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Abstract—With the rapid growth in data center network
bandwidth far outpacing improvements in CPU performance,
traditional software middleboxes running on servers have become
inefficient. The emerging data processing units aim to address
this by offloading network functions from the CPU. However,
as DPUs are still a new technology, there lacks comprehensive
evaluation of their capabilities for accelerating middleboxes. This
paper benchmarks and analyzes the performance of offloading
middleboxes onto the NVIDIA BlueField-2 DPU. Three key DPU
capabilities are explored: flow tables offloading, ARM subsystem
packet processing, and connection tracking hardware offload.
By applying these to implement representative middleboxes for
firewall, packet scheduling, and load balancing, their perfor-
mance is characterized and compared to conventional CPU-
based versions. Results reveal the high throughput of flow
tables offloading for stateless firewalls, but limitations as pipeline
depth increases. Packet scheduling using ARM cores is shown
to currently reduce performance versus CPU-based scheduling.
Finally, while connection tracking hardware offload boosts load
balancer bandwidth, it also weakens connection creation abilities.
Key lessons on efficient middleboxes offloading strategies with
DPUs are provided to guide further research and development.
Overall, this paper offers useful benchmarking and analysis of
emerging DPUs for accelerating middleboxes in modern data
centers.

Index Terms—Data processing unit, performance characteris-
tics, offloading middleboxes.

I. INTRODUCTION

W ITH the advent of the post-Moore era [1], the rapid
growth in NIC performance has caused data center

network (DCN) bandwidth to increase at a rate that far exceeds
improvements in CPU computing power. Forwarding and
processing network traffic on servers in modern data centers
(DCs) leads to higher general CPU resource consumption and
becomes more inefficient. This results in the performance
of middleboxes on these servers gradually being unable to
meet the demands of high-speed networks. The emergence
of the DPU (Data Processing Unit) [2] aims to solve these
problems. It releases the general computing resources of
servers in modern DCs by offloading traffic processing from
the CPU. The DPU also utilizes special hardware to accelerate
packet processing, achieving the goals of decreasing costs
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and increasing benefits. Consequently, offloading middleboxes
onto DPUs is a promising and efficient solution.

Currently, there have been some works on offloading net-
work traffic processing onto DPUs. IO-TCP [3] focuses on
offloading the TCP protocol stack onto the DPU. Its main idea
is to offload data plane tasks onto the DPU while reserving
control plane tasks for the CPU on the host. This saves
significant CPU resources and greatly improves transmission
performance using hardware accelerators. NanoBPF [4] target
offloading QUIC encryption tasks with high CPU usage onto
the DPU, which significantly increases QUIC throughput [5].
BluesMPI [6] achieves maximum overlap of communication
and computation for applications by offloading communication
to the DPU, thus substantially reducing program execution
times. Kaushik et al identify bottlenecks in point-to-point and
collective communication patterns and design a generic frame-
work for offloading communication to the DPU [7]. Anton’s
work [8] concentrates on offloading the networking stack of
overlay networks onto the DPU, intending to demonstrate
decreased host overhead and improved performance of running
processes.

Although related works on offloading network services onto
DPUs have gradually increased and received growing attention
from industry and researchers, DPUs remain a new type
of network infrastructure lacking comprehensive performance
evaluation data. This data could provide crucial references for
industry and researchers when offloading network functions
onto DPUs. Therefore, we explored the BlueField-2 DPU, a
representative and popular product from NVIDIA, one of the
largest NIC suppliers. We focused on testing and analyzing
the performance of offloading middleboxes onto this DPU.
Our main contributions are as follows:

• We analyzed the architecture and features of the
BlueField-2 DPU, and benchmarked three key functions:
flow tables offloading, ARM subsystem packet process-
ing, and connection tracking [9] hardware offload. This
provided insights into the maximum performance and
guidelines when utilizing these functions.

• We leveraged these key functions to offload typical mid-
dleboxes that address hot issues in modern DCs, including
stateless firewalls, per-packet rerouting packet schedulers,
and L4 load balancers.

• We evaluated the performance of these offloaded middle-
boxes and compared them to CPU-based middleboxes.
This analysis revealed the disadvantages and benefits of
offloading from CPU to DPU.

• We validated problems identified from BlueField-2 DPU
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on BlueField-3 DPU which is the newest generation of
NVIDIA DPU with better performance, to check whether
these issues still existed and were being improved.

Based on our benchmark results and application perfor-
mance comparisons, we had the following key findings:

• The performance of flow tables offloading decreased with
more used entries and deeper pipes, but stateless firewalls
using it still significantly outperformed iptables while
saving substantial CPU resources. Our lesson is that
developers should avoid routing traffic through excessive
pipes.

• Packet scheduling utilizing the ARM subsystem’s pro-
cessing incurred major transmission performance reduc-
tions. The maximum throughput of DPU-based packet
schedulers was far worse than CPU-based ones, de-
spite DPU saving CPU consumption for scheduling. We
learned that currently, offloading the entire data plane
onto the ARM subsystem is unwise and inefficient for
flexible packet processing.

• Connection tracking hardware offload did not drastically
lower bandwidth or increase latency but significantly
weakened connection establishment capabilities. Com-
pared to LVS [10], L4 load balancers using it had higher
bandwidth, lower latency, and zero CPU consumption
but worse connection creation abilities. Our lesson is
that applications leveraging connection tracking hardware
offload presently cannot handle high concurrency short
connections well.

• Most of the problems found on BlueField-2 DPU still
exist on BlueField-3 DPU, although these issues have all
been improved to a certain extent.

II. BACKGROUND AND MOTIVATION

A. Background

Middleboxes running on CPU have shown lower ef-
ficiency and high consumption of general-purpose com-
puting resources. Middleboxes are network devices used
to transform, inspect, filter, and manipulate traffic, not just
for packet forwarding. Typical middleboxes include firewall,
NAT(network address translator), and L4 load balancer[11].
Nowadays, with the rapid development of cloud computing,
these middleboxes are widely deployed on modern DC servers
as infrastructures to improve network security and perfor-
mance, relying on the general computing resources of the
CPU to forward and process traffic as shown in the left
part of Fig.1. However, with the rapid growth of flowing
data in DC, the NIC has gradually evolved from 10G to
25G or even 100G, resulting in a far faster growth rate of
network bandwidth than the increase in CPU performance.
The traditional method of forwarding and manipulating traffic
based on CPU has shown significant performance bottlenecks,
and the CPU-based middleboxes provide lower efficiency, too.
For example, when we use iptables as the firewall to maintain
20K filtering rules and filter TCP traffic with a bandwidth of
5Gbps, it will cause an additional significant consumption of
2 CPU cores. For modern data centers, consuming too many

general-purpose computing resources on packet processing is
not cost-effective.
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Fig. 1: Offload Middleboxes onto DPU

Offloading Middleboxes onto DPU has higher efficiency
and saves general-purpose computing resources. DPU has
emerged to address the problems of I/O performance bottle-
necks and virtualization technology development constraints
in the age of post-Moore’s Law. DPU is a dedicated processor
built around data, supporting the offloading of infrastructure
services such as network, storage, and security. DPU utilizes
dedicated hardware to complete network I/O, saving general
computing resources for CPU, and significantly improving
I/O performance. More importantly, it also provides network
programmable capabilities, enabling customization of traffic
processing logic. For example, when offloading the firewall
as shown in the right part of Fig.1, DPU helped us save
significant CPU consumption and get higher throughput when
maintaining the same amount of filtering rules as iptables.
Therefore, offloading middleboxes onto DPU has become a
promising and efficient solution.

