividing sketches into segments and deploying across
switches. Each switch stores one segment, performing partial
computation and memory accesses per packet. This collab-
oratively completes measurement over multiple nodes. To
preserve sketch accuracy guarantees under distribution, the
path must have k or more segments with independent hash
functions. Our framework has three design goals:

Objective-I: minimize resource usage in each forwarding
paths. It ensures that the distributed deployment framework
for sketch has the least resource usage close to the centralized
deployment. It needs to accumulate the resources used by the
switches on each forwarding path. The resources of overlap-
ping switches on the forwarding path need to be accumulated
repeatedly. The least resource usage of the forwarding path
promotes the unification of the solution set of the distributed
deployment and the solution set of the centralized deployment
solution into one solution set. As shown in Fig. 3, Objective-
I drives both the centralized deployment solution, where a
complete sketch with three segments is deployed on spine
switches, and the distributed deployment solution, where each
switch deploys a single segment, into a solution set.

Objective-II: balance the number of sketch segments in
each forwarding path. It ensures per-packet load balancing.
In the above solutions, Objective-II assists in selecting the
distributed deployment solution. Because each switch only
stores a segment, performs one hash calculation and memory
access, and the measurement of each packet is collaboratively
completed by multiple switches. Thus the distributed deploy-
ment solution has better per-packet load balancing. At the
same time, since it distributes segments evenly across multiple
switches as much as possible, we will see that it will help
select the deployment solution with the lowest resource usage
in Section V.

Objective-III: network-wide measurement load balanc-
ing. It ensures that the solution with the most balanced mea-
surement load is selected in the above solution sets. As shown
in Fig. 3, the deployment solution that satisfies Objective-I
and II in the leaf-spine network happens to be load balanced.

Therefore, to further illustrate the role of Objective-III, we give
another example. As shown in Fig. 4, assume that there are two
paths, each path has 24 flows, and each flow has one packet
that needs to perform three hash calculations and memory
accesses. The two deployment solutions simultaneously satisfy
the Objective-I and II. And Objective-III guarantees the choice
of solution Fig. 4b, because it is more load balanced.

In order to formulate this problem, we set the set of switches
in the network as V = {v1, v2 . . . vn} , n = |V |. The number
of sketch segments deployed by each switch is expressed as
Dv (v ∈ V). We use Sj

i to express the flows and the number
of flows from the ingress switch vi to the egress switch vj
from the measured flow matrix, which is also known to the
controller. We set the set of flows is Γ (Sj

i ∈ Γ) and the
forwarding path of flow Sj

i is PSj
i
= {vi, . . . vj}. We use

σ to represent the variance and Lv(v ∈ V) to represent the
measurement load on the switch v.

We formulate the problem as follows:

Opt.



min
∑
Sj
i∈Γ

∑
v∈P

S
j
i

Dv

min
∑
Sj
i∈Γ

σ
(
{Dv} ,∀v ∈ PSj

i

)
min σ ({Lv} ,∀v ∈ V)

(1)

S.t.



∑
v∈P

S
j
i

Dv ≥ k ∀Sj
i ∈ Γ

Lv =
∑
Sj
i∈Γ

(
Dv × Sj

i , if v ∈ PSj
i

)
∀v ∈ V

Dv ∈ [0, 1, ...k] ∀v ∈ V

(2)

The first constraint in Eq. 2 restricts each forwarding path
to have k or more sketch segments, which preserves the
error bound of sketch. The three objective functions in Eq. 1
correspond to Objective-I, II and III, respectively. The priority
of Objective-I is higher than that of Objective-II, and the
priority of Objective-II is higher than that of Objective-III.
We use the solver Gurobi [34] to solve.

Then, let’s explain how many sketch segments are deployed
in the switch and the memory size of each sketch. In switch
v, the number of sketch segments to be deployed is Dv . The
memory size of sketch is calculated by Lv∑

v∈V Lv
×Memory,

and Memory represents the total memory size of sketch
across all switches, which is a configurable parameter set by
the network operator.

Basic version unifies the benefits of centralized deployment
and collaborative measurement, which realizes collaborative
measurement’s load balancing with resource efficiency ap-
proaching centralized deployment. Additionally, basic version
uniquely achieve per-packet load balancing, with each packet
measured collaboratively across multiple switches. By solely
leveraging the distributed sketch, basic version provides a
lightweight and balanced network measurement.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 6

V1 V2 V3 V4

V5 V6 V7 V8 V9 V10 V11 V12

V13 V18 V19 V20V14 V15 V16 V17

60%

60%

60%60%

60%

(a) The collaborative distributed sketch deployment solution in fat tree topology.

V13

60

V5 V1 V7 V15

60 60 60 60

0≤ 28<60 √

True

flag1=28≥ 60 and 28 < 120 ×

flag2=120≥ 100 and 20 > 28 ×

False

flag1=28≥ 20 and 28 < 80 √

True

flag1=28≥ 80 and 28 < 140 ×

flag2=140≥ 100 and 40 > 28 √

True

flag1=28≥ 40 and 28 < 100 ×

flag2=100≥ 100 and 0 > 28 ×

False

(b) An example of collaborative strategy in fat tree topology.

Fig. 5. The collaborative distributed sketch deployment framework for sketch in fat tree topology.

TABLE III
COMPARISON OF DIFFERENT SOLUTIONS IN FAT TREE TOPOLOGY.

Solutions Resource Usage
(Number of SALUs)

Load Standard
Deviation

Per-Packet Load
Standard Deviation

CD 12 1382 1.2
NSPA 60 0 1.2
LDD 12 564 0.49
MDD 20 0 0.49

IV. DISTRIBUTED SKETCH DEPLOYMENT FRAMEWORK:
COLLABORATIVE VERSION

The lightweight distributed deployment framework for
sketch performs well in leaf-spine topology. Unfortunately,
the lightweight distributed deployment framework suffers from
load imbalance in complex network topologies. In order to
optimize load balancing performance, we present the collabo-
rative distributed deployment framework for sketch.

