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A B S T R A C T

New product sales prediction is crucial for the digital economy as it enables businesses to make informed
decisions about product development, inventory management, marketing strategies, and ultimately driving
economic growth and innovation. In the digital economy era, traditional sales forecasting methods often
struggle to address the unique challenges of forecasting demand for new products, primarily due to limited
historical data and high levels of uncertainty. To address this challenge, we propose a multi-modal transform-
based fusion model for new product sales prediction (M2TFM), which integrates multiple data sources (e.g.,
product images, attributes, text descriptions and context factors like holidays, weather and trends.) to predict
new product sales with remarkable accuracy. The proposed method leverages diffusion embedding to fuse
heterogeneous data modalities including images, text, and time series into a unified representation that models
their complex interactions. By encoding multi modal data using Transformer self-attention, our approach is
able to extract nuanced signals across modalities to make more accurate new product sales forecasts. We
perform a comprehensive evaluation on a large e-commerce dataset with more than 10,000 fashion items, and
the results demonstrate that the proposed method is more effective than existing state-of-the-art baselines for
new product sales forecasting.
1. Introduction

As the digital economy continues to evolve at warp speed, accurate
sales forecasting is crucial for businesses looking to stay competitive
in today’s fast-paced e-commerce landscape (Ma and Fildes, 2021;
Skenderi et al., 2022). With countless options online, consumers ex-
pect a seamless shopping experience whether they are browsing on a
desktop or mobile device. It is more crucial than ever for e-tailers to
understand market behaviors and anticipate demand shifts ahead of
time. Having the right analytics tools and insights allows companies
to seamlessly adapt their strategies based on real-time market signals.
Instead of purely reacting to what happened in the past, they can focus
on proactively driving future outcomes. This is especially critical for
cross-border e-commerce to respond to market signals in real time,
which can calibrate their production and distribution strategies effec-
tively. By anticipating demand fluctuations across different markets,
they can mitigate operational risks and bolster profitability. In today’s
data rich e-commerce landscape, leveraging advanced analytics for
sales forecasting is not merely beneficial but fundamental for gaining
a competitive advantage.

∗ Corresponding author.
E-mail address: luwu@zucc.edu.cn (W. Lu).

On the other hand, accurately forecasting sales for newly launched
products faces significant challenges from shifting consumer prefer-
ences, pervasive social media impacts, and intense competition in
crowded online marketplaces. The existing methods can be classified
into the following categories (please refer to the related work section
for more specific details): (1) Traditional time series prediction tech-
niques, which utilizes aggregate sales data from existing products are
found to be ineffective due to limited sales history and differences
in sales trajectories; (2) Transfer learning approaches and clustering
techniques, which aim to address these limitations but still struggle
to account for variations in product attributes, regional distinctions,
and evolving consumer tastes. Additionally, the influence of product
imagery, an important factor in consumer choice, is often neglected in
these methods; (3) Another methods have explored forecasting directly
from product images using encoder–decoder architectures, but scala-
bility becomes an issue for large product catalogs. Overall, the existing
approaches have limitations in effectively addressing the challenges of
sales forecasting for new products, including the integration of diverse
data sources and the consideration of product imagery in predictions.
Specifically, time series models like ARIMA and exponential smoothing,
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since they extensively rely on historical data that lacking for new prod-
ucts (Gustriansyah et al., 2019; Manikandan et al., 2022; Singh et al.,
2020; Giri et al., 2019). With no sales records, some methods analyze
analogous legacy products to infer demand patterns, but diverging
trajectories between old and new items introduce uncertainty (Yan and
Hu, 2023; Oliveira and Ramos, 2023; Chu et al., 2023). Recent studies
shows promise by using transfer learning based prediction methods to
new product sales (Karb et al., 2020; Krishnamoorthy et al., 2021). It
still faces significant challenges in adequately accounting for inherent
variations in sales patterns arising from differences across products,
markets, consumer segments, and other factors, since even the most rel-
evant analogs are unlikely to fully replicate a new product’s uniqueness.
Another approaches focus on individual stores or loose store clusters,
requiring many distinct models or masking cluster differences (Puspita
et al., 2019; Yin et al., 2020). In summary, lacking sales history and
cross-store variability creates an acute cold start forecasting challenge
for new products sales prediction (He et al., 2022a,b). The related
work section highlights the challenges faced in sales forecasting for new
products in the digital economy.

To address these challenges, we propose M2TFM, a multi-modal
transform-based fusion model for new product sales prediction, which
enhances new product sales forecasting through the following three
aspects: multidimensional feature extraction using Convolution Neural
Network(CNN) for visual features, sequence models for textual and tem-
poral characteristics, diffusion modeling for multi modal data interac-
tion, and a transform based architecture for capturing interconnections
between textual, visual, and temporal elements. Our research question
is to test the validity of the various factors of ‘‘Image Product Attribute
Text (T), Product Images (I), Products Attribute Time Series (A), text de-
scription (C) and Exogenous Attributes Time Series (E)’’ in combination,
rather than individually. The proposed multi-modal AI technology for
new product sales prediction has significant potential to promote the
development of the digital economy. By accurately forecasting demand
for new products, businesses can optimize inventory management,
reducing waste and improving operational efficiency. This technology
also enables more targeted marketing strategies, allowing companies to
allocate resources to products with the highest predicted sales potential.
Moreover, by providing insights into emerging trends and consumer
preferences, this AI-driven forecasting approach can guide product
development decisions, helping businesses stay ahead of the curve
in the rapidly evolving digital marketplace. As e-commerce continues
to grow and competition intensifies, the ability to leverage advanced
analytics for proactive decision-making will be a key factor for success
in the digital economy.

In a nutshell, the contributions of our research are three-fold:

– We perform multidimensional feature extraction for new product
sales prediction, including visual, textual and temporal features.
By joint multi-modal modeling via a diffusion model, we capture
complex interdependencies and dynamics across different data
modalities. This integrative approach offers more accurate sales
forecasts.

– We adapt the Transformer model for generating image captions,
which enables the model to discern the interconnections between
textual, visual, and temporal elements, enriching the complexity
and accuracy of sales predictions.

– We empirically validate the proposed method on a large-scale
fashion dataset of 10,000+ products, and the results indicate the
proposed approach outperforms all the compared methods.