Although accelerating and offloading network services
is the most basic function of DPU, there is still a lack
of comprehensive performance evaluation data about it.
DPU is a very cutting-edge technology for the industry, and
most developers and researchers lack understanding of it.
Having comprehensive evaluation data is of great reference
significance for the industry and developers to understand the
characteristics of DPU and develop offloaded applications.
At the same time, offloading network services is the most
fundamental function of DPU, so the performance evaluation
on it is essential. Therefore, we have decided to analyze the
network services offloading performance of the BlueField-2
DPU, which is the most representative product of NVIDIA.

B. Related works

Currently, the most relevant work for characterizing the
performance of BlueField-2 DPU is [12], where authors mea-
sure how much delay between packet transmissions before
throughput drops by using Linux’s pktgen [13] tool to analyze
the maximum available processing headroom left by DPU to
the applications when transmitting a batch of packets and mea-
sure how well DPU performs several targeted computational
tasks by using stress-ng [14] tool to analyze which types of
operations are profitable to be offloaded onto DPU. However,
their work did not characterize the offloading performance of
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DPU through widely deployed applications in DC and did not
analyze the benefits of the hardware accelerators on DPU for
offloading according to the specific architecture of DPU.

Another relevant work [15] for characterizing the perfor-
mance of DPU comes from Tong Xing et al. They built up
a testing framework for Linux host systems equipped with
DPU based on general-purpose processors and used it to test
Broadcom Stingray PS225 DPU and Mellanox BlueField-2
DPU. They are convinced that more users wish to use mature
and feature-rich Linux regular socket APIs, so the framework
focuses on measuring the performance of regular Linux kernel
stacks running either on host or DPU subsystem equipped
with general purpose processors, mainly including end-to-end
latency, throughput, and multi-core scalability. Although their
work is portable and measures the performance of offloading
widely deployed applications, they only focused on the impact
of DPU architecture on latency and throughput, as well as the
performance of general-purpose processors on DPU, and still
did not analyze the benefits of accelerators on DPU.

Another work [16] that is very similar to ours is from Geor-
gios et al. They tested the performance of NVIDIA ConnectX
series SmartNICs and BlueField-1 DPU and analyzed the
problem of using the hardware-based packet classifier to help
high-speed middleboxes track connections. However, their
work did not analyze the performance of BlueField-2 DPU
and BlueField-3 DPU, which support DPU’s efficient software
framework DOCA while BlueField-1 DPU did not. Their work
did not include an analysis of the DPU Arm subsystem or
an analysis of NVIDIA’s new exclusive technologies, such
as connection tracking HW-offload and DOCA-Flow. As a
result, our testing is more comprehensive and up-to-date for
understanding the performance of the current DPU.

Zhen Ni et al. implemented hardware-based load balancing
using Netronome Agilio SmartNIC to distribute traffic evenly
to different NFs on the server in [17]. Tianyi Cui et al. used
Marvell LiquidIO3 SmartNIC to offload L4 load balancer
and L7 load balancer in [18]. However, their SmartNICs are
typical On-Path NICs, while the BlueField-2 DPU we use is a
typical Off-Path NIC, and there are significant differences in
their architectures. In off-path NICs, a NIC-level fabric switch
provides connectivity between the network, the CPU, and the
NIC cores, like eSwitch(embedded Switch) on BlueField-2
DPU.

C. Motivation

Our testing goals are motivated by a specific project we
have worked on. The purpose of the project is to offload
an existing per-packet load balancing algorithm onto DPU
and achieve multipath transmission of RDMA to overcome
throughput reduction caused by hash collision when using
ECMP [19] in the network with many redundant paths [20],
to verify the algorithm can improve RDMA throughput and
links utilization. Although we ultimately found that the RDMA
protocol stack on BlueField-2 DPU did not support customiza-
tion, we still found an alternative method to implement the
prototype and validate the scheduling algorithm, which is
based on the second tested function of DPU. Finally, We

successfully extracted RDMA traffic in the Arm subsystem
and implemented RDMA multipath transmission. The three
functions we will test in this article also correspond to the
three exploration stages below of implementing this prototype
and they are the most three important functions for offloading
network services onto DPU.

Stage 1: Exploring offloading of flow tables to the DPU.
We found this function does not support customization and
cannot achieve very flexible field matching and modification
capabilities. For example, in the above project, we need to
achieve per-packet modification of UDP checksum, but it does
not meet our needs. However, we found that although its
flexibility is limited, DPU basically can offload most of the
flow tables in OpenFlow [21] through eSwitch, which can
accelerate the matching and modification of typical fields in
packets header and is very suitable for offloading stateless
firewall from the host.

Stage 2: Explore the flexible packet processing capability
of the Arm subsystem. We found that the Arm subsystem
is the most flexible part of the DPU, capable of extracting
all kinds of traffic from the host in ECPF(Embedded CPU
physical function) mode, including RDMA. By leveraging the
general-purpose processors of the Arm subsystem and the
high-performance packet processing capabilities of the DPDK
[22], we can achieve flexible traffic scheduling. In the end,
we implemented our per-packet scheduling algorithm through
this function but also discovered many potential offloading
issues, such as offloading the whole data plane onto the Arm
subsystem would consume a lot of computing resources and
it’s very inefficient.

Stage 3: Explore the connection tracking HW-offload.
We found connection tracking HW-offload is an important
function for achieving collaboration between the Arm subsys-
tem and eSwitch. Although we have offloaded the per-packet
load balancing algorithm onto the Arm subsystem, we’re still
unable to utilize hardware-based eSwitch to accelerate packet
processing and forwarding. Finally, based on the principle of
offloading OvS (Open vSwitch) [23] onto DPU, we understand
that a more suitable traffic processing method for DPU should
be to offload the data plane onto eSwitch and offload the con-
trol plane onto the Arm subsystem. The connection tracking
HW-offload is the most typical manifestation of this idea and
we can offload L4 load balancer from the host based on it.