A. Baseline Solutions and Our Observations

We employ a fat-tree topology with four pods to reveal the
problems of the lightweight distributed deployment framework
for sketch. As shown in Fig. 5a, between pods, each pair of
edge switches at the ends of each forwarding path send 24
flows with each other. Each flow consists of a single packet
that needs to perform three hash calculations and memory
accesses (k = 3). As presented in Table III, centralized deploy-
ment and collaborative measurement will not be described.

The third solution is the lightweight distributed deployment
framework for sketch (LDD). One deployment solution that
satisfies LDD is to deploy a sketch segment on all core and
aggregation switches (V 1-V 12). In this case, all edge switches
remain unused, resulting in uneven load distribution.

The fourth solution is the collaborative distributed deploy-
ment framework for sketch (MDD). To differentiate from
centralized deployment (CD), we abbreviate it as MDD instead

of CDD. The collaborative distributed deployment framework
deploys a sketch segment on each switch, with each switch
individually performing measurements for 60% of the traffic,
and a total of three measurements are conducted collec-
tively by five switches along the path. Compared to the
lightweight distributed deployment framework, the collabo-
rative distributed deployment framework achieves better load
balancing through finer-grained flow distribution.

B. Collaborative Distributed Deployment Framework for
Sketch

Built upon the lightweight distributed deployment frame-
work, the core concept of the collaborative distributed deploy-
ment framework lies in executing finer-grained flow distribu-
tion through a novel collaborative strategy, thereby enhancing
improved load balancing. Previous collaborative measurement
solutions allocate a specific flow to a single switch for mea-
surement. Our collaborative strategy is distinct from previous
collaborative strategy. Our collaborative strategy distributes
specific flow across multiple switches, which previous col-
laborative solutions, such as NSPA [6], are unable to achieve.

Firstly, let us explain how to determine the percentage
of flows that each switch needs to measure. To achieve
finer-grained flow distribution, we relax Dv to float, which
represents the percentage of the flows that switch v needs to
measure, rather than the number of sketch segments mentioned
in the Section III-C.

We further formulate the problem as follows:

Opt.



min
∑
Sj
i∈Γ

∑
v∈P

S
j
i

Dv

min σ ({Lv} ,∀v ∈ V)

min
∑
Sj
i∈Γ

σ
(
{Dv} ,∀v ∈ PSj

i

) (3)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 7

S.t.



∑
v∈P

S
j
i

Dv ≥ k ∀Sj
i ∈ Γ

Lv =
∑
Sj
i∈Γ

(
Dv × Sj

i , if v ∈ PSj
i

)
∀v ∈ V

Dv ∈ [0, k] , F loat ∀v ∈ V

(4)

Unlike the lightweight distributed deployment framework,
the priority of Objective-III (network-wide measurement load
balancing) is higher than that of Objective-II (balance the
number of sketch segments in each forwarding path). Since we
relax Dv to float, this will always result in an even distribution
of the percentage if we do not change the priorities of the
objectives, which makes it impossible to further optimize the
measurement load balancing.

Then, let’s explain how many sketch segments are deployed
in the switch and the memory size of each sketch. In switch v,
the number of sketch segments to be deployed is ⌈Dv⌉. The
memory size of sketch is calculated by Lv∑

v∈V Lv
×Memory,

and Memory represents the total memory size of sketch
across all switches, which is a configurable parameter set
by the network operator. Within each switch, the memory
allocated to the sketch should be further divided among
different sketch segments based on their respective loads.

Next, we explain our proposed collaborative strategy. First,
in each switch, we store the percentage of flow that each sketch
segment needs to measure in this switch, denoted as Segi. It
should be noted that Segi is not Dv . For example, if Dv is
120% in switch v, this means switch v will be deployed with
two sketch segments, with Seg1 = 100% and Seg2 = 20%.
Since the programmable switch does not support float, we can
simply multiply Segi by a scaling factor num (num ∈ N+)
to convert Segi into an integer. For example, when num is 100
and Segi is 60%, Segi×num in the programmable switch is
stored as 60. If higher precision is desired, you can set num to
a larger positive integer. Second, we explain how to ensure that
each switch measures the corresponding percentage of flow.
For each packet e, the hash value range is [0, num). At the
ingress switch vi, vi performs a hash computation on packet
e and denotes it as hash(e). Then, the first sketch segment
checks if

{
ceil = Seg1 × num

0 ≤ hash(e) < ceil
(5)

If yes, the packet e is inserted into the first sketch segment.
On sketch segments other than the first sketch segment, the
sketch segment checks if


cur ceil = ceil + Segi × num

flag1 = (hash(e) ≥ ceil and hash(e) < cur ceil)

flag2 = (cur ceil ≥ num and cur ceil − num > hash(e))

flag1 or falg2 == True
(6)

If yes, the packet e is inserted into the corresponding sketch
segment. When each sketch segment check is completed,
if cur ceil is greater than or equal to num, we update
ceil = cur ceil−num; otherwise, we update ceil = cur ceil.
Finally, when all sketch segments in the ingress switch have
checked, we insert the hash(e) and ceil into the packet header
and forward it to the next switch. Alternatively, instead of
inserting hash(e) into the packet header, each switch can
maintain an identical hash function, which still results in
significantly lower overhead compared to collaborative mea-
surement. The sketch segments in subsequent switches also
execute the same operation as described in Eq. 6. The only
difference is that we need to extract hash(e) and ceil from the
header of packet e. Overall, the proposed collaborative strategy
incurs a certain amount of bandwidth overhead, which is
minimal as it requires the transmission of only two additional
values. Moreover, the collaborative strategy relies solely on
the uniformity of the employed hash function. Fortunately,
most modern hash functions can achieve a relatively uniform
distribution, mitigating this potential concern.