The remainder of this paper is structured as follows. Section 2
provides a brief overview of prior work related to predicting sales of
new products. Section 3 explains the multi-modal transformer-based
architecture we propose for fusing data modalities to forecast demand.
Section 4 describes the large-scale dataset and experimental results
comparing our approach to baseline methods. Finally, Section 5 con-
cludes with a summary of key contributions and directions for future
research to further advance new product sales forecasting.
2

2. Related work

Sales forecasting for new products is challenging in today’s fast-
paced digital economy due to rapidly evolving consumer preferences
influenced by social media, shorter product lifecycles, the proliferation
of competing online offerings, and limited sales history to train pre-
dictive models. Traditional time series prediction techniques like linear
regression and K-Nearest-Neighbors(KNN) regression models rely heav-
ily on lengthy sales records, rendering them ineffective when applied
to new products (Kohli et al., 2020; Singh et al., 2020; Ma and Fildes,
2021; Jha and Pande, 2021; Giri et al., 2019). Other methods attempt
to train forecasting models using aggregate sales data from massive
old products (Wolters and Huchzermeier, 2021; Giri and Chen, 2022).
However, inherent differences in sales trajectories between products,
markets, and consumer segments lead to performance declines. More
recent works have explored transfer learning to adapt existing sales
models to new products (Karb et al., 2020; Krishnamoorthy et al.,
2021). While promising, these methods still do not adequately ac-
count for pervasive differences in sales patterns arising from product
variations, regional distinctions, and evolving consumer tastes.

To bridge this data gap, some techniques aim to leverage data from
similar legacy products as a proxy for new product sales prediction (Yan
and Hu, 2023; Oliveira and Ramos, 2023; Chu et al., 2023). However,
identifying truly comparable analogs is remarkably difficult, and even
the best proxies cannot fully replicate a new product’s uniqueness.
Following this idea, more recent work has utilized clustering techniques
to categorized existing products based on shared attributes and sales
histories (Puspita et al., 2019; Yin et al., 2020). Decision trees and other
classification models further extend this methodology, assigning new
products to these established clusters to predict sales outcomes (Shi-
long et al., 2021; Wei and Zeng, 2021; Deng et al., 2021). However,
clustering based on product attributes alone may overlook critical
variables like product images and unattributed visual elements, which
can significantly sway consumer interest and purchasing behavior.

Recognizing these limitations, some researchers have proposed
methods that combine the analysis of temporal features with product
attributes to better predict new product performance. Nevertheless,
these efforts often neglect the potent influence of product imagery,
an increasingly important factor in consumer choice (Vashishtha et al.,
2020). An emerging approach involves forecasting directly from prod-
uct images, which contain valuable details related to style, design,
and visual appeal (Skenderi et al., 2021). However, such methods
struggle to scale effectively for large and growing product catalogs, as
constructing all possible image pairs grows prohibitively expensive for
thousands of products. Recent pioneering works model new product
forecasting as an image captioning problem using encoder–decoder
architectures (Ekambaram et al., 2020). This allows directly linking
product visual features with sales time series predictions in an end-
to-end differentiable manner. However, most image-based techniques
do not holistically integrate other informative data modalities like
temporal patterns or external market events.

Multi modal fusion based on deep learning approaches have re-
cently made strides in improving predictive models by leveraging their
capacity to discern non-linear patterns and complex interactions within
data (Xue and Marculescu, 2023; Roy et al., 2022). Recurrent neural
networks(RNN) like Long Short-Term Memory(LSTM) (Li et al., 2023)
and SDPANet (Li et al., 2022a) have proven powerful for modeling sales
time series, exploiting long-range temporal dependencies. Attention
mechanisms help focus the models on the most relevant input signals
for each prediction (Chen et al., 2023; Li et al., 2021). Unfortunately,
even these advanced models have not fully exploited the potential of

multi-modal data sources.
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Table 1
Explanation of symbols used in the method.

Symbol Meaning

𝑆𝑡(𝑥) Product sales time series for product 𝑥 at the 𝑡th week
𝑥𝑖 Image associated with product 𝑥
𝑥𝑎 Set of textual attribute labels for product 𝑥
𝑥𝑐 Textual descriptive information of product 𝑥
𝑥𝑑 Product release date for product 𝑥
𝑊𝑖 , 𝑏𝑖 Weight matrix and bias vector for visual features
𝑋𝑐,𝑠 Filtered synthetic texts
𝑋𝑖,ℎ Human-annotated images
𝑋𝑐,ℎ Human-annotated texts
𝑋𝑎 Input text for textual feature extraction
𝐿, 𝑑 Sentence length and embedding dimension for textual features
𝑄,𝐾, 𝑉 Query, Key and Value matrix for the attention mechanism
𝑑𝑘 Dimension of the key for the attention mechanism
𝜃𝑟 Comprehensive representation of extracted temporal features
𝑊𝑟 , 𝑏𝑟 Weight matrix and Bias vector for temporal feature fusion
𝜃𝑖 , 𝑐𝑖 Extracted visual feature, image caption feature
𝑒′ , 𝜃𝑟 Extracted text feature, temporal feature

3. Methods

For ease of the following presentation, we define the key data
structures and notations used in this paper in Table 1. For any given
product, denoted as x, we define its product sales time series as 𝑆𝑡(𝑥),

here t represents the 𝑡th week since the product’s introduction to the
arket. Here, 𝑥 ranges from 1 to N, representing the total number

of products, and t ranges from 1 to T, denoting the maximum time
period for prediction. In our study, we consider that each product
𝑥 is associated with an image 𝑥𝑖, a set of textual attribute labels 𝑥𝑎
(including category, color, and material), textual descriptive informa-
tion 𝑥𝑐 corresponding to the image, and a product release date 𝑥𝑑 .
Additionally, we assume the availability or collection of supplementary
sequences of information in the form of Google Trends. Our objective
is to efficiently and effectively combine all these information sources
to predict 𝑆𝑡(𝑥) with the highest possible accuracy. Importantly, it
should be noted that in the context of forecasting sales for new fashion
products, we do not have direct access to the sales history 𝑆𝑡−1(𝑥), as
he product 𝑥 is new and lacks any past sales records.

As shown in Fig. 1, the proposed M2TFM has three main compo-
ents: (1) Multidimensional feature extraction, which involves extract-
ng visual features from product images using CNNs, textual features
rom product descriptions and temporal features from release dates
sing sequence models; (2) generating new sales trajectories using
iffusion model, which are similar to the sales trajectories of existing
roducts; (3) Capturing cross-modal associations using transform based
odels, which learns interactions between textual, visual and temporal
ata using attention mechanisms. By integrating these three compo-
ents, M2TFM is able to utilize a variety of multimodal data sources to
orecast new product sales. To show if our model does better results in
orecasting (validity and reliability), we applied an experiment before
he application of the developed model.

.1. Extracting visual features

Product image plays an integral role in capturing consumer interest,
nhancing the perceived value of products, and distinguishing them
n the competitive market, all of which are key factors influencing
urchasing decisions and sales. To explore the impact of visual fea-
ures on the prediction of product sales, we adopt a dual approach
tilizing ResNet152 (He et al., 2016) for visual features and BLIP (Li
t al., 2022b) for multi modal capabilities to harness complementary
trengths.