After these three exploration stages, we have also under-
stood that the most basic method for offloading network ser-
vices onto DPU is to transform, inspect, filter, manipulate, and
forward traffic through the flow tables offloading function, the
flexible packet processing capabilities of the Arm subsystem
and the connection tracking HW-offload function, which is
to develop middleboxes on DPU. Therefore, we benchmarked
these three important functions to get their maximum perfor-
mance, implement three typical middleboxes closely integrated
with production based on these three basic functions to com-
pare with CPU-based middleboxes, to analyze the advantages
and problems of offloading middleboxes from CPU onto DPU,
and validate problems identified from BlueField-2 DPU on
BlueField-3 DPU to check whether these issues still existed
and were being improved.
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III. MEASUREMENT METHODOLOGY

A. Testbed Setup

The main features of the BlueField-2 DPU under test
are shown in Tab.I. We installed our tested DPU on the
DUT(Device Under Test) and used the testing machine to send
traffic to the DUT, receive traffic from the DUT, and obtain
our test results. Both DUT and testing machine are equipped
with 11th Gen Intel (R) Core (TM) i7-11700 CPU clocked at
2.50GHz, 32G DDR4 RAM clocked at 2666MHz, BlueField-
2 DPU with the speed of 100GbE, and run the Ubuntu 20.04
(kernel v5.14) operating system. In most experiments, we
connected one port of the DUT and one port of the testing
machine back-to-back through a 100GbE link. During the
functionality verification of the DPU-based packet scheduler,
we connected two Barefoot Wedge100BF-32X switches to the
DUT and the testing machine with 40GbE links respectively,
and built a multipath network between the two switches. When
testing the performance of the L4 load balancer, we connected
two backend servers to port p0 of DUT through a Huawei
CE6860 switch and three 100GbE links while port p1 of
DUT is connected with the testing machine back-to-back. Both
backend servers were equipped with ConnectX-6 DX 100GbE
SmartNIC. As for problem validation on BlueField-3 DPU,
DUT and testing machine are equipped with AMD EPYC 7302
16-Core CPU clocked at 2.50GHz, 256G DDR4 RAM clocked
at 3000MHz, BlueField-3 DPU with the speed of 100GbE,
run the Ubuntu 22.04 (kernel v5.15) operating system and
connected back-to-back.

TABLE I: Main Features of BlueField-2 DPU

Processor 8 Cortex-A72 cores (64-bit) @ 2.5 GHz
Cache 1MB L2 cache per 2 cores, 6MB L3 cache
DRAM 16 GB on-board DDR4-1600
Storage eMMC flash memory
Speed 10/25/40/50/100 GbE
PCIe Gen 4.0 x 16
OS DOCA 1.5.0 BSP 3.9.3 Ubuntu 20.04-11
Kernel 5.4.0-1049-bluefield
DPDK Version 20.11.6
DOCA Version 1.5.0

B. Measurements.

In all experiments, our tested DPU was running in ECPF
mode to manage the whole traffic of DUT. In benchmark, we
mainly test the maximum performance of flow tables offload-
ing, packet scheduling on the Arm subsystem, and connection
tracking HW-offload separately, and compare them with the
situation without introducing these three main functions to
understand their impact on forwarding performance. In com-
parison tests, the stateless firewall was mainly implemented
based on flow tables offloading and compared with iptables
on the host, DPU-based packet scheduler was implemented
based on the flexible packet processing capability of the
Arm subsystem to achieve per-packet rerouting and compared
with the CPU-based packet scheduler on the host, and L4
load balancer was implemented based on connection tracking
HW-offload and compared with LVS on the host. The main

indicators we tested were bandwidth, packet rate, latency,
and CPU utilization, using tools such as DPDK-pktgen [24],
iperf [25], dperf [26], sockperf [27], perftest [28], sar [29],
etc. When testing the performance of the DPU-based packet
scheduler, we also tested the maximum FCT using iperf and
perftest to analyze the improvement of the DPU-based packet
scheduler on tail latency and further validate its functionality.
In addition, we also tested cps and tps using dperf and netperf
[30] during the connection tracking benchmark and compared
the performance of the L4 load balancer by testing cps and
rps using dperf and Apache ab [31] to analyze the impact
of connection tracking HW-offload on the ability to create
new connections. The method of measurements on BlueField-
2 DPU and BlueField-3 DPU are the same, we only provide
results of BlueField-3 DPU in problem validation and results
from other parts belong to BlueField-2 DPU in default.

IV. ANALYSIS OF OFFLOADING MIDDLEBOXES

A. Analysis of Offloading Stateless Firewall

In this section, we first benchmarked the flow tables of DPU
and analyzed the main factors that affect the performance.
Then, we compared it with the iptables running on the host
and analyzed the performance improvement and CPU resource
savings that offloading can bring. Finally, we validated the
problems found in the benchmark part on BlueField-3 DPU.
We conclude that although the performance of the flow tables
decreases with the increase of the number of used entries and
the depth of the pipe on BlueField-2 DPU, the performance
of the stateless firewall implemented by it is still significantly
higher than that of iptables, and it can save high CPU
consumption caused by packet filtering. Only under the 20k
filtering rules, it saves 2 CPU cores for filtering 10 TCP flows
with a bandwidth of 5Gbps. As for BlueField-3 DPU, the
performance of the flow tables will not decrease with the
increase of the number of used entries but still decrease with
the depth of the pipe on BlueField-3 DPU.
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Fig. 2: Architecture of the tested DOCA-Flow program

1) Benchmark of Flow Tables: NVIDIA provides DOCA-
Flow API to offload flow tables, so we use DOCA-Flow to
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Algorithm 1 Sketch of Tested DOCA-Flow Program

Input: entryAmount
Output: None

1: iter ← 0
2: while iter < entryAmount do
3: src ip← 192.168.200.1
4: dst ip← 192.168.200.2
5: src port← iter mod 65536
6: dst port← 5001 + ⌊iter/65536⌋
7: match← (src ip, dst ip, UDP, src port, dst port)
8: ADD ENTRY(pipeN ,match)
9: iter ← iter + 1

10: end while

represent the flow tables of DPU during the subsequent tests.
Through this API, we can build many pipes, each composed
of match criteria, monitoring, modification, and forwarding.
Traffic can be discarded and forwarded to the next port or pipe
based on the match criteria. The connections between pipes
are like a tree, and the pipe tree only has one root pipe. In
addition, users need to add pipe entries to match the specific
traffic and perform subsequent operations while a pipe just
creates a traffic pattern, and usually unmatched traffic will be
discarded.

Goals. In this part, we mainly aim to explore the impact
of the number of pipe entries and pipe depth on forwarding
performance through the benchmark. Therefore, we tested the
bandwidth, packet rate, and latency under different numbers
of flow entries and pipe depths to characterize these effects.
According to the relevant official documents provided by
NVIDIA, we have learned that the flow entries will be added
to the flow tables on eSwitch, which can store up to 4 million
flow entries. Therefore, we have set the maximum number of
flow entries to 4M(4000K).

Scenario. We used DOCA-Flow API to write a simple
tested program, whose architecture is shown in Fig.2 and
algorithm sketch is shown in Algorithm.1. The entire tested
program running in the Arm subsystem is mainly used to
add flow entries to eSwitch and achieve the 5-tuple matching
and traffic forwarding. It takes over the uplink representative
port p0 and the host physical function representative port
pf0hpf to filter the traffic from the network to the host.
The level-N pipe discards unmatched traffic and forwards
the matched traffic according to 5-tuple entries offloaded to
hardware while other pipes only add a single entry to perform
unconditional forwarding, which means that allowed traffic
will pass through all pipes. The testing machine is connected
back-to-back with the DUT through a 100GbE link. When
testing bandwidth and packet rate, we ran DPDK-Pktgen on
the testing machine, using 14 tx and 14 CPU cores to send
different numbers of UDP flows. We also ran another DPDK
program using 14 rx and 14 CPU cores on the tested machine
to receive packets and calculate bandwidth and packet rate.
When testing bandwidth, we sent 1518B-sized packets with
100Gbps bandwidth, when testing the packet rate, we sent
64B-sized packets with 117Mpps packet rate. Finally, we ran
sockperf on both of them to measure the ping-pong latency of

1 UDP flow. As for the baseline of throughput and latency, we
set the pipe depth of the tested program to 1, and the root pipe
doesn’t match any headers of packets. We only add a single
entry into the root pipe to forward any type of traffic from
the network(p0) to the host(pf0hpf). The maximum throughput
and minimum latency tested in this situation are the baseline
we used here, which are marked as green dashed lines in Fig.3.