For example, in the fat-tree topology shown in Fig. 5a,
according to the solution of Eq. 3 and 4, each switch deploys
a sketch segment to measure 60% of the traffic. We assume
num = 100. And let’s consider the flow with a hash value of
28 along the path V 13−V 5−V 1−V 7−V 15 as an example.
As shown in Fig. 5b, for packet e, the sketch segment in
switch V 13 is first encountered. Therefore, we perform a hash
calculation in switch V 13 and then check if packet e is inserted
into this sketch segment according to Eq. 5. Subsequently, we
insert hash(e) and the ceil into the header of packet e. Since
the sketch segment in subsequent switches is not the first one
encountered by packet e, we check if packet e is inserted
into the corresponding sketch segment according to Eq. 6. The
detailed calculation process is illustrated in Fig. 5b.

Finally, we elaborate on some of the issues encountered in
deploying programmable switches. On one hand, due to the
hash value range of programmable switches being from 0 to a
power of 2, similarly, we can conveniently set num to a power
of 2. On the other hand, the ingress switch does not require
additional hash units. We can utilize the hash computation
results calculated during sketch insertion for shifting to serve
as hash(e) (0 ≤ hash(e) < num).

In summary, collaborative version achieves finer-grained
flow distribution through our collaborative strategy, achieving
better load balancing effects at the expense of consuming
minimal bandwidth resources.

V. DISTRIBUTED SKETCH DEPLOYMENT FRAMEWORK:
OPTIMAL VERSION

The collaborative distributed deployment frameworks for
sketch perform well in most network topologies. However, it
does not account for interactions between forwarding paths. To
optimize load balancing, we propose the optimal distributed
deployment framework for sketch.

A. Baseline Solutions and Our Observations
We use a simple network topology to reveal the problems of

the collaborative distributed deployment framework for sketch.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 8

24

24

20

30

30

25 20 20

V1 V2 V3 V4

V5

V6

83% 83% 82%52%

100%
24%

100%
24%

(a) The collaborative distributed deployment solution.

24

24

24

24

24

24 24 24

V1 V2 V3 V4

V5

V6

100%

100%

100%

100% 100%100% 0%

(b) The optimal distributed deployment solution.

Fig. 6. Comparison of distributed deployment frameworks. The black numbers represent switch’s measurement load. The red numbers represent the percentage
of flow that the corresponding sketch segment needs to measure. The green and purple numbers represent the percentage of flow that the sketch segment of
the corresponding colors needs to measure.

TABLE IV
COMPARISON OF DIFFERENT SOLUTIONS.

Solutions Resource Usage
(Number of SALUs)

Load Standard
Deviation

Per-Packet Load
Standard Deviation

CD 3 53.7 1.36
NSPA 18 3.6 1.36
LDD 5 13.9 0.22
MDD 8 4.5 0.41
ODD 6 0 0.22

In the topology shown in Fig. 6, there are two paths, each flow
consists of a single packet that needs to perform three hash
calculations and memory accesses (k = 3). As presented in
Table IV, centralized deployment, collaborative measurement
and the lightweight distributed deployment framework will not
be described in detail.

The fourth solution is the collaborative distributed deploy-
ment framework (MDD). As shown in Fig. 6a, since switch
V 2 serves as the convergence switch for path flows S4

1 and S6
5 ,

its Dv needs to simultaneously accommodate both S4
1 and S6

5 .
This makes it challenging to achieve optimal load balancing.
We refer to this phenomenon as the mutual influence between
forwarding paths.

The fifth solution is the optimal distributed deployment
framework (ODD). As shown in Fig. 6b, each switch is
deployed a sketch segment. Subsequently, S4

1 is inserted into
switches V 1, V 3, and V 4, while S6

5 is inserted into switches
V 5, V 2, and V 6. It is evident that the optimal distributed
deployment framework eliminates the mutual influence be-
tween forwarding paths, allowing each path flow to have its
own unique Dv at each switch, thereby achieving better load
balancing.

B. Optimal distributed Deployment Framework for Sketch

In order to eliminate the mutual influence between for-
warding paths, we need to redefine Dv . In the collaborative
distributed deployment framework, Dv is prepared for all flows
passing through the switch v. We modify Dv to D

Sj
i

v , which
represents the percentage of the certain path flow Sj

i that
switch v needs to measure. We do not make any changes to
other goals and constraints.

We formulate the problem as follows:

private

24

24

Private segment of the corresponding color flow.

(a) Deployment Solution-I.

public

24

24

Public segment.

(b) Deployment Solution-II.

Fig. 7. Deployment satisfies Objective-I and III in MDD. Solution-II that
satisfies Objective-II has the lowest resource usage.

Opt.



min
∑
Sj
i∈Γ

∑
v∈P

S
j
i

D
Sj
i

v

min σ ({Lv} ,∀v ∈ V)

min
∑
Sj
i∈Γ

σ
({

D
Sj
i

v

}
,∀v ∈ PSj

i

) (7)

S.t.



∑
v∈P

S
j
i

D
Sj
i

v ≥ k ∀Sj
i ∈ Γ

Lv =
∑
Sj
i∈Γ

(
D

Sj
i

v × Sj
i , if v ∈ PSj

i

)
∀v ∈ V

D
Sj
i

v ∈ [0, k] , F loat ∀v ∈ V, Sj
i ∈ Γ

(8)

In Eq. 7, Objective-II (balance the number of sketch seg-
ments in each forwarding path) is important. In addition to per-
packet load balancing, since we modify Dv to D

Sj
i

v , this results
in the inability to select the solution with the lowest resource
usage from the measurement load balancing solutions. As
shown in Fig. 7 (k = 2 for this example), segments of different
colors are private to the path flow of the corresponding color.
Two deployment solutions simultaneously satisfy Objective-I
and III, but Solution-II that satisfies Objective-II has the lowest
resource usage.