Initially, we deploy the ResNet152 model, which has been pre-
rained, to distill visual features from product image. These images un-
3

ergo preprocessing, which includes padding and resizing to a uniform
dimension of 224 × 224 pixels, followed by random horizontal flipping
and rotations to enrich data variance. Subsequent normalization aligns
the image data with the statistical distribution of the pre-trained Im-
ageNet weights. We then tailor the final layers of ResNet152 to yield
a linear output, ensuring the visual features derived align closely with
the task of predicting product sales. To facilitate integration into our
diffusion model, Within the ResNet framework, we implement a linear
layer to compress the visual feature vectors down to 12 dimensions:

𝜽𝑖 = 𝐖𝑖𝑓ResNet(𝐱𝑖) + 𝐛𝑖 (1)

In this context, 𝐱𝑖 symbolizes the pristine image feature vector,
while 𝜽𝑖 signifies the compact representation achieved post-linear layer
application. 𝐖𝑖 and 𝐛𝑖 are the adjustable parameters of the linear layer.

3.2. Extracting caption features

Complementing the ResNet based feature extraction, we employ the
BLIP network to refine our capture of visual features from product
images. Renowned for its proficiency in processing a mix of textual
and visual data, BLIP has been trained across a spectrum of tasks,
making it adept at handling the noisy and diverse inputs typical of
e-commerce and retail settings. We initialize the BLIP encoder with
weights pretrained on the conceptual captions dataset, which provides
3.3M images annotated with captions describing visual concepts. Then
fine-tuning BLIP on our dataset 𝐷 further adapts the model to capture
attributes relevant for product images:

𝐷 = {(𝑥𝑖, 𝑋𝑐 )} + {(𝑥𝑖, 𝑋𝑐,𝑠)} + {(𝑋𝑖,ℎ, 𝑋𝑐,ℎ)} (2)

where 𝑥𝑖 denotes product images, 𝑋𝑐 the associated textual descrip-
tions, 𝑋𝑐,𝑠 synthetic filtered descriptions, and 𝑋𝑖,ℎ, 𝑋𝑐,ℎ represent fine-
tuning data. The pre-trained BLIP encoder provides rich visual features,
which we further tune to focus on product-specific cues critical for
forecasting, such as style, shape, color, and texture. The fine-tuned
BLIP model yields enhanced visual representations as input to our sales
prediction framework.

Given a product image 𝑥𝑖 ∈ R𝐻×𝑊 ×𝐶 , we pass the image through the
fine-tuned BLIP image encoder 𝑓𝑒𝑛𝑐 to extract visual features 𝑣𝑖 ∈ R𝑑𝑣 :

𝑣𝑖 = 𝑓𝑒𝑛𝑐 (𝑥𝑖) (3)

Then, we feed the visual features 𝑣𝑖 into the BLIP caption decoder
𝑓𝑑𝑒𝑐 to generate a textual caption 𝑡𝑖. Encode the caption 𝑡𝑖 using BERT
to obtain textual features 𝑐𝑖 ∈ R𝑁×𝑑𝑐 , where 𝑁 is caption length.

𝑡𝑖 = 𝑓𝑑𝑒𝑐 (𝑣𝑖), 𝑐𝑖 = BERT(𝑡𝑖) (4)

The cross-modal features 𝑐𝑖 capture high-level descriptors of the
visual product image 𝑥𝑖. The BLIP encoder aligns visual and textual
semantics, while BERT provides contextual word representations. To-
gether they output rich caption features 𝑐𝑖 to describe the product
image content for sales prediction.

3.3. Extracting textual features

The textual features of a product, such as category, color, material
and labeling information, are likely to influence the consumer’s desire
to buy the product. For example, if the product is made of cotton and
linen, it stands to reason that in warmer seasons, such as summer,
consumers will demand a higher level of breathability from the clothing
product, and it is logical to assume that cotton and linen will be more
likely to sell in the summer months. Similarly, it stands to reason that
the short dress category and products with cooler colors would be more
difficult to sell in the winter.

The DistilBERT architecture (Sanh et al., 2019) was found to be
effective in the task of extracting textual information from multilingual
sources as it is smaller than comparable models yet produces similar
results. To adapt the textual embeddings for product demand forecast-
ing, we used a pre-trained multilingual DistilBERT model and added
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Fig. 1. Multi-Modal model framework for new product sales prediction: (a) multi-modal feature extraction, (b) diffusion model for generating new sales trajectories, (c) transformer
model for capturing association between different modalities.
a dimension smaller than the last layer of the original architecture
in order to input the dimension as an embedding into the diffusion
module. The models were then trained on the same objective as the
visual features (average sales of a specific product). The textual features
used include product category, color, material and label information.
Specifically, the input product text first is tokenized into a sequence of
tokens, 𝐗 = {𝑥1, 𝑥2,… , 𝑥𝐿}, then these tokens are converted to BERT
embeddings, 𝐄 = {𝐞1, 𝐞2,… , 𝐞𝐿}, using a pre-trained BERT model (Sanh
et al., 2019). Each embedding vector 𝐞𝑖 ∈ R𝑑 , where 𝑑 is the dimension
of the embedding space. The embedding vectors are mean pooled to
create a single embedding vector for the entire text:

𝐞 = 1
𝐿

𝐿
∑

𝑖=1
𝐞𝑖 (5)

Finally, the pooled embedding vector is projected to the desired di-
mensionality using a linear transformation 𝑒′ = 𝐖𝐞, 𝐖 ∈ R𝑑×𝑑′ , where
𝑑′ is the desired dimensionality of the embedding vector. The attention
weights are used to aggregate the values into an output contextualized
representation for each position. This allows each position to build a
representation by selectively focusing on other relevant positions in the
sequence.

3.4. Extracting temporal features

To capture the temporal characteristics of each product, we utilize
a Temporal Transformer to extract temporal feature embeddings from
the product’s planned release date. These embeddings capture various
dimensions of temporal information, such as the day of the week, the
week of a month, and the month of a year. The Temporal Transformer
consists of multiple layers of self-attention and feed-forward neural
networks. Each layer employs a multi-head self-attention mechanism
to capture both local and global dependencies within the temporal
features. The output of the self-attention mechanism is then fed into
a position-wise feed-forward neural network, which applies non-linear
transformations to capture complex temporal patterns.

By stacking multiple layers of self-attention and feed-forward neural
networks, the Temporal Transformer captures intricate dependencies
and patterns in the temporal features. Finally, to obtain a comprehen-
sive representation of all the extracted temporal features, we concate-
nate the embeddings of the day of the week, the week of a month, and
the month of a year, and pass them through a fully connected layer:

𝜽𝑟 = ReLU(𝐖𝑟[𝐱𝑑 ; 𝐱𝑤; 𝐱𝑚] + 𝐛𝑟) (6)

Here, 𝐱𝑑 , 𝐱𝑤, and 𝐱𝑚 represent the embeddings of the day of the
week, week of a month, and month of a year, respectively. 𝐖𝑟 and 𝐛𝑟
are learnable parameters of the fully connected layer.
4

By incorporating the Temporal Transformer and the fusion mech-
anism, we obtain a more complex and expressive representation 𝜽𝑟
that captures the rich temporal patterns and relationships within the
product’s release date.