The packet rate will decrease as the number of used
entries increases. We set the pipe depth of the program
to 1, so the root pipe matches the 5-tuple. Each UDP flow
corresponds to a pipe entry and flows without corresponding
pipe entry will be discarded. Therefore, we only recorded the
results when the number of entries NEntries is greater than
or equal to flow amount NFlows. We called the pipe entries
corresponding to UDP flows used entries, with a quantity of
NUsedEntries, while the extra entries are called unused entries,
with a quantity of NUnusedEntries.The relationship between
them is as equation 1. We tested the bandwidth and packet
rate of different numbers of UDP flows using the two DPDK
programs mentioned above under different numbers of entries
and tested the UDP latency of a single flow using sockperf.
We found that within the 4000k entries and 4000k UDP flows,
the maximum bandwidth still can reach 100Gbps, and there
is no significant change in the UDP latency(∼ 10.5 µs). As
is shown in Fig.3(a), under the same number of UDP flows,
increasing the number of entries will not significantly reduce
the packet rate. However, increasing the number of UDP flows
will significantly reduce the packet rate under the same number
of entries. When all 4000k entries are used, the packet rate
decreases by ∼ 40%.

65K <= NFlows <= NEntries <= 4000K

NEntries = NUsedEntries +NUnusedEntries

NFlows = NUsedEntries

(1)

The bandwidth and packet rate will significantly de-
crease as the depth of the pipe increases. When exploring
the impact of pipe depth on bandwidth and packet rate, we
set the number of entries in the level-N pipe to the maximum
value of 4000k and tested the bandwidth and packet rate of
UDP flows at different pipe depths. The bandwidth results are
shown in Fig.3(b), and the packet rate results are shown in
Fig.3(c). We found that the maximum bandwidth begins to be
less than 100Gbps when the depth of the pipe is greater than
20 and the maximum bandwidth decreases by ∼ 30% when
the depth is 25. More importantly, the packet rate significantly
decreases with the increase of pipe depth and the packet rate
even decreases by ∼ 90% when the pipe depth reaches 25.

The latency will increase as the depth of the pipe
increases. When exploring the impact of pipe depth on latency,
we tested the ping pong latency of 1 UDP flow at different
pipe depths, and the results are shown in Fig.3(d). We found
that UDP latency increases with the increase of pipe depth,
and the latency increases by ∼ 2µs when the pipe depth is 25.

2) Performance Comparison: In this part, we mainly want
to compare the performance of the stateless firewall imple-
mented by DOCA-Flow with iptables running on the host
CPU. Therefore, we tested and compared the bandwidth,
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Fig. 3: Bandwidth, packet rate and latency of DOCA-Flow under the different numbers of pre-installed entries and different
pipe depths when using BlueField-2 DPU, (a) installed different number entries in the pipe at the first level while (b) and (c)
installed 4M entries under different pipe depths.
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Fig. 4: Performance comparison between iptables and DOCA-Flow under the different numbers of filtering rules based on
5-tuple when using BlueField-2 DPU.

packet rate, latency, and CPU utilization of DOCA-Flow with
iptables under the different numbers of 5-tuple filtering rules.
After our preliminary testing, we found the performance of
iptables has significantly decreased while retaining over 20k
rules, so we set the maximum number of rules at 20k.

Scenario. We still use the DOCA-Flow program mentioned
above to compare with iptables. We set the pipe depth of
DOCA-Flow to 1 and only allow matched traffic to pass
through. For iptables, we only add 5-tuple rules in the INPUT
chain. The testing machine, DUT, and topology are still the
same as the benchmark, but we replaced the testing tool
of bandwidth and packet rate with iperf because we had
to use protocol stack and netfiler in the Linux kernel. We
sent 10 TCP flows with 1518B-sized packets on the testing
machine when testing the bandwidth, we sent 10 TCP flows
with 158B-sized packets when testing the packet rate, and we
calculated the bandwidth and packet rate on DUT using the
statistics provided by the ethtool. Then, we tested the latency
of a single TCP flow using the sockperf tool and the CPU
consumption generated by DUT receiving 10 TCP flows with
a total bandwidth of 5Gbps using the sar command.

The performance of DOCA-Flow is significantly better
than that of iptables and it can save high CPU consumption
generated by packet filtering.Fig.4(a), Fig.4(b) and Fig.4(c)
show the bandwidth, packet rate and latency under the different
numbers of filtering rules. We found that as the number of
rules increases, the impact of iptables is very significant. When
the number of rules only increases to 20K, the bandwidth
decreases by ∼ 85% the packet rate decreases by ∼ 90%,

and the latency has also increased by ∼ 90µs, while the
related performance of DOCA-Flow has remained nearly
unchanged. Fig.4(d) shows the CPU consumption generated
by receiving the same bandwidth TCP traffic under different
filtering rules. We found that when the rules reached 20k,
iptables generated a very significant CPU consumption, even
7 times the consumption generated by iperf receiving these
packets, occupying approximately 2 more CPU cores while
DOCA-Flow helped the host save this large amount of CPU
consumption.

3) Problems Validation: In this part, we further explored
whether the issues identified in the benchmark part also exist
on BlueField-3 DPU, which is the next-generation DPU of
NVIDIA. We conducted the same experiment as the bench-
mark part on BlueField-3 DPU by using DOCA 2.5.0. Tab.II
shows the packet rate of two generations of DPU at different
numbers of used entries, and Tab.III shows the performance
of BlueField-3 DPU at different pipe depths. Through these
comparative experiments, we have the following conclusions:

• The reason why the packet rate of BlueField-2 DPU in
the benchmark part sharply decreases with the number
of used entries is that we enabled the counter function
for each entry, which is an important function that helps
developers monitor the real-time rate of traffic.

• The packet rate will not decrease with the number of
used entries on BlueField-3 DPU, regardless of whether
the counter function is enabled for each entry.

• BlueField-3 DPU will also experience performance
degradation with an increase in pipe depth, resulting in
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Fig. 5: Architecture of the Packet Scheduler on DPU

a decrease in packet rate and an increase in latency.
Although compared to BlueField-2 DPU, BlueField-3
DPU has improved throughput on the same pipe depth,
especially bandwidth.