Next, we will elaborate on the implementation of the
optimal distributed deployment framework for sketch. Similar
to the collaborative distributed deployment framework, the
collaborative strategy for optimal distributed deployment is
fundamentally the same as the one proposed in collaborative

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 9

distributed deployment, except that now a unique D
Sj
i

v is
maintained for each path flow. As a result, the efficacy of
this approach still primarily depends on the uniformity of the
employed hash function. A switch v only needs to maintain
O(|Pv|) match action entries, where Pv is the set of the
concurrent active paths passing v. Therefore, the optimal dis-
tributed deployment framework for sketch necessitates the con-
sumption of both bandwidth and TCAM resources. The band-
width usage is similar to that in the collaborative distributed
deployment framework for sketch. The TCAM resources can
be easily accommodated by programmable switches, as each
switch v only needs to maintain O(|Pv|) entries.

Finally, let’s explain how many sketch segments are de-
ployed in the switch and the size of each sketch segment.
The number of sketch segments that each switch v needs to
deploy is

⌈
max

({
D

Sj
i

v

}
,∀Sj

i ∈ Γ
)⌉

. The memory size of

sketch is calculated by Lv∑
v∈V Lv

×Memory, and Memory

represents the total memory size of sketch across all switches,
which is a configurable parameter set by the network operator.
Within each switch, the memory allocated to the sketch should
be further divided among different sketch segments based on
their respective loads.

In summary, optimal version eliminates the mutual influence
between forwarding paths, achieving better measurement load
balancing at the cost of consuming certain resource.

VI. DISCUSSION

We discuss the generality of the proposed framework and
some challenges encountered in practical implementation.
First, the proposed framework is designed to be general and
applicable to networks composed of programmable devices. It
can directly derive deployment solutions based on the network
topology and traffic matrix, making it suitable for both ISP
and data center networks. While traditional network devices
may not be compatible due to a lack of programmability, the
gradual replacement of existing equipment with programmable
devices mitigates this limitation. Second, the computational
overhead required for deployment is low, equivalent to the
computational cost of a sketch or, at most, one additional
hash calculation. Finally, while both collaborative distributed
deployment and optimal distributed deployment incur some
bandwidth overhead, it remains minimal, requiring only two
additional numbers to be stored in the packet header.

Next, from the perspective of network operator, who are
also the end-users, we discuss the advantages of distributed de-
ployment. First, distributed deployment achieves low resource
usage and load balancing. Second, the accuracy of sketch is
not compromised by distributed deployment, which will be
theoretically proven in Section VII. Finally, since sketch is
distributed across various nodes, distributed deployment offers
enhanced robustness. For example, consider a flow traversing
three switches along a path. Even if the bandwidth between
one switch and the controller is constrained, sketch segments
from the other two switches can still be transmitted to the
controller in real time, avoiding the issue faced by centralized
deployment or collaborative measurement where incomplete

V1 V2 V3 V4

V5

V6

V7

V8

Fig. 8. Synthetic topology. It contains 8 switches and three different
forwarding paths.

sketches may prevent some traffic measurement information
from being reported.

VII. THEORETICAL PROOF

We give the theoretical proof that the difference in the flow
set between different segments of the sketch has no effect on
the error bound. We refer to previous work SketchConf [35]
to provide theoretical proof. It should be noted that we do
not emphasize the innovation of our theoretical proof. We just
want to illustrate the theoretical basis of our solution. Let’s
take the CM sketch [20] as an example.

Single-segment sketch error bound: For one segment of
the CM sketch with w counters, we consider the counter that
e is hashed to. For any one of the other N − 1 distinct
flows, the possibility that it collides with e is 1

w . Therefore,
the number of distinct colliding flows Z follows binomial
distribution B(N − 1, 1

w). As N − 1 is usually large and 1
w

is small, we approximate that Z follows Poisson distribution,
with λ = N−1

w . In other words, the number of collisions is
only related to the ratio of the total flow number to the number
of counters. Assume that two segments hashed by flow e have
the same number of counters and the same number of flows.
Except for flow e, none of their remaining N − 1 flows are
the same. Since they have the same number of counters and
the same amount of flows, they have the same number of
collisions. Therefore, at this time, the error bound is only
related to the characteristics of the N − 1 flows. Since the
flows in the local network are independent and identically
distributed, their error bounds are the same.

Multi-segment sketch error bound: As different segments
are associated with independent hash functions, the error
bound in each segment can be regarded as independent.

In summary, even if the flow set between different segments
is different, it will not affect the error bound in the case of
independent and identical distribution of the flow.

VIII. EXPERIMENTAL RESULTS

We apply the distributed deployment framework for sketch
to three topologies (Fat tree topology, Leaf-spine topology, and
Synthetic topology) and four sketches (Bloom Filter [15], CM
sketch [20], CO sketch [22] and MV sketch [28]).

A. Test Setup

We use anonymous IP tracking collected from CAIDA
in 2018 [36], which has been used extensively in previous

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 10

articles. Each trace contains about 2.5 million packets. In the
case of aggregation with source IP, there are about 70k flows.
We conduct experiments in three network topologies. The first
topology is the fat tree network topology, as shown in Fig. 5a,
which consists of 4 core switches, 8 aggregation switches, and
8 edge switches. The second topology is leaf-spine network
topology, as shown in Fig. 3, which contains 4 spine switches
and 8 leaf switches. The third topology is a synthetic network
topology, as shown in Fig. 8, which has three forwarding paths.
It should be noted that the experimental results are similar in
larger topologies. We evenly distribute all flows across each
path. We conduct experiments using five solutions. The first
solution is the lightweight distributed deployment framework
for sketch (LDD). The second solution is the collaborative dis-
tributed deployment framework for sketch (MDD). The third
solution is the optimal distributed deployment framework for
sketch (ODD). The fourth solution is centralized deployment
(CD) [11], [12]. The fifth solution is NSPA [6]. The code for
these five solutions is available at [37]. Due to the limitation
of the number of Tofino switches, we evaluate the resource
usage of each switch in the Tofino switch and then accumulate
the resource usage of all switches in the topology. And other
experiment is carried out by simulation.

We compare the following metrics across three network
topologies and four sketches.