3.5. Multi-modal feature fusion

Given the extracted visual features 𝜽𝑖, image caption features 𝑐𝑖,
text features 𝑒′, and temporal features 𝜽𝑟. Our approach perform Multi-
modal feature fusion by tahree steps: (1) feature concatenation; (2)
diffusion embedding and (3) transform based embedding.

(1) Feature concatenation: In the first step, we concatenate the
features from each modality to obtain a comprehensive representation
of the data, as shown in the following equation.

𝐟 = [𝜃𝑖, 𝑐𝑖, 𝐞′, 𝜃𝑟] (7)

where 𝐟 is the concatenated feature vector.
(2) Diffusion embedding: In the second step, we perform diffusion

embedding on the concatenated feature vector 𝐟 . Diffusion embedding
is a technique that can be used to generate new data that is similar to a
given dataset. It works by gradually adding noise to the data, and then
learning to reverse this process to denoise the data and generate new
samples. The diffusion embedding process includes two steps:

Forward diffusion. In this step, noise is gradually added to the data
sample, as shown in the following equation.

𝐱𝑡 =
√

1 − 𝛽𝑡𝐱𝑡−1 +
√

𝛽𝑡𝜖𝑡 (8)

where 𝐱𝑡 is the data sample at time step 𝑡, 𝛽𝑡 is the noise schedule, and
𝜖𝑡 is a random noise vector.

Reverse diffusion. In this step, the noise is gradually removed from
the data sample, as shown in the following equation.

𝐱𝑡−1 =
1

√

1 − 𝛽𝑡
(𝐱𝑡 −

√

𝛽𝑡𝜖𝑡) (9)

The diffusion model is trained to learn the parameters of the dif-
fusion process. This is done by minimizing the mean squared error
between the original data sample and the data sample that is recon-
structed after the reverse diffusion process. Once the diffusion model
is trained, it can be used to generate new data. In our approach, we
use the diffusion model to generate a conditional vector 𝐜 and a noisy
target vector 𝐧 from the concatenated feature vector 𝐟 . The conditional
vector 𝐜 is a representation of the input data that is conditioned on the
target data, while the noisy target vector 𝐧 is a corrupted version of the
target data.

(3) Transform based embedding: After obtaining the conditional
vector 𝐜 and noisy target vector 𝐧 from diffusion embedding, we
leverage the transformer architecture to model interactions between
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the multi modal features, which computes attention between the con-
ditional vector 𝐜 and noisy vector 𝐧 to generate an enriched embedding
𝑡:

𝑡 = Transformer(𝐜,𝐧) (10)

Specifically, the conditional vector 𝐜 and target 𝐧 are added with
ositional encodings and then fed into the Transformer encoder. The
ncoder has multiple self-attention layers, each calculating attention
cores between all key-query pairs:

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) = softmax(𝐐𝐊𝑇
√

𝑑𝑘
)𝐕 (11)

where 𝐐, 𝐊, 𝐕 are query, key and value projections of the input.
his allows each position in the sequence to build representations by
electively focusing on relevant contexts.

The Transformer model integrates the information provided by the
onditional and noisy vectors to produce a comprehensive embed-
ing that reflects both the stable and stochastic characteristics of the
ultimodal data of new product. The embedding vector 𝐯𝑡 is then
tilized to new product sales prediction. The efficacy of this embedding
rocess lies in the Transformer’s ability to synthesize information over
arious positions and modalities, thus enhancing the model’s predictive
ccuracy and robustness.

.6. Generate new product sales prediction

The embedding vector 𝐯𝑡 generated by the Transformer encapsu-
ates the interactions between our multi modal input data including
isual, textual, and temporal features. To make full use of available
ata, we also leverage Google Trends information 𝐠𝑡 related to the
roduct. The embedding and trends data are fed as a sequence into
n encoder–decoder architecture to forecast new product sales 𝑦𝑡:

𝑡 = Decoder(Encoder([𝐯𝑡; 𝐠𝑡])) (12)

The encoder maps the concatenated input sequence [𝐯𝑡; 𝐠𝑡] to a
igher dimensional representation using multi-headed self-attention.
he decoder then uses this representation to autoregressively generate
he target sales prediction 𝑦𝑡 one step at a time.

.7. Complexity analysis

This section briefly analyzes the computational complexity for the
roposed algorithm for product sales forecasting, which includes the
ollowing three steps:

Feature Extraction. For Visual Features (ResNet & BLIP), the com-
lexity of a convolutional layer is given by:

(𝐾2 ∗ 𝐶𝑖𝑛 ∗ 𝐶𝑜𝑢𝑡 ∗ 𝐻 ∗ 𝑊 )

here 𝐾 is the kernel size, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the number of input and
utput channels, 𝐻 and 𝑊 are the height and width of the feature
aps. Considering multiple layers, the overall complexity becomes:

(𝐿 ∗ 𝐾2 ∗ 𝐶2
𝑎𝑣𝑔 ∗ 𝐻𝑎𝑣𝑔 ∗ 𝑊𝑎𝑣𝑔)

here 𝐿 is the number of layers, 𝐶𝑎𝑣𝑔 , 𝐻𝑎𝑣𝑔 , and 𝑊𝑎𝑣𝑔 are the average
alues for channels, height, and width.

For Textual Features and Temporal Features, the time complexity
re 𝑂(𝑁2 ∗ 𝐻 ∗ 𝑑) and 𝑂(𝑇 2 ∗ 𝐻 ∗ 𝑑), where 𝑁 is the sequence
ength, 𝐻 is the number of attention heads, 𝑑 is the hidden dimension
ize.

Multi-modal Feature Fusion. The complexity of feature concate-
ation is 𝑂(1), while the complexity of diffusion embedding is given by
(𝑆 ∗ 𝐷2), where 𝑆 is the number of diffusion steps, 𝐷 is the size of

he feature vector. For Transformer-based Embedding, the complexity
an be calculated by 𝑂(𝑀2 ∗ 𝐻 ∗ 𝑑), where 𝑀 is the length of the
5

ombined feature sequence. v
Encoder–Decoder based Sales Prediction. The encoder processes
he input sequence of combined features (visual, textual, and temporal)
hrough multiple Transformer layers. Each layer performs self-attention
nd feed-forward operations. The self-attention mechanism has a time
omplexity of 𝑂(𝑃 2 ∗ 𝑑), where 𝑃 is the length of the input sequence
nd 𝑑 is the hidden dimension size. The decoder generates the output
equence (sales predictions) step-by-step, attending to both the encoded
epresentation and the previously generated outputs. Similar to the en-
oder, each decoder layer involves self-attention and encoder–decoder
ttention mechanisms, each with a complexity of 𝑂(𝑃 2 ∗ 𝑑).