TABLE II: Packet Rate(Mpps) of BlueField-2 and BlueField-3
under Different Amount of Used Entries

DUT Counter Amount of Used Entries
64k 1000k 2000k 3000k 4000k

BlueField-2 Enable 107.33 86.21 64.58 56.89 55.89
BlueField-2 Disable 108.86 108.53 105.33 100.05 93.24
BlueField-3 Enable 119.85 119.99 119.91 119.89 119.69
BlueField-3 Disable 119.98 119.97 119.92 119.89 119.74

TABLE III: Performance of BlueField-3 under Different Pipe
Depths

Pipe Depth Performance Indicators
Bandwidth(Gbps) Packet Rate(Mpps) Latency(µs)

1 99.99 119.69 13.66
3 99.99 110.67 14.13
5 99.99 66.82 14.45

10 99.99 57.58 14.93
25 99.99 26.47 16.62

B. Analysis of Offloading Packet Scheduler

In this section, we mainly analyze the performance of
BlueField-2 DPU for fine-grained packet scheduling. Because
the eSwitch of the DPU does not have flexible field mod-
ification and computing capabilities, the main work of the
entire scheduling is concentrated in the Arm subsystem of the
DPU. We hope that this part can characterize the impact of
offloading packet scheduling onto the BlueField-2 DPU Arm
subsystem on throughput, delay, FCT, and CPU utilization.
The DPU-based packet scheduler can not only achieve load
balancing by offloading scheduling algorithms to save host
CPU resources but also achieve traffic multipath transmission
without modifying existing commercial switches and host
protocol stacks. What’s more, We found that BlueField-2
DPU not only supports scheduling traffic from the kernel
protocol stack but also supports scheduling RDMA traffic
from the special hardware on DPU. However, BlueField-2

DPU belongs to a typical Off-Path SmartNIC and Arm cores
have relatively weak processing performance. Our results show
that packet scheduling based on DPU significantly reduces
transmission performance. When compared with CPU-based
packet scheduling, although the DPU-based packet scheduler
can save CPU consumption generated by scheduling, the
maximum transmission performance is worse than the CPU-
based packet scheduler. The problem exists on both BlueField-
2 DPU and BlueField-3 DPU although BlueField-3 DPU is
more capable of processing packets in the ARM subsystem
than BlueField-2 DPU.

1) Benchmark of Packet Scheduling: In the Arm subsystem
of BlueField-2 DPU, we mainly use DPDK for flexible pro-
gramming on the data plane, including packet forwarding and
scheduling. In addition, we can also extract critical flows by
adding flow entries to eSwitch and redirect them to the Arm
subsystem for fine-grained operations, and use the offloaded
hairpin queues to forward irrelevant traffic to the network
through eSwitch directly.

Goals. In this part, we mainly want to test the impact of
the packet scheduler on forwarding performance and verify
the effectiveness of packet scheduling through the benchmark.
Therefore, we first tested the bandwidth and packet rate of the
packet scheduler under different numbers of Arm cores, as
well as the Ping-Pong latency of a single flow when hosts
connect back-to-back. Then, we tested the maximum flow
completion time(maximum FCT) of different numbers of TCP
and RDMA flows in our multipath network and performed
functionality verification of the DPU-based packet scheduler
by comparing it with ECMP. Noted that performing throughput
and latency testing back-to-back is to eliminate the impact
of multipath networks and facilitate obtaining the optimal
forwarding performance of the packet scheduler.

Scenario. We selected VLAN ID as the key hash entropy
of ECMP to implement per-packet rerouting and implemented
the framework of the packet scheduler using DPDK and the
Round Robin algorithm. The specific architecture of the packet
scheduler and the whole procedure is shown in Fig.5. The
packet scheduler will add three flow entries during the initial-
ization phase. One entry will separate the VLAN flows from
the upstream traffic and distribute them to different queues in
the Arm subsystem through RSS(Receive Side Scaling) [32].
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The other one will forward the remaining traffic directly to
the network through a hairpin queue, and the last one will
forward all downstream traffic directly to the host through a
hairpin queue. Each Arm core of the packet scheduler modifies
the VLAN ID of the data packets in the queue to different
values according to the scheduling algorithm(here we used the
Round Robin algorithm) and forwards them to the network.
This way, the packets of each flow can be distributed onto
different redundant paths, allowing traffic to pass through
multiple paths more evenly to improve links utilization. We
first connected the sender (DUT) and receiver(testing machine)
back-to-back through a 100GbE link. The sender sent 1K UDP
flows through pktgen to test the maximum bandwidth and
maximum packet rate. The receiver used the same receiving
program as PartA to receive the traffic and calculate the result.
When testing the bandwidth, the packet size was 1520B, and
when testing the packet rate, the packet size was 64B. Then,
we used sockperf to test the Ping-Pong latency of 1 UDP
flow and 1 TCP flow and tested the Ping-Pong latency of
RDMA send operation through perftest. Finally, we connected
the sender and receiver to our multipath network using two
40GbE links, connected the two switches with four 10GbE
redundant links, and configured ECMP in them. We tested
maximum FCT for different numbers of TCP flows using iperf,
and maximum FCT for different numbers of RDMA flows
using perftest. In the back-to-back experiment, we found that
the bandwidth of the packet scheduler can only reach up to
85Gbps. Therefore, we conservatively adjusted the port rate
for the validation experiment from 100GbE to 40GbE.

The packet scheduling based on the DPU Arm subsystem
resulted in a significant decrease in bandwidth and packet
rate. We ran our packet scheduler and DPDK-Testpmd with
different numbers of Arm cores in the Arm subsystem of DPU
and used the performance of forwarding traffic without any
other operation through eSwitch and DPDK-Testpmd as our
reference. The bandwidth results are shown in Fig.6(a). We
found that compared with eSwitch, packet scheduling resulted
in a significant decrease in bandwidth, and with the increase
of Arm cores and queues, there was a further decrease, even
reaching ∼ 40%. Compared with DPDK-Testpmd, there was
only a slight decrease. The results of packet rate are shown in
Fig.6(b). We found that compared with eSwitch, the packet
scheduler resulted in a significant decrease in packet rate,
with the maximum packet rate even decreasing by ∼ 60%.
Compared with DPDK-Testpmd, the packet rate only showed
a significant decrease when using a few cores. When using six
or more cores, the packet scheduler and DPDK-Testpmd were
able to achieve the same packet rate. Therefore, we know that
even if we use a relatively simple scheduling algorithm, packet
scheduling based on the Arm subsystem still faces significant
throughput reduction issues.

The packet scheduling based on the DPU Arm subsystem
resulted in a significant increase in latency. We ran our
packet scheduler and DPDK-Testpmd using 7 Arm cores and
used the latency of forwarding traffic through eSwitch, Hairpin
queues, and DPDK-Testpmd as our reference. The specific
test results are shown in Tab.IV. Compared with eSwitch and
Hairpin queues, after passing through the packet scheduler, the

TABLE IV: Ping-Pong Latency(µs) of Different Kinds of
Traffic when Using BlueField-2 DPU

Forward Traffic Type
Engine RDMA TCP UDP
eSwitch 2.18 11.03 11.33
Hairpin 3.79 13.61 12.74

DPDK-Testpmd 6.92 16.08 14.93
PktScheduler 5.23 15.20 14.26

Ping-Pong latency of all types of traffic showed a significant
increase(∼ 3 µs). However, compared with DPDK-Testpmd,
the latency of the packet scheduler has decreased. The specific
reason is that DPDK-Testpmd forwards both upstream and
downstream traffic using the Arm cores, while our packet
scheduler only forwards upstream traffic using the Arm cores,
while downstream traffic is forwarded using the hairpin queue
with lower latency. The testing tools use RTT to calculate the
latency, so the latency of both upstream and downstream needs
to be considered. eSwitch is the most efficient forwarding
engine on DPU, and we use its results(TeSwitch) as the latency
baseline for the entire system. Using Hairpin queues will
increase TH Queue in the whole system latency(THairpin),
and using the Arm cores forwarding will increase TArm in
the whole system latency(TTestpmd). Therefore, we can infer
that our packet scheduler implementing a simple scheduling
algorithm will make the whole system latency about half of
the sum of THairpin and TTestpmd. The reasoning is shown
in Eq.2, and our test results are also quite consistent with this
speculation.