• Total Resource Usage: the total usage of SALUs, hash
units, or SRAM resources in all programmable switches
across the network. For the sake of comparison, we use
the SALUs resource usage as a representative measure
for the overall resource usage.

• Resource Usage Standard Deviation: the standard devi-
ation of switch resource usage across the network. We
use the standard deviation of resource usage to assess
the balance of resource usage among switches across the
network.

• Load Standard Deviation: the standard deviation of mea-
surement load among switches across the network. Since
the measurement load depends on the number of flows
measured by the switch and the number of hash calcula-
tions that need to be performed by the sketch within the
switch, we use the product of the two to represent the
measurement load. We use the load standard deviation to
evaluate whether the measurement load across switches
is balanced.

• Per-Packet Load Standard Deviation: the standard de-
viation of the number of hash calculations or memory
accesses, performed by each packet on each switch in its
forwarding path. We calculate the standard deviation of
per-packet load balancing on every path and then take
the average. We use per-packet load standard deviation
to assess whether each packet evenly distributes its mea-
surement load among the switches along the forwarding
path.

• False Positive Rate (FPR): n
m , m represents the total

number of flows that do not appear in the time period,
and n represents the number of flows that are mistaken
for flows that appeared in the time period.

• Average Relative Error (ARE): 1
n

∑n
i=1

|fi−f̂i|
fi

, where n

is the number of flows, and fi and f̂i are the actual and
estimated flow sizes respectively.

• F1 Score: 2·RR·PR
RR+PR , where PR (Precision Rate) refers to

the ratio of the number of the correctly reported instances
to the number of all reported instances, and RR (Recall
Rate) refers to the ratio of the number of the correctly
reported instances to the number of all correct instances.

B. Experimental Results on Resource Usage and Load Bal-
ancing

1) Experimental Setup: We apply the above five solutions
in three network topologies. We set k = 3 for the k-hash
independent sketch. As mentioned before, previous practice
has proved that it is good enough for the k-hash independent
model sketch to perform 2-3 hash calculations in the network.
The results of CM sketch are as follows. Since most k-
hash independent model sketches are k hash calculations and
memory accesses, the results of other k-hash independent
model sketches are also similar.

2) Performance on Resource Usage and Load Balancing:
The following are the results of the above experiment.

Resource usage: As shown in Fig. 9a, Fig. 10a and Fig. 11a,
the percentage in the figure indicates the ratio of the number
of SALUs used to the number of SALUs of all switches in the
topology. We find that the lightweight distributed deployment
framework and centralized deployment has the lowest resource
usage. And as shown in Fig. 9b, Fig. 10b and Fig. 11b, the
resource allocation of the lightweight distributed deployment
framework is more balanced than the centralized deployment.
The resource usage of the collaborative distributed deployment
framework and the optimal distributed deployment framework
is slightly higher than the resource usage of both but much
lower than that of the current optimal collaborative measure-
ment solution NSPA. The resource usage of NSPA is much
larger than these three solutions. In the three topologies, the
lightweight distributed deployment framework resource usage
is only 0.2, 0.33, and 0.29 of the NSPA resource usage.
The collaborative distributed deployment framework resource
usage is only 0.33, 0.33, and 0.46 of the NSPA resource usage.
The optimal distributed deployment framework resource usage
is only 0.33, 0.33, and 0.54 of the NSPA resource usage.

Measurement load balancing: As shown in Fig. 9c,
Fig. 10c and Fig. 11c, we find that the collaborative distributed
deployment framework, the optimal distributed deployment
framework and NSPA have the good load balancing effect, and
the collaborative distributed deployment framework and the
optimal distributed deployment framework achieve better load
balancing effect than NSPA. The lightweight distributed de-
ployment framework is slightly worse than the load-balancing
effect of them. But on the one hand, the lightweight distributed
deployment framework has the lowest resource usage. On
the other hand, the lightweight distributed deployment frame-
work has a far better load-balancing effect than centralized
deployment. Centralized deployments have the worst load-
balancing effect. In the fat tree topology, the measurement load
standard deviation of the collaborative distributed deployment

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 11

LDD MDD ODD CD NSPA0

20

40

60
To

ta
l R

es
ou

rc
e

U
sa

ge
 (N

um
be

r o
f S

A
LU

s)

12

20 20

12

60

 (1.3%)

 (2.1%) (2.1%)

 (1.3%)

 (6.3%)

(a) Resource usage.

LDD MDD ODD CD NSPA0.0

0.4

0.8

1.2

R
es

ou
rc

e
U

sa
ge

 S
ta

nd
ar

d
D

ev
ia

tio
n

0.49

0.0 0.0

1.2

0.0

(b) Resource usage load balancing.

LDD MDD ODD CD NSPA0

5000

10000

15000

20000

Lo
ad

 S
ta

nd
ar

d
D

ev
ia

tio
n

8553

0 0

20950

0

(c) Measurement load balancing.

LDD MDD ODD CD NSPA0.0

0.5

1.0

1.5

Pe
r-P

ac
ke

t L
oa

d
St

an
da

rd
 D

ev
ia

tio
n

0.49 0.49 0.49

1.2 1.2

(d) Per-packet load balancing.

Fig. 9. Resource usage, measurement load balancing and per-packet load balancing on fat-tree topology.

LDD MDD ODD CD NSPA0

12

24

36

To
ta

l R
es

ou
rc

e
U

sa
ge

 (N
um

be
r o

f S
A

LU
s)

12 12 12 12

36

 (2.1%) (2.1%) (2.1%) (2.1%)

 (6.3%)

(a) Resource usage.

LDD MDD ODD CD NSPA0.0

0.5

1.0

1.5

R
es

ou
rc

e
U

sa
ge

 S
ta

nd
ar

d
D

ev
ia

tio
n

0.0 0.0 0.0

1.41

0.0

(b) Resource usage load balancing.