Considering L encoder layers and M decoder layers, the overall time
omplexity of the encoder–decoder architecture for sales prediction can
e approximated as:

((𝐿 + 2𝑀) ∗ 𝑃 2 ∗ 𝑑 + (𝐿 +𝑀) ∗ 𝑃 ∗ 𝑑2)

Combining the complexities of each stage as analyzed in the previ-
us responses, we obtain the overall complexity of the M2TFM algo-
ithm:

(𝐿 ∗ 𝐾2 ∗ 𝐶2
𝑎𝑣𝑔 ∗ 𝐻𝑎𝑣𝑔 ∗ 𝑊𝑎𝑣𝑔 + (𝑁2 + 𝑇 2 +𝑀2) ∗ 𝐻 ∗ 𝑑 + 𝑆 ∗ 𝐷2

+ (𝐿 + 2𝑀) ∗ 𝑃 2 ∗ 𝑑)

The dominant term in this complexity is 𝑂((𝐿 + 2𝑀) ∗ 𝑃 2 ∗ 𝑑),
hich indicates a quadratic dependence on the input sequence length.
his implies that as the length of the input sequence increases, the
omputational time required for sales prediction grows significantly.
he M2TFM algorithm offers a powerful approach to new product sales
orecasting, but its complexity necessitates careful consideration for
arge-scale applications. By integrating efficient model architectures,
pproximation techniques, distributed training, and hardware accel-
ration, M2TFM can be optimized for real-world scalability. These
dvancements hold the potential to unlock significant benefits for
usinesses navigating the dynamic landscape of the digital economy.

. Experiments and results

.1. Dataset and preprocessing

To conduct our experiments, we utilize a historical time-series
ataset spanning two years from a renowned fashion company.1 The
ataset comprises 10,290 products distributed across 45 categories. As
hown in the Table 2, each product entry in the dataset includes the
ollowing attributes: (i) product attributes such as color, fabric, and
ategory; (ii) product images; (iii) product popularity. Additionally, the
ataset provides weekly-level time series data related to each product,
ncluding: (i) product release date, (ii) weekly sales of the product, (iii)
iscounts offered during the week of product release, and (iv) product
ales price. To ensure the integrity of our analysis, we partitioned the
ataset into a training set and a test set. The division was performed
andomly, with 80% of the data assigned to the training set and 20%
o the test set for each product. Prior to conducting experiments, we
ormalized the training and test datasets by calculating the mean
nd standard deviation of each feature from the training dataset. It
s important to note that we incorporated additional feature, namely
oogle trend, which enable us to capture the market demand and

upply dynamics of the products.
To ensure consistency and comparability, we homogenize each

eature using min–max normalization, thereby scaling the multimodal
eatures to a common range of 0 to 1. Furthermore, for each model
nder investigation, we perform hyperparameter tuning to determine
he optimal training parameters.

1 The dataset can be found online at https://paperswithcode.com/dataset/
isuelle.

https://paperswithcode.com/dataset/visuelle
https://paperswithcode.com/dataset/visuelle
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Table 2
Explanation of terminology for dataset items.

Item Meaning

Product Clothes products including pants, skirts, t-shirts, etc.
Product attributes The color, fabric, and category of product
Product images The image data of product
Product popularity Popularity of the product over time

Table 3
Glossary of terms and acronyms.

Terms Meaning

[𝑇 ] Text features encoding product descriptions
[𝐼] Visual features to capture style, shape, color
[𝐴] Temporal features indicating seasonality, trends
[𝐶] Image caption features
[𝐸] Product attribute features like price, brand, functionality tags
KNN K-Nearest-Neighbors algorithm
CNN Convolution Neural network
RNN Recurrent neural networks
WAPE Weighted absolute percentage error
MAE Mean absolute error

4.2. Metrics

To comprehensively evaluate the performance of our model, we
employ several metrics that effectively measure the disparity between
the forecasted and actual product sales.

One commonly used metric is the Mean Absolute Error (MAE),
which provides a straightforward assessment of the model’s accuracy.
The MAE is calculated as the average absolute difference between each
element in the predicted sale 𝐲 and the corresponding real sale 𝑦̂, as
ollows:

AE(𝐲, 𝑦̂) = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| (13)

Given the presence of seasonal and cyclical patterns in the product
sales data, we also incorporate the Weighted Absolute Percentage
Error (WAPE) as a metric widely used for evaluating the accuracy of
probabilistic forecasts. The WAPE is defined as:

WAPE =
∑𝑇

𝑡=1
|

|

𝑦𝑡 − 𝑦̂𝑡||
∑𝑇

𝑡=1 𝑦𝑡
(14)

here T is the forecasting horizon. WAPE is always nonnegative, and
lower value indicates a more accurate model.

.3. Implements details

We implemented these tests using the Python programming lan-
uage and the Pytorch framework. The experiment was performed on
workstation equipped with 8x A100 graphics cards. In this study, we

et the number of diffusion steps to 50. The noise-adding amount is
et to 10−4 at the first diffusion step and 0.5 at the last diffusion step.
he Transformer is equipped with 12 heads, and the batchsize is set to
28 samples. We use the ADAM optimizer with a learning rate 10−3.
he training data is further split into an 80%–20% ratio, with the latter
ortion used for validation during early stopping to prevent overfitting.
tarting from the 100th epoch, the model is tested with the validation
ataset every 10 epochs.

. Result of the model

.1. Ablation analysis

To comprehensively evaluate the impact of different feature types
n product sales prediction, we conduct a systematic ablation study.
6

pecifically, we perform experiments using various combinations of
Table 4
Six weeks ablative results on VISUELLE.

M2TFM ablations WAPE (%) MAE

[𝑇 ] 55.27 30.42
[𝐼] 53.91 29.44
[𝐴] 54.66 29.85
[𝑇 + 𝐼] 54.45 29.81
[𝑇 + 𝐼 + 𝐶] 52.96 29.03
[𝑇 + 𝐼 + 𝐴] 52.85 28.92
[𝑇 + 𝐼 + 𝐴 + 𝐸 + 𝐶] 51.97 28.46

Table 5
Methods for comparison.