THairpin = (TeSwitch × 2 + TH Queue × 2)/2

TTestpmd = (TeSwitch × 2 + TArm × 2)/2

TPktScheduler = (TeSwitch × 2 + TArm + TH Queue)/2

TPktScheduler = (TTestpmd + THairpin)/2

(2)

Compared with ECMP, packet scheduling based on
the DPU Arm subsystem can effectively improve flow
completion time. We first connected the sender and receiver
to the multipath network mentioned above, and then ran
our packet scheduler with 7 Arm cores and compared the
maximum FCT of TCP flow with ECMP. The specific results
are shown in Fig.6(c). When the number of flows is less than
4, even if ECMP distributes all flows to different paths, the
whole bandwidth cannot approach 40Gbps, and the maximum
bandwidth of each flow will not exceed 10Gbps. However, the
packet scheduler can make TCP occupy almost all bandwidth
and distribute it evenly to each flow; when the number of
flows is 5 and 10, and ECMP cannot evenly hash all traffic
onto four redundant paths. Therefore, it is inevitable that the
bandwidth allocated to the flow on paths with more flows will
be very low. Therefore, in these five cases, the maximum FCT
of TCP when using ECMP will be higher than using the packet
scheduler. Noted that in these 5 cases, the amount of data
we sent is 50GB. When the number of flows is 1, it sends
data of 50GB, when the number of flows is 2, each sends
data of 25GB, and so on. Therefore, the final TCP maximum
FCT of the packet scheduler is around 11s. Finally, we also
verified the effectiveness of the packet scheduler in scheduling
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Fig. 6: Maximum throughput and functionality verification of DPU-based packet scheduler when using BlueField-2 DPU, (a)
and (b) also show the bandwidth and packet rate of DPDK-Testpmd and eSwitch as a reference while (c) and (d) show the
maximum FCT of ECMP to verify the functionality of DPU-based packet scheduler.
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Fig. 7: Performance comparison between DPU-based packet scheduler and CPU-based packet scheduler when using BlueField-
2 DPU, (a) and (b) show the maximum throughput of them under the different number of CPU cores while (c) and (d) show
the maximum CPU utilization of them under different bandwidth and scheduling algorithms.

RDMA. We ran our packet scheduler with just one Arm core
and compared it with ECMP. The specific results are shown in
Fig.6(d). Similarly, in these five cases, the maximum FCT of
RDMA when using ECMP is significantly higher than when
using the packet scheduler, too.

2) Performance Comparison: In this part, we mainly com-
pared the performance of the CPU-based packet scheduler
and the DPU-based packet scheduler. Therefore, we tested
and compared the bandwidth, packet rate, latency, and CPU
utilization of these two packet schedulers that achieve the same
scheduling algorithms. In addition, we not only compared
the performance of two schemes in implementing the Round
Robin algorithm but also compared the CPU utilization of
two schedulers in implementing the SPLB [33] algorithm. The
Round Robin algorithm is relatively simple, so it does not
bring much additional consumption to the CPU. SPLB is an
algorithm that requires sending and receiving detection packets
to obtain global congestion states and distribute traffic, which
will bring obvious additional CPU consumption. Through the
SPLB algorithm, we can more clearly see the CPU resources
saved by offloading the scheduling algorithm onto DPU.

Scenario. We implemented a DPDK-based testing program
on the sender host for sending UDP packets of different sizes
and testing latency under different loads, then still set the port
rate to 100GbE and connect the sender and receiver back-
to-back. And we implemented the Round Robin algorithm in
the host’s testing program, which is the same as the packet
scheduler in DPU. Then, we tested the maximum bandwidth

and packet rate of CPU-based scheduling and DPU-based
scheduling when using the different number of CPU cores
in divide by sending flows with 1520-sized packets and 64B-
sized packets. After that, we tested their latency at different
packet rates. Finally, we implemented the SPLB algorithm on
both the testing program of the host and the DPU-based packet
scheduler, then compared the CPU utilization of DPU-based
and CPU-based schedulers when using different scheduling
algorithms to schedule traffic with different bandwidths.

Although the packet scheduler based on the DPU Arm
subsystem can save CPU consumption caused by schedul-
ing, its performance is significantly weaker than that of
the CPU-based packet scheduler. Fig.7(a) and Fig.7(b) show
the maximum throughput of a DPU-based packet scheduler
and a CPU-based packet scheduler with the same number of
CPU cores when using BlueField-2 DPU. We can observe
that offloading the Round Robin scheduling algorithm onto the
DPU only slightly improves throughput when we just use one
CPU core. However, as the number of CPU cores increases,
the traffic generated by the host has gradually exceeded the
bottleneck of the DPU Arm subsystem. Therefore, we can
maintain higher throughput even if we do not offload the
Round Robin algorithm. When using 10 CPU cores, The
packet rate of CPU-based schemes is even twice that of DPU-
based schemes. Tab.V shows the overall latency impact of the
two schemes at the same packet rate when using BlueField-
2 DPU. Noted that 0.05Mpps is equivalent to the load when
testing Ping-Pong latency by the testing tools like sockperf
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and perftest. We found that DPU-based scheduling also has a
significant impact on latency. At a packet rate of 4Mpps, the
latency is already four times that of the CPU-based scheme, it
also dramatically reflects the negative effects of BlueField-
2 DPU off-path architecture and weak processors on fine-
grained packet processing. Fig.7(c) and Fig.7(d) show the CPU
consumption generated by using Round Robin algorithm and
SPLB algorithm to schedule the same bandwidth traffic in two
schemes. As the entire testing program on the host is based
on DPDK, the sar command may not accurately measure CPU
consumption due to the polling mode. Therefore, inspired by
the dperf, we use the real CPU cycles consumed by generating
traffic and scheduling divided by the total cycles as the real
CPU consumption. The results show that offloading a simple
algorithm like Round Robin cannot significantly save CPU
resources. However, offloading the SPLB algorithm which
requires detecting path congestion status can significantly save
CPU resources. When scheduling 40Gbps traffic, it can save
1.5% of CPU consumption, approximately 0.25 CPU core.

TABLE V: Latency(µs) under Different Packet Rate while
Using BlueField-2(BF2) DPU and BlueField-3(BF3) DPU

Forward DPU Packet Rate of UDP Flow
Engine Model 0.05Mpps 1Mpps 2Mpps 3Mpps 4Mpps

PktScheduler-CPU BF2 9.16 9.62 10.74 11.37 12.18
PktScheduler-DPU BF2 15.85 50.85 56.57 52.17 52.33
PktScheduler-CPU BF3 7.83 7.86 10.66 11.07 11.18
PktScheduler-DPU BF3 11.89 14.64 16.94 17.79 18.15

3) Problems Validation: In this part, we also conducted
the same experiment to further explore whether the problems
that occurred in the performance comparison existed on the
BlueField-3 DPU. As shown in Tab.VI and the last two rows
of Tab.V, we have attached the differences in throughput
and latency between the CPU-based packet scheduler and the
DPU-based packet scheduler when running the Round Robin
algorithm by using BlueField-3 DPU and DOCA 2.5.0. It
should be noted that our BlueField-3 DPU and BlueField-2
DPU run on two different models of servers, so another set of
data from the CPU-based packet scheduler will appear here.
We can conclude that:

• When using BlueField-3 DPU, the DPU-based packet
scheduler still has lower packet rates and higher latency
compared to the CPU-based packet scheduler.