LDD MDD ODD CD NSPA0

8000

16000

24000

Lo
ad

 S
ta

nd
ar

d
D

ev
ia

tio
n

0 0 0

24690

0

(c) Measurement load balancing.

LDD MDD ODD CD NSPA0.0

0.5

1.0

1.5

Pe
r-P

ac
ke

t L
oa

d
St

an
da

rd
 D

ev
ia

tio
n

0.0 0.0 0.0

1.41 1.41

(d) Per-packet load balancing.

Fig. 10. Resource usage, measurement load balancing and per-packet load balancing on leaf-spine topology.

LDD MDD ODD CD NSPA0

6

12

18

24

To
ta

l R
es

ou
rc

e
U

sa
ge

 (N
um

be
r o

f S
A

LU
s)

7

11
13

6

24

 (1.8%)

 (2.9%)
 (3.4%)

 (1.6%)

 (6.3%)

(a) Resource usage.

LDD MDD ODD CD NSPA0.0

0.4

0.8

1.2

R
es

ou
rc

e
U

sa
ge

 S
ta

nd
ar

d
D

ev
ia

tio
n

0.33

0.48 0.48

1.3

0.0

(b) Resource usage load balancing.

LDD MDD ODD CD NSPA0

20000

40000

60000

Lo
ad

 S
ta

nd
ar

d
D

ev
ia

tio
n

13955

2707
116

60477

4618

(c) Measurement load balancing.

LDD MDD ODD CD NSPA0.0

0.5

1.0

1.5

Pe
r-P

ac
ke

t L
oa

d
St

an
da

rd
 D

ev
ia

tio
n

0.29

0.43 0.41

1.34 1.34

(d) Per-packet load balancing.

Fig. 11. Resource usage, measurement load balancing and per-packet load balancing on synthetic topology.

framework, the optimal distributed deployment framework and
NSPA are all 0, and the measurement load standard deviation
of the lightweight distributed deployment framework is only
0.41 of the measurement load standard deviation of central-
ized deployment. In the synthetic topology, the collaborative
distributed deployment framework and the optimal distributed
deployment framework achieve better load balancing than
NSPA. The lightweight distributed deployment framework, the
collaborative distributed deployment framework, the optimal
distributed deployment framework, and NSPA are 0.23, 0.045,
0.002 and 0.076 of the standard deviation of the measurement
load of the centralized deployment, respectively.

Per-packet load balancing: As shown in Fig. 9d, Fig. 10d
and Fig. 11d, we find that the per-packet load standard devia-
tion in the switch of the lightweight distributed deployment
framework, the collaborative distributed deployment frame-
work and the optimal distributed deployment framework is
only 0.41 of the centralized deployment and NSPA in fat-tree
topology. And the per-packet load standard deviation in the

switch of the lightweight distributed deployment framework,
the collaborative distributed deployment framework and the
optimal distributed deployment framework are 0.22, 0.32
and 0.31 of the centralized deployment and NSPA in the
synthetic topology, respectively. As mentioned above, since
each packet is measured by multiple switches, per-packet load
balancing can reduce the impact of different flow sizes on the
measurement load so as to optimize the load balancing effect
further.

Analysis: Some argue that reserving the full resources
required for a sketch on a switch, without splitting, does not
result in high resource usage. However, it is important to
emphasize that, as demonstrated in Sketchovsky [38], multiple
sketches are often needed in the network to meet different
tasks. This makes the switch’s resources a bottleneck, unable
to accommodate multiple sketches. Our distributed deployment
solution alleviates this bottleneck.

In summary, the distributed deployment frameworks com-
bine the advantages of centralized deployment and collab-

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 12

20 40 60 80 100
Memory Usage(KB)

10−2

10−1

100

FP
R

LDD_BF
MDD_BF

ODD_BF
CD_BF

NSPA_BF

(a) Membership query.

200 400 600 800 1000
Memory Usage(KB)

10−1

100

101

A
R

E

LDD_CM
MDD_CM
ODD_CM
CD_CM

NSPA_CM
LDD_CO
MDD_CO

ODD_CO
CD_CO
NSPA_CO

(b) Frequency estimation.

40 80 120 160 200
Memory Usage(KB)

0.0

0.5

1.0

F1

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(c) Heavy hitter detection.

40 80 120 160 200
Memory Usage(KB)

10−2

10−1

100

A
R

E

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(d) Heavy hitter detection.

Fig. 12. Accuracy of membership query, frequency estimation, and heavy hitter detection on fat-tree topology.

20 40 60 80 100
Memory Usage(KB)

10−2

10−1

100

FP
R

LDD_BF
MDD_BF

ODD_BF
CD_BF

NSPA_BF

(a) Membership query.

200 400 600 800 1000
Memory Usage(KB)

10−1

100

101

A
R

E

LDD_CM
MDD_CM
ODD_CM
CD_CM

NSPA_CM
LDD_CO
MDD_CO

ODD_CO
CD_CO
NSPA_CO

(b) Frequency estimation.

40 80 120 160 200
Memory Usage(KB)

0.0

0.5

1.0

F1

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(c) Heavy hitter detection.

40 80 120 160 200
Memory Usage(KB)

10−2

10−1

100

A
R

E

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(d) Heavy hitter detection.

Fig. 13. Accuracy of membership query, frequency estimation, and heavy hitter detection on spine-leaf topology.

20 40 60 80 100
Memory Usage(KB)

10−2

10−1

100

FP
R

LDD_BF
MDD_BF

ODD_BF
CD_BF

NSPA_BF

(a) Membership query.

200 400 600 800 1000
Memory Usage(KB)

10−1

100

101

A
R

E

LDD_CM
MDD_CM
ODD_CM
CD_CM

NSPA_CM
LDD_CO
MDD_CO

ODD_CO
CD_CO
NSPA_CO

(b) Frequency estimation.

40 80 120 160 200
Memory Usage(KB)

0.0

0.5

1.0

F1

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(c) Heavy hitter detection.