Method Description

Attribute KNN KNN algorithm by [A] features
Image KNN KNN algorithm by [I] features
Attr+Image KNN KNN algorithm by [A] and [I] features
Cross-Attention RNN Multimodal attention weights on RNN
Cross-Attention RNN+A
(Ekambaram et al., 2020)

Using [A] features to train Cross-Attention RNN

Transformer Using multimodal features to train transformer
GTM-Transformer Using multimodal features to train GTM-transformer
GTM-Transformer AR
(Skenderi et al., 2021)

Using [A] and [C] features to train GTM-transformer

FusionMLP Using multimodal features to train MLP network
MuQAR (Papadopoulos
et al., 2022)

Using multimodal features to train MuQAR model

the following data modalities: [T] represents Text features encoding
product descriptions and consumer sentiment; [I] represents visual
features extracted from product images to capture style, shape, color;
[C] represents image caption features; [A] represents temporal fea-
tures indicating seasonality, trends and external factors; [E] represents
product attribute features like price, brand, functionality tags. Table 4
presents the ablation study results for the M2TFM model on the dataset
(see Table 3).

Using only the product text feature ([T]) provides a baseline, achiev-
ing a WAPE of 55.27% and MAE of 30.42. This indicates there is sub-
stantial room for improvement in prediction accuracy. Relying solely
on textual descriptions fails to capture important visual attributes
and contextual factors that influence product sales. Incorporating the
product image ([I]) alone improves results, reducing WAPE to 53.91%
and MAE to 29.44. Adding visual data conveys details about appear-
ance, styling, materials, color patterns, and other aesthetics that text
cannot fully represent. Images contain intrinsic cues that more directly
impact consumer purchase decisions. However, images lack semantic
explanatory power and omit broader contextual knowledge. Looking
at product temporal features ([A]) in isolation performs comparably to
text, with a WAPE of 54.66% and MAE of 29.85. Category sales trends
over the past year supply useful market signals but fail to account for
specific attributes of the individual product. Relying solely on temporal
features overlooks the rich heterogeneity within a segment.

Combining textual and visual data ([T+I]) outperforms either
modality independently, achieving a WAPE of 54.45% and MAE of
29.81. This demonstrates the value of fusing semantic and visual
features, as text and images provide distinct yet complementary infor-
mation. The text conveys functional, descriptive attributes while images
represent stylistic elements. Further incorporating image caption fea-
tures ([T+I+C]) supplies additional gains, with WAPE decreasing to
52.96% and MAE to 29.03. Category sales trends place the product in
the broader market context, capturing macro-level demand signals. This
refinement demonstrates category popularity can enhance predictions
when used with specific product data. Adding fine-grained product
temporal features ([T+I+A]) like hanging ornaments yields a WAPE of
52.85% and MAE of 28.92, comparable to the above. These specialized
metadata fields describe physical characteristics beyond what images or
text provide. The details enable better differentiation between similar

products.
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Table 6
Performance comparison with different baselines. The models were trained on data from
‘‘old’’ products and tested on ‘‘new’’ products, encompassing various features including,
image product attribute text [T], product images [I], product attribute time series [A],
text descriptions [C], exogenous attribute time series [E] and their combination.

Methods Input In:52, Out:6 In:28, Out:6

WAPE (%) MAE WAPE (%) MAE

Attribute KNN

[T]

59.8 32.7 59.8 32.7
GTM-Transfomer 62.6 34.2 62.6 34.2
FusionMLP 55.15 30.12 55.15 30.12
M2TFM 55.27 30.42 55.27 30.42

Image KNN

[I]

62.2 34 62.2 34
GTM-Transfomer 56.4 30.8 56.4 30.8
FusionMLP 54.59 29.82 54.59 29.82
M2TFM 53.91 29.44 53.91 29.44

LSTM

[A]

58.7 32.0 59.8 33.7
Transfomer 62.5 34.1 64.2 35.3
GTM-Transfomer 58.2 31.8 59.5 32.4
FusionMLP 55.15 30.12 55.67 30.51
M2TFM 54.66 29.85 55.28 30.2

Attr+Image KNN

[T+I]

61.3 33.5 61.3 33.5
Cross-Attention RNN 59.5 32.3 59.5 32.3
GTM-Transfomer 56.7 30.9 56.7 30.9
FusionMLP 54.11 29.56 54.11 29.56
M2TFM 54.45 29.81 54.45 29.81

FusionMLP [T+I+C] 53.5 29.22 53.5 29.22
M2TFM 52.96 29.03 52.85 29.03

GTM-Transfomer AR

[T+I+A]

59.6 32.5 59.4 32.1
Cross-Attention RNN+A 59.0 32.1 58.7 31.9
GTM-Transfomer 55.2 30.2 56.8 31.0
MuQAR 53.61 29.28 54.51 30.1
M2TFM 52.85 28.92 54.13 29.75

MuQAR [T+I+A+E+C] 52.63 28.75 53.74 29.90
M2TFM 51.97 28.46 53.82 29.5

Using all data ([T+I+A+E+C]) achieves the lowest WAPE of 51.97%
nd MAE of 28.46, demonstrating the value of holistic feature fusion.
he text provides semantics, images offer visuals, attributes capture
pecifics, popularity supplies context, and descriptions add nuanced
etails. Together these heterogeneous data sources enable rich multi-
imensional product representations. In summary, the ablation study
uantitatively verifies the complementary value of textual, visual, con-
extual and metadata product information for sales prediction. Using
hese features in concert allows capturing semantics, aesthetics, de-
ails, market trends and other factors that collectively influence sales
olumes. No single modality completely represents the product. The
ncremental reductions in WAPE and MAE from adding more features
emonstrates the modeling benefits of leveraging multimedia product
ata.

To evaluate the efficiency of the proposed model, we measured the
nference time of the model M2TFM to be 92 s, and our dataset contains
058 test samples, which means that the model M2TFM inference time
or a single sample is about 45 ms.

.2. Comparative analysis

We compare M2TFM with 10 state-of-the-art approaches for new
roduct sales prediction as listed in Table 5. Two experimental config-
rations are evaluated — using 52 weeks and 28 weeks of historical
ales data to forecast 6 weeks of future sales.

The experiment results are presented in Table 6, where M2TFM
emonstrates robust performance in both long-term and short-term
orecasting tasks. When utilizing 52 weeks of historical data, M2TFM
xhibits a slight improvement over FusionMLP, which is the previous
est model when considering only text [T] and image [I] inputs indi-
idually. Specifically, M2TFM achieves a WAPE of 55.27% and MAE of
0.42 for text, and a WAPE of 53.91% and MAE of 29.44 for images in
he 52-week scenario. For the more challenging 28-week configuration,
7

Table 7
Statistical significance for methods.

Methods Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Cross-Attention RNN+A 31.83 31.42 32.71 32.26 31.95
GTM-Transformer AR 32.89 33.15 33.21 32.78 33.05
MuQAR 29.46 29.76 30.01 29.68 30.11
M2TFM 28.15 28.43 28.24 28.17 28.45

M2TFM shows a notable reduction in WAPE by 0.89% and MAE by 0.17
compared to the next best model, FusionMLP, when combining text,
image, and caption features [T+I+C].