• Compared to using BlueField-2 DPU, DPU-based packet
schedulers have significant improvements in latency
and throughput, especially in bandwidth when using
BlueField-3 DPU.

TABLE VI: Throughput of Packet Scheduler while using
BlueField-3 DPU

Forward Throughput Host Cores Amount
Engine Indicators 1 2 4 8 10

PktScheduler-CPU Packet Rate(Mpps) 24.01 47.32 86.08 79.85 79.66
PktScheduler-DPU Packet Rate(Mpps) 25.01 49.68 63.42 60.38 59.13
PktScheduler-CPU Bandwidth(Gbps) 65.95 99.91 99.91 99.91 99.91
PktScheduler-DPU Bandwidth(Gbps) 69.03 92.65 99.91 99.91 99.91

C. Analysis of Offloading L4 Load Balancer

In this section, we first benchmarked connection tracking
HW-offload and analyzed the impact on forwarding perfor-
mance. Then, we compared the performance of LVS and the
L4 load balancer based on connection tracking HW-offload.
Finally, we validated the problem found in the benchmark part
on BlueField-3 DPU. Our conclusion is that when the number
of concurrent connections is within 1M, connection tracking
HW-offload will not significantly reduce bandwidth, but will
slightly increase latency and significantly weaken connection
establishment ability. The problem of weakening connection
establishment ability still exists on BlueField-3 DPU but has
been improved compared to BlueField-2 DPU. The L4 load
balancer based on connection tracking HW-offload can achieve
higher bandwidth, and lower latency, and does not consume
any CPU resources compared with LVS, but its ability to
establish new connections is significantly inferior to LVS.

1) Benchmark of Connection Tracking: To offload connec-
tion tracking, users only need to enable the OvS hardware
offload and add flow entries to eSwitch through the OvS
command on the Arm subsystem. Whenever a new connection
enters the DPU, eSwitch will redirect it to the Arm subsystem
and hand it over to OvS for inspection. After the processing is
completed and the connection is established, all packets from
this connection will be directly forwarded through eSwitch to
the next hop and will no longer enter the Arm subsystem. It’s
known that OvS has two common datapaths, namely system,
and netdev. When DPU uses system as the datapath, OvS
processes data packets in the kernel and adds flow entries to
eSwitch through tc [34] to offload connection tracking. When
netdev is used as the datapath, OvS processes data packets at
the user level through DPDK and adds flow entries to eSwitch
through rte-flow to offload connection tracking.

Goals. In this part, we mainly want to test the impact
of offloading connection tracking on forwarding performance
and connection establishment ability through benchmark. So
we first tested the ping-pong latency when using different
datapaths and maximum bandwidth under different concurrent
connections to characterize the impact on forwarding perfor-
mance. Then, we tested cps and tps when using different data
paths to characterize the impact on connection establishment
ability.

Scenario. We use OvS to connect the host physical function
representative port pf0hpf and the uplink representative port p0
and use the ovs-ofctl command to add flow entries to enable
connection tracking. The successfully established connection
will be offloaded onto eSwitch for forwarding without other
operations. The DUT and testing machine are still connected
back-to-back using a 100GbE link. During testing ping-pong
latency, we ran the sockperf server on the DUT and sockperf
client on the testing machine to send TCP and UDP traffic.
When testing bandwidth and cps, we ran the dperf server with
8 rx, 8 tx, and 8 CPU cores on DUT, and the dperf client with
8 rx, 8 tx, and 8 CPU cores on the testing machine to send TCP
traffic. During the bandwidth tests, the packet size for upstream
traffic was 1518B, and the packet size for downstream traffic
was 164B. When testing tps, we ran the netperf server on the
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Fig. 8: Latency and the maximum bandwidth of connection tracking HW-offload under different numbers of concurrent
connections and performance comparison between OvS-LB and LVS when using BlueField-2 DPU, (c) and (d) show the
maximum bandwidth and the CPU utilization of OvS-LB and LVS under different numbers of concurrent connections.

DUT and the netperf client on the test machine using a single
thread.

Enabling connection tracking HW-offload resulted in
a slight increase in latency. When testing the impact of
connection tracking on ping-pong latency, we used sockperf
to test the TCP and UDP latency without connection tracking
as a reference and also tested the latency when disabling
HW-offload as a reference. Fig.8(a) shows the specific test
results of ping-pong latency. NO-CT means to disable con-
nection tracking, RTE-HW, and RTE-SW mean to use DPDK
to process packets at the user level and enable connection
tracking, while TC-HW and TC-SW mean to process packets
in the kernel and enable connection tracking. HW means to
enable HW-offload, only part of the packets will enter the Arm
subsystem, SW means to disable HW-offload, and all packets
will enter the Arm subsystem. Firstly, from the comparison
between RTE-SW, TC-SW, RTE-HW, and TC-HW, it can be
seen that packets entering into the Arm subsystem still lead
to a significant increase in latency, and the latency increase
caused by the Arm subsystem kernel is more significant than
using DPDK to process packets. Secondly, the comparison
between RTE-HW, TC-HW, and NO-CT shows that enabling
connection tracking HW-offload still increases latency by
∼ 1.2µs.

When the number of concurrent connections is within
1M, enabling connection tracking HW-offload does not
cause a significant reduction in bandwidth. We established
different numbers of TCP concurrent connections using dperf,
tested the maximum bandwidth of OvS-DPDK and OvS-
kernel when enabling connection tracking HW-offload, and
used the maximum bandwidth when disabling connection
tracking as a reference. Fig.8(b) shows the specific test results.
We found that within 1M concurrent connections, enabling
connection tracking and offloading still ensures a relatively
high bandwidth, which is only ∼ 6% lower than NO-CT.

Enabling connection tracking HW-offload will result
in a significant decrease in cps and tps. We ran netperf
with a single thread and did TCP CRR test to measure tps
while enabling connection tracking HW-offload. Then, dperf
was run on 8 CPU cores to test its cps. Similarly, we also
tested tps and cps while disabling connection tracking and
HW-offload on BlueField-2 DPU as references. The specific
results of BlueField-2 DPU are shown in Tab.VII. Firstly,

TABLE VII: CPS(Kcps) and TPS(Ktps) under Different
Conntrack Engine while Using BlueField-2(BF2) DPU and
BlueField-3(BF3) DPU

Performance DPU Conntrack Engine
Indicators Model NO-CT RTE-HW RTE-SW TC-HW TC-SW