40 80 120 160 200
Memory Usage(KB)

10−2

10−1

100

A
R

E

LDD_MV
MDD_MV

ODD_MV
CD_MV

NSPA_MV

(d) Heavy hitter detection.

Fig. 14. Accuracy of membership query, frequency estimation, and heavy hitter detection on synthetic topology.

orative measurement, which achieve optimal load balancing
effects with low resource usage. Compared with centralized
deployment, they achieve measurement load balancing, and re-
source usage is also more balanced. Compared with the state-
of-the-art collaborative measurement solution NSPA, they only
use 0.2-0.54 of NSPA resource usage to achieve better load
balancing effect. At the same time, our distributed deployment
frameworks achieve per-packet load balancing. Multiple hash
calculations and memory accesses for each packet are evenly
distributed to multiple switches, which can reduce the impact
of varying flow sizes.

C. Experimental Results on Accuracy

1) Experimental Setup: We apply the above five solutions
and compare the metrics of four sketches in three topologies.

These sketches belong to three classes of tasks: membership
query, frequency estimation, and heavy hitter detection. They
are typical k-hash independent model sketches, we set k = 3.
We set the heavy hitter threshold to 0.01% of the number of
packets.

2) Performance on Accuracy: The following are the results
of the above experiment.

Membership query: As shown in Fig. 12a, Fig. 13a and
Fig. 14a, in both fat-tree and leaf-spine topologies, we find
that the FPR of these five solutions are almost equal as the
memory varies. In synthetic topologies, centralized deploy-
ment performs slightly worse due to redundant measurement.

Frequency estimation: As shown in Fig. 12b, Fig. 13b
and Fig. 14b, in both fat-tree and leaf-spine topologies, we
find that the ARE of these five solutions are almost equal as

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 13

the memory varies. In synthetic topologies, centralized deploy-
ment performs slightly worse due to redundant measurement.

Heavy hitter detection: As shown in Fig. 12c, Fig. 12d,
Fig. 13c, Fig. 13d, Fig. 14c, and Fig. 14d, in both fat-tree and
leaf-spine topologies, we find that the F1 and ARE of five
solutions are almost equal as the memory varies. In synthetic
topologies, centralized deployment performs worse due to
redundant measurement.

Analysis: In summary, even if the flow set stored in each
segment of the sketch is different, this has no effect on the
accuracy of the sketch which is consistent with our theoretical
proof in Section VII.

IX. CONCLUSION

This paper proposes three distributed deployment frame-
works for sketch that support lightweight, collaborative or op-
timal distributed deployment for network-wide traffic measure-
ment. Our framework combines the advantages of centralized
deployment and collaborative measurement, which achieves a
better load-balancing effect than collaborative measurement
with low resource usage close to centralized deployment.
We apply the proposed framework to diverse topologies and
sketches, and the experimental results demonstrated that the
proposed framework achieves good load balancing with low
resource usage. Meanwhile, our framework achieves per-
packet load balancing by evenly distributing hash calculations
and memory accesses to multiple switches for each packet.

X. LIMITATIONS AND FUTURE WORK

First, our proposed three distributed deployment frameworks
struggle to strike a balance between resource usage and load
balancing. The lightweight distributed deployment framework
achieves the lowest resource usage, but it also exhibits the
poorest load balancing performance. The collaborative dis-
tributed deployment framework achieves good load balancing,
but inevitably incurs some bandwidth overhead to enable finer-
grained flow distribution. The optimal distributed deployment
framework achieves the best load balancing performance, but
it requires both bandwidth and TCAM resources. Therefore,
in the future, we will continue to explore how to achieve a
better balance between resource usage and load balancing.

Second, we only address the network-wide deployment
problem of a single sketch. In practice, it is often necessary
to deploy multiple sketches simultaneously to fulfill different
tasks. In the future, we will explore the network-wide deploy-
ment problem of multiple sketches.

Third, we only address the network-wide deployment prob-
lem of k-hash independent model sketches, while neglecting
the network-wide deployment problem of non-k-hash inde-
pendent model sketches. In the future, we will simultaneously
consider the network-wide deployment problem of both k-hash
independent and non-k-hash independent model sketches.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under Grant Nos. U22B2005, 62032013,
92267206 and 62072091 and the financial support of Lingnan

University (LU) (DB23A9) and Lam Woo Research Fund at
LU (871236).

REFERENCES

[1] F. Li, K. Guo, J. Shen, and X. Wang, “Effective network-wide traffic
measurement: A lightweight distributed sketch deployment,” in IEEE IN-
FOCOM 2024-IEEE Conference on Computer Communications. IEEE,
2024, pp. 181–190.

[2] H. Sun, Q. Huang, J. Sun, W. Wang, J. Li, F. Li, Y. Bao, X. Yao, and
G. Zhang, “Autosketch: Automatic sketch-oriented compiler for query-
driven network telemetry,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), 2024, pp. 1551–1572.

[3] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 113–126.

[4] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM special interest group on data
communication, 2019, pp. 44–58.

[5] K. Guo, F. Li, J. Shen, and X. Wang, “Advancing sketch-based net-
work measurement: A general, fine-grained, bit-adaptive sliding window
framework,” in 2024 IEEE/ACM 32nd International Symposium on
Quality of Service (IWQoS). IEEE, 2024, pp. 1–10.

[6] H. Xu, S. Chen, Q. Ma, and L. Huang, “Lightweight flow distribution
for collaborative traffic measurement in software defined networks,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1108–1116.

[7] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic monitor-
ing in software defined networks,” in Proceedings of the third workshop
on Hot topics in software defined networking, 2014, pp. 85–90.

[8] R. B. Basat, G. Einziger, and B. Tayh, “Cooperative network-wide flow
selection,” in 2020 IEEE 28th International Conference on Network
Protocols (ICNP). IEEE, 2020, pp. 1–11.

[9] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “Countmax: A
lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.
2774–2786, 2018.

[10] G. Zhao, H. Xu, J. Fan, L. Huang, and C. Qiao, “Hifi: Hybrid rule place-
ment for fine-grained flow management in sdns,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 2341–2350.