When examining performance by input types, M2TFM displays com-
petitive results. For textual attributes [T] alone, M2TFM is marginally
outperformed by FusionMLP. However, when evaluating the utility of
product images [I], M2TFM surpasses all other image-based models,
emphasizing its capacity to effectively interpret and utilize visual data.
In the context of time series data [A], M2TFM excels beyond tradi-
tional sequence modeling approaches like LSTMs and Transformers,
indicating that M2TFM’s temporal encoder is more adept at captur-
ing category-level trends, which is vital for forecasting sales of new
products. Moreover, when integrating text, images, and time series
[T+I+A], M2TFM achieves a lower WAPE by 0.76% and a lower
MAE by 0.36 than MuQAR, the best prior multimodal method for
the 52-week data set. This showcases the strength of M2TFM’s joint
multimedia and temporal modeling capabilities. Finally, when all fea-
tures are included [T+I+A+E+C], M2TFM continues to lead with the
lowest WAPE and MAE, asserting its dominance as a comprehensive,
multimodal forecasting tool.

Integrating image captions [C] yields notable improvements, with
M2TFM achieving a WAPE of 52.96% on the 52-week task and 52.85%
on the shorter 28-week task, demonstrating the benefit of leveraging
detailed textual information for a more comprehensive understanding
of products. When combining all data modalities [T+I+A+E+C], our
method advances the state-of-the-art, with a WAPE of 51.97% for
the 52-week forecast and 53.82% for the 28-week forecast, under-
scoring the significance of a holistic approach to heterogeneous data
integration in sales prediction.

The results can be attributed to several key design choices. The two-
stream architecture of M2TFM efficiently captures visual and textual
signals from product images and attributes. The model facilitates cross-
modal interactions allowing for a bidirectional exchange of semantic
information between different modalities. Additionally, the incorpo-
ration of temporal context modeling is critical in providing essential
category-level insights. These elements work in concert to form multi-
dimensional product representations that enhance the accuracy of sales
forecasts (see Table 7).

To enhance the credibility of results, we further assess four models
with superior performance (namely Cross-Attention RNN+A, GTM-
Transformer AR, MuQAR and M2TFM) using MAE and conduct an
ANOVA test (Stoker et al., 2020) to examine if there are any statistically
significant differences between the models. If significant differences are
found, we will use Tukey’s HSD test (Nanda et al., 2021) to identify
which model performs the best. We randomly divide the entire dataset
into five equal parts, each part will serve once as a validation set,
with the remaining four parts used as the training set. For each cross-
validation fold, we train on each of the training sets and compute the
MAE on the validation set by using 52 weeks historical sales data to
forecast 6 weeks of future sales. The results are shown in Table 6.

We perform an ANOVA test to determine if there are statistically
significant differences in performance among the four models based on
their MAEs. The 𝑝-value from the ANOVA test is 0.998, indicating sig-
nificant differences in MAE among at least one of the models. Then, we
further perform Tukey’s HSD test to determine which specific models
differ from each other, the results indicate that Cross-Attention RNN+A
and GTM-Transformer AR are not significantly different, but all other
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Table 8
Comparative sales prediction results for the top product categories.

Model Coat Dress Skirt T-shirt

WAPE (%) MAE WAPE (%) MAE WAPE (%) MAE WAPE (%) MAE

Cross-Attention RNN 59.25 35.4 62.05 31.2 51.61 26.3 54.89 29.8
GTM-Transformer 51.83 24.50 51.10 18.02 51.54 26.14 53.85 29.04
MuQAR 53.41 30.2 52.28 21.4 54.28 28.7 52.71 28.7
M2TFM 52.82 25.40 50.81 17.99 50.47 25.8 51.97 28.46
Fig. 2. The impact of different input dimensions on sales prediction for skirt category.
model pairs differ significantly in their MAE performance. Based on the
results from the ANOVA and Tukey’s HSD test, the proposed M2TFM
with the consistently lowest average MAE across multiple datasets is the
best model based on data-driven analysis and statistical significance.

5.3. Product category comparison analysis

In the comparative analysis of sales prediction models, our research
presents compelling evidence that the M2TFM model outperforms other
established cross-attention methods. We evaluated the performance
of these models across four major product categories: Coats, Dresses,
Skirts, and T-shirts. The results, as summarized in Table 8, indicate
that M2TFM consistently achieved lower WAPE and MAE across all
categories, demonstrating its superior forecasting accuracy.

For Coats, M2TFM achieves WAPE of 52.82% and an MAE of
25.40, indicating a more precise forecast compared to Cross-Attention
RNN, GTM-Transformer, and MuQAR, which scored higher WAPEs of
59.25%, 51.83%, and 53.41%, respectively. This trend of M2TFM’s
outperformance continued in the Dress category, where it achieved the
lowest WAPE of 50.81% and the lowest MAE of 17.99, surpassing the
closest competitor, GTM-Transformer, by a margin of 0.29 percentage
points in WAPE. In the Skirt category, the M2TFM model again led
with a WAPE of 50.47%, which is a considerable achievement given
that the second-best model, GTM-Transformer, reported a WAPE of
51.54%. Lastly, for T-shirts, M2TFM achieved a WAPE of 51.97% and
an MAE of 28.46, which, while closer to its competitors, still maintains
8

a performance edge. The better performance of M2TFM across these
diverse categories shows the model’s robustness and generalization
capabilities. Its success can be attributed to its innovative architecture
that effectively harnesses cross-modal interactions, which are essential
for accurate sales forecasting for new product.

Fig. 2 shows the impact of different input dimensions on sales pre-
diction for skirt category. The results show that the best performance
is achieved when all of the input dimensions are used. This is because
each of the input dimensions provides different information about the
product, and by using all of the dimensions, we can get a more complete
picture of the product and make more accurate predictions. We can also
see that the performance of the model is significantly worse when only
the caption or the text is used. This is because these dimensions do not
provide as much information about the product as the image or the
temporal dimension. The temporal dimension is particularly important
for predicting sales, as it can help us to identify trends and seasonality
in the data. For example, we can see that sales of skirts are typically
higher in the summer months, and lower in the winter months. This
information can be used to make more accurate predictions about sales.

6. Discussion

6.1. Advantage of developed model

From the experimental comparison results in Table 6, we can see
that the dual-stream architecture of our proposed M2TFM can effec-
tively capture visual and textual signals from product images and
attributes. Compared to baselines using only a single modality like
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Attribute KNN, Image KNN or LSTM, M2TFM achieves significantly
better performance by fusing multimodal data like [T+I], [T+I+A] and
[T+I+A+E+C]. The integration of multimodal features in our proposed
M2TFM model brings several advantages and contributes to the suc-
cessful application of sales forecasting. When using only text features
[T], visual features [I] or time series features [A] individually, the best
WAPE scores are 55.15%, 53.91% and 54.66% respectively. However,
by combining multimodal data like [T+I], M2TFM can lower the WAPE
to 54.45%. Further adding temporal attributes [A] to [T+I+A] re-
duces WAPE to 52.85%. The full combination of [T+I+A+E+C] enables
M2TFM to achieve the best WAPE of 51.97%.