TPS BF2 10.86 6.21 6.76 4.58 5.52
CPS BF2 8000.00 84.96 130.00 30.00 64.95
TPS BF3 6.69 6.12 6.41 4.67 4.78
CPS BF3 10000.38 298.91 409.71 45.31 110.01

by comparing NO-CT with RTE-HW and TC-HW, we can
find that the HW-offload of connection tracking significantly
weakens the ability to create new connections, reducing tps by
at least ∼ 37% and cps by at least ∼ 98%. Secondly, through
RTE-HW and TC-HW, it can be found that the HW-offload of
connection tracking through DPDK is faster than the hardware
offloading of connection tracking through the kernel. Finally,
the comparison among RTE-HW, TC-HW, and RTE-SW, TC-
SW shows that enabling HW-offload has a weakened ability to
create new connections than disabling HW-offload, which also
implies that the decline in connection establishment ability is
not only due to the wimpy Arm cores, tracking connections
through eSwitch and offloading established connections from
the Arm subsystem to eSwitch is also a significant factor in
the decline of cps and tps.
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2) Performance Comparison: In this part, we mainly want
to compare the performance of the L4 load balancer based
on connection tracking HW-offload with LVS running on the
host CPU. Therefore, we tested and compared their ping-
pong latency, rps, cps, and maximum bandwidth and CPU
utilization under different numbers of concurrent connections.
We developed an L4 load balancer called OvS-LB on DPU
based on connection tracking HW-offload as Fig.9. For ex-
ample, when we implement the DNAT of LVS and balance
the requests to the nginx services with TCP port 80 on the
backend real servers, we can treat the DPU as a virtual
server. Firstly, we filter out the corresponding request traffic
of the service through the OvS flow tables. Then we hash
the traffic of different requests to different TCP ports of the
same temporary IP through the DNAT function of connection
tracking. Finally, we bind these TCP ports to different backend
real servers’ nginx services through the OvS flow tables. After
preliminary experiments, we found that we can achieve DNAT
load balancing in two-arm mode in the Arm subsystem of the
DPU, without requiring the host CPU to participate in any
work.

Scenario. We built the same testing environment shown
in Fig.9, using the DPU of the DUT as a virtual server
and running OvS-LB. We connected the testing machine as
a client to the p1 port of the DPU through a 100GbE link
and connected the other two backend real servers to the same
switch with the p0 port of the DPU through three 100GbE
links. Noted that the two physical ports of the DPU correspond
to two PCIe devices with different PCIe IDs on the Arm
subsystem, p0 and SF4 belong to one of the PCIe devices, and
p1 and SF5 belong to the other PCIe device. When comparing
with LVS, we only need to disable the OvS-LB of the DPU,
let the traffic enter the host, and forward them to LVS for
processing through the CPU. We only moved the sockperf
server and dperf server to two real backend servers, then
we tested the ping-pong latency of OvS-LB and LVS using
sockperf and tested their cps and maximum bandwidth under
different numbers of concurrent connections using dperf. In
addition, we also deployed nginx services on backend servers
and tested rps for obtaining 15B and 50MB files using Apache
ab, then tested the CPU utilization under different numbers of
concurrent connections.

The L4 load balancer based on DPU connection tracking
HW-offload can more easily achieve high bandwidth, and
low latency, and save significant CPU consumption. How-
ever, the current performance of connection establishment
is still significantly inferior to the CPU-based solution.
Fig.8(c) shows the maximum bandwidth of OvS-LB and LVS
under different numbers of concurrent connections. We can
find that OvS-LB can easily reach 100Gbps, while LVS can
only reach around 26Gbps. Fig.8(d) shows the CPU consump-
tion generated by OvS-LB and LVS sending 20Gbps traffic un-
der different numbers of concurrent connections. LVS’s CPU
consumption increases with the number of connections, while
OvS-LB does not cause any CPU consumption, which means
that when sending 20Gbps traffic with 10k TCP connections,
OvS-LB can save 12 CPU cores compared with LVS. Tab.VIII
shows the ping-pong latency, rps, and cps of OvS-LB and

LVS. We can see that OvS-LB can provide lower latency
compared with LVS, but its connection establishment ability
is greatly weakened, with a ∼ 53% reduction in cps compared
with LVS. In addition, when requesting 15B files, OvS-LB’s
rps decreased by ∼ 43% compared with LVS, and when
requesting 50MB files, OvS-LB’s rps and LVS were nearly the
same. These phenomenons also clearly indicate that programs
developed based on DPU connection tracking HW-offload are
currently not suitable for handling short connections with high
concurrency, but more suitable for handling long connections
with low concurrency.

TABLE VIII: Latency(µs), RPS(rps) and CPS(Kcps) of LVS
and OvS-LB when Using BlueField-2 DPU

L4 Load Performance Indicators
Balancer Latecny(TCP) Latecny(UDP) RPS(15B) RPS(50MB) CPS

LVS 27.30 26.07 63311.17 22.49 130.00
OvS-LB 21.29 20.88 36091.09 21.69 60.00

3) Problems Validation: In this part, we still use the same
experiments to verify whether the issues found in the bench-
mark part still exist on the BlueField-3 DPU. The last two rows
of Tab.VII show the tps and cps of BlueField-3 DPU when
enabling connection tracking HW-offload. We still tested tps
and cps while disabling connection tracking and HW-offload
as references. From the experimental data, we can conclude
that:

• Enabling connection tracking HW-offload on BlueField-3
DPU still weakens connection creation ability. Although
the weakening of tps by connection tracking HW-offload
is less obvious because of the low baseline, the weakening
of cps is still significant like BlueField-2 DPU.

• Compared to BlueField-2 DPU, BlueField-3 DPU has
a significant improvement in connection creation ability
when enabling connection tracking HW-offload. Espe-
cially when we use OvS-DPDK, cps has more improve-
ment than OvS-Kernel.

V. DISCUSSION

DPU should be equipped with a more flexible pro-
grammable datapath accelerator. When having requirements
for the higher flexibility of the data plane, developers must
place the overall data plane in the Arm subsystems of Off-
Path DPUs like NVIDIA BlueField-2 and Broadcom Stingray,
which achieves the requirements but sacrifices performance.
Meanwhile, On-Path DPUs like Netronome Agilio, rely on
programmable multi-core processors to maintain a more flexi-
ble data plane and high performance, although its development
difficulty is usually higher[35]. Therefore, DPU requires a
more flexible, high-performance programmable datapath ac-
celerator that balances the high performance of flow tables
and the flexibility of the Arm subsystem.

DPU should focus on improving the concurrency per-
formance of connection tracking. We’ve validated the issue
about connection tracking HW-offload weakening connection
creation abilities on BlueField-2 and BlueField-3 DPU and
have seen improvements. AMD has also made significant
improvements on this aspect in their Pensando DPU with a
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similar “SoC+ASIC” architecture, which has no requirement
to offload to Arm processor for stateful service delivery and
providing higher connection creation abilities(∼ 3Mcps)[36].

VI. CONCLUSION

Motivated by the trend of offloading network functions
onto DPU in the age of post-Moore’s Law, this paper in-
vestigates the performance of offloading typical middleboxes
onto NVIDIA BlueField-2 DPU based on three key functions
including flow tables offloading, packet processing of the Arm
subsystem and connection tracking HW-offload. We found that
the flow tables offloading with inflexible programmability has
high performance in processing traffic, which can accelerate
stateless firewall and save high CPU consumption, and the
Arm subsystem has flexible packet processing capability and
it can save CPU consumption for packet scheduling, but
currently it still has worse performance in processing traffic
than CPU, and connection tracking HW-offload improves the
bandwidth and latency of L4 load balancer while releasing
CPU resources, but it’s still not suitable for handling short
connections with high concurrency. Most of the problems
found on BlueField-2 DPU still exist on BlueField-3 DPU,
although they’ve been improved.
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