[11] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An incrementally-
deployable p4-enabled architecture for network-wide heavy-hitter detec-
tion,” IEEE Transactions on Network and Service Management, vol. 17,
no. 1, pp. 75–88, 2020.

[12] Y. Shi, M. Wen, and C. Zhang, “Incremental deployment of pro-
grammable switches for sketch-based network measurement,” in 2020
IEEE Symposium on Computers and Communications (ISCC). IEEE,
2020, pp. 1–7.

[13] https://barefootnetworks.com/products/brief-tofino/, Barefoot Tofino
Switch.

[14] V. Bruschi, R. B. Basat, Z. Liu, G. Antichi, G. Bianchi, and M. Mitzen-
macher, “Discovering the heavy hitters with disaggregated sketches,”
in Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies, 2020, pp. 536–537.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[17] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-
Pey, “Dynamic count filters,” Acm Sigmod Record, vol. 35, no. 1, pp.
26–32, 2006.

[18] Y. Wu, J. He, S. Yan, J. Wu, T. Yang, O. Ruas, G. Zhang, and
B. Cui, “Elastic bloom filter: deletable and expandable filter using elastic
fingerprints,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 984–
991, 2021.

[19] H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu, J. Ma, L. Qi, and G. Chen,
“Bloom filter with noisy coding framework for multi-set membership
testing,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 7, pp. 6710–6724, 2022.

[20] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 14

[21] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications,
2002, pp. 323–336.

[22] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[23] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang et al., “Lightguardian: A full-visibility, lightweight, in-
band telemetry system using sketchlets,” in 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), 2021,
pp. 991–1010.

[24] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 561–575.

[25] Z. Fan, R. Wang, Y. Cai, R. Zhang, T. Yang, Y. Wu, B. Cui, and S. Uhlig,
“Onesketch: A generic and accurate sketch for data streams,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp.
12 887–12 901, 2023.

[26] R. Ding, S. Yang, X. Chen, and Q. Huang, “Bitsense: Universal and
nearly zero-error optimization for sketch counters with compressive
sensing,” in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 220–238.

[27] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and guard hot items in data streams,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2584–2593.

[28] L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 2026–2034.

[29] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: an accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845–1858,
2019.

[30] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in International conference
on database theory. Springer, 2005, pp. 398–412.

[31] D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 1129–1140.

[32] L. Gu, Y. Tian, W. Chen, Z. Wei, C. Wang, and X. Zhang, “Per-flow
network measurement with distributed sketch,” IEEE/ACM Transactions
on Networking, vol. 32, no. 1, pp. 411–426, 2023.

[33] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, 2017, pp. 164–176.

[34] https://www.gurobi.com/, Gurobi.
[35] R. Miao, F. Dong, Y. Zhao, Y. Zhao, Y. Wu, K. Yang, T. Yang, and

B. Cui, “Sketchconf: A framework for automatic sketch configuration,”
in 2023 IEEE 39th International Conference on Data Engineering
(ICDE). IEEE, 2023, pp. 2022–2035.

[36] https://catalog.caida.org/dataset/passive 2018 pcap., Anonymized Inter-
net Traces 2018.

[37] https://github.com/QingYeyyds/Distributed-Sketch-Deployment.git.
[38] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “Sketchovsky:

Enabling ensembles of sketches on programmable switches,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 1273–1292.

Kejun Guo received the B.Sc. degree in com-
puter science from Northeastern University, China
in 2023. He is currently pursuing the Ph.D. degree
with the School of Computer Science and Engineer-
ing, Northeastern University, China. His research
interests include network measurement, data stream
interests, and distributed training acceleration.

Fuliang Li (Member, IEEE) received the B.Sc.
degree in computer science from Northeastern Uni-
versity, China, in 2009, and the Ph.D. degree in
computer science from Tsinghua University, China,
in 2015. He is currently an Professor with the School
of Computer Science and Engineering, Northeastern
University. He has published more than 50 jour-
nals/conference papers. His research interests in-
clude network management and measurement, cloud
computing, and network security.

Jiaxing Shen (Member, IEEE) is an Assistant Pro-
fessor with the Department of Computing and Deci-
sion Sciences at Lingnan University. He received the
B.E. degree in Software Engineering from Jilin Uni-
versity in 2014, and the Ph.D. degree in Computer
Science from the Hong Kong Polytechnic University
in 2019. He was a visiting scholar at the Media Lab,
Massachusetts Institute of Technology in 2017. His
research interests include mobile computing, data
mining, and IoT systems. His research has been
published in top-tier journals such as IEEE TMC,

ACM TOIS, ACM IMWUT, and IEEE TKDE. He was awarded conference
best paper twice including one from IEEE INFOCOM 2020.

Xingwei Wang (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
Northeastern University in 1989, 1992, and 1998,
respectively. He is currently a Professor with the
School of Computer Science and Engineering,
Northeastern University. He has published more than
100 journal articles, books, book chapters, and refer-
eed conference papers. His research interests include
cloud computing, future internet, and others. He has
received several best paper awards.

Jiannong Cao (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from Wash-
ington State University, Pullman, WA, USA, in 1986
and 1990, respectively. He is currently a Chair
Professor with the Department of Computing, The
Hong Kong Polytechnic University (PolyU), Hong
Kong. He is also the Dean of Graduate School, the
Director of Research Institute of Artificial Intelligent
of Things, and the Internet and Mobile Computing
Lab, and the Vice Director of the University’s Re-
search Facility in Big Data Analytics, PolyU. He has

coauthored five books, coedited nine books, and authored or coauthored over
500 papers in major international journals and conference proceedings. His
research interests include distributed systems and blockchain, wireless sensing
and networking, Big Data and machine learning, and mobile cloud and edge
computing.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517749

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lingnan University Library. Downloaded on December 21,2024 at 03:14:16 UTC from IEEE Xplore. Restrictions apply.