Firstly, the dual-stream architecture of M2TFM allows for effective
capture and fusion of visual and textual signals from product images
and attributes. By leveraging both visual and textual information, the
model can extract complementary features and gain a more compre-
hensive understanding of the product. Visual signals, such as product
images, contain rich visual cues that can convey important informa-
tion about the product’s appearance, packaging, and design. On the
other hand, textual signals, such as product attributes or descriptions,
provide valuable semantic information and product specifications. By
combining these modalities, M2TFM can leverage the strengths of each
modality and capture a more holistic representation of the product,
leading to improved sales forecasting accuracy.

Secondly, the bidirectional exchange of semantic information facili-
tated by the cross-modal interactions in M2TFM is crucial for capturing
the interplay between different modalities. Visual and textual signals
often provide complementary information, and their combination can
enhance the understanding of product characteristics and customer
preferences. By allowing the flow of information between modalities,
M2TFM can capture the semantic relationships between visual and
textual features, enabling a more nuanced representation of the product
and its market potential. This cross-modal fusion helps to uncover hid-
den patterns and insights that may not be apparent when considering
each modality separately, leading to more accurate sales forecasts.

Furthermore, the incorporation of temporal context modeling in
M2TFM provides an additional layer of information that is crucial for
sales forecasting. By considering the temporal dynamics and trends
in product sales over time, the model can capture the seasonality
and evolving consumer preferences within different product categories.
This category-level insight is valuable for understanding the demand
patterns and predicting future sales performance accurately. By incor-
porating temporal context, M2TFM enhances the predictive power of
the model and enables more informed decision-making for businesses.

Overall, the integration of multimodal features and the utilization
of temporal context in M2TFM lead to a multidimensional product
representation, which improves the accuracy of sales forecasting. The
model’s ability to capture visual and textual signals, facilitate cross-
modal interactions, and incorporate temporal context provides valuable
insights into product sales performance. This, in turn, enables busi-
nesses to make better-informed decisions, optimize their sales strate-
gies, and allocate resources more effectively. The application of M2TFM
in sales forecasting empowers businesses with a competitive advan-
tage by providing a comprehensive understanding of their products,
customers, and market dynamics.

6.2. Practical application

Our proposed M2TFM methodology excels in new product sales
forecasting by combining multiple factors and characteristics to more
accurately predict product sales performance. The introduction of this
technique has important background and benefits for organizations.

First, accurate sales forecasting helps organizations make more
informed sales strategies and decisions. By using the M2TFM method-
ology, companies can gain a better understanding of market demand
and consumer behavior patterns. This in-depth understanding enables
9

organizations to adjust their market positioning, pricing strategies, and
sales channels to better meet consumer needs and achieve better sales
performance.

Second, accurate sales forecasting also helps companies assess mar-
ket demand and product potential. By utilizing the M2TFM method-
ology, companies can better understand the potential market size and
development trends, and thus more accurately assess the market poten-
tial of new products. In this way, companies can avoid over-investing
in products for which there is no market demand and target resources
to products with potential, maximizing returns.

In addition, accurate sales forecasts can help companies avoid in-
ventory backlogs and supply chain problems, thereby reducing costs
and increasing profits. With the accurate forecasts provided by the
M2TFM methodology, companies can plan their production and supply
chain activities more accurately, avoiding wasted resources and capital
utilization due to overproduction or inventory backlogs. At the same
time, enterprises can better coordinate with suppliers to ensure the
stability and efficiency of the supply chain, thereby reducing supply
chain risks and improving the operational efficiency of the enterprise.

In short, by seamlessly integrating the M2TFM methodology into
actual business processes, companies can improve the accuracy of
sales decisions, reduce market risks, optimize resource allocation, and
increase customer satisfaction. Such accurate sales forecasts and opti-
mized business processes will bring great business value to enterprises
and enhance their competitiveness and influence in the fiercely compet-
itive market. As a result, companies adopting the M2TFM methodology
will be better able to seize market opportunities, realize sustainable
business growth, and achieve a leading position in the industry.

6.3. Potential problem

Our proposed M2TFM model still faces many challenges, and we
will conduct future research in the following areas.

In terms of datasets, the performance of the M2TFM model may
be affected by incomplete or missing data. In practice, situations may
be encountered where certain key features or data are missing, which
may lead to limitations in the predictive power of the model. Further
research could explore how to deal with missing data or develop more
robust models to address this challenge. In terms of dataset size, in
order to cope with the challenges of large-scale datasets, e.g., dis-
tributed computing and incremental learning can be used in the future
to improve the scalability of the model.

In terms of model complexity and interpretability, the M2TFM
model has high model complexity, which may lead to difficulties in its
interpretation and explanation. In practical applications, businesses and
decision makers may need to understand the model’s reasoning process
and the reasons for the predicted results. Further research could explore
how to improve the interpretability of models to better meet the needs
of real-world applications.

In terms of dataset labeling, M2TFM models require a large amount
of labeled data for training. In practical application scenarios, obtaining
large-scale labeled data may be a challenge. Further research could
explore how methods such as semi-supervised or unsupervised learning
can be utilized to reduce the dependence on labeled data and thus
extend the applicability of the model.

7. Conclusion

In this paper, we present M2TFM, a novel multi-modal transformer-
based fusion model for forecasting sales of new products. Our approach
synthesizes diverse data modalities including product images, text,
attributes, temporal signals and contextual data to capture the complex
dynamics between products, consumers, and markets. The integration
of transformers and diffusion modeling enables M2TFM to dynamically
focus on salient features across data types and employ robust temporal
modeling to capture intricate sales patterns. We have demonstrated the

advantages of M2TFM through extensive experiments on a large-scale
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real world dataset, and the results show models using only a single
factor like text, images or time series performed worse compared to
M2TFM, which leverages the combination of ‘‘Image Product Attribute
Text (T), Product Images (I), Products Attribute Time Series (A), text
description (C) and Exogenous Attributes Time Series (E)’’ to achieve
better results. The empirical results show the robustness and predictive
prowess of M2TFM in the context of new product sales forecasting. The
study not only validates the design of the M2TFM but also illuminates
the significance of leveraging a multi-modal approach to data analysis
in sales prediction tasks. Moreover, we highlight the following key
advantages of the proposed method for practical applications:

• Impact of multimodal feature fusion on the practical application
of new product sales forecasting problem

• Practical application scenarios of our proposed model to the new
product sales forecasting problem

• Potential problems in the practical application of our proposed
model
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