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Abstract—Despite extensive security research on various An-
droid components, such as kernel or runtime, little attention
has been paid to the proprietary vendor blobs within Android
firmware. In this paper, we conduct a large-scale empirical
study to understand the update patterns and assess the security
implications of vendor blobs. We specifically focus on GPU
blobs because they are loaded into every process for displaying
graphics user interfaces and can affect the entire system’s
security. We examine over 13,000 Android firmware releases
between January 2018 and April 2024. Our results reveal that
device manufacturers often neglect vendor blob updates. About
82% of firmware releases contain outdated GPU blobs (up to
1,281 days). A significant number of blobs also rely on obsolete
LLVM core libraries released more than 15 years ago. To analyze
their security implications, we develop a performant fuzzer that
requires no physical access to mobile devices. We discover 289
security and behavioral bugs within the blobs. We also present
a case study demonstrating how these vulnerabilities can be
exploited via WebGL. This work underscores the critical security
concerns associated with vulnerable vendor blobs and emphasizes
the urgent need for timely updates from device manufacturers.

I. INTRODUCTION

Nowadays, Android plays a fundamental role in our digital
lives. It holds a 85% of the mobile phone market share and
is also extensively used in various smart devices, such as
TVs and watches. An Android device tends to have a highly
complex software composition. Its base is the Linux Kernel,
while the system runtime comes from Google’s Android Open
Source Project (AOSP). Additionally, device manufacturers
often pre-install specific system applications and incorporate
proprietary binary drivers. This diverse composition results
in a fragmented Android ecosystem and poses huge security
challenges.

Recently, numerous research efforts have been made to
investigate Android component security. For instance, Zhang
et al. [1] explored the Android Linux kernel code review
process and identified bottlenecks in patch application. Tung et
al. [2] investigated the device manufacturers’ update practices
for their AOSP components. Elsabagh et al. [3] applied static
analysis to detect privilege escalation vulnerabilities in pre-
installed apps. Despite these advancements, a gap remains in
the analysis of security situations regarding proprietary vendor
blobs within Android firmware. These blobs are distributed by
device vendors and located in a special firmware partition (i.e.,
/vendor). They provide essential support for the device’s
hardware components, such as GPUs, cameras, and fingerprint

readers. Many of them are loaded into apps or system services
with high privileges. If these blobs are vulnerable, they can
significantly impact the security of the entire system. However,
due to their closed-source nature and lack of documentation,
they are subject to limited scrutiny.

In this study, we conduct a large-scale empirical evaluation
of vendor blobs within Android firmware. Our research aims to
1) understand the update pattern of vendor blobs and 2) iden-
tify their vulnerabilities and assess their security implications
for the Android ecosystem. We place a specific focus on GPU
vendor blobs based on two key reasons. Firstly, GPU blobs
are more critical to system security than other blobs because
every app loads them into memory for rendering graphical user
interfaces (UI). Secondly, they are easily exploitable; many
commonly used apps (e.g., Google Chrome and Firefox) or
built-in UI components (e.g., WebKit) can accept arbitrary
GPU task inputs and forward them to the vulnerable GPU
blobs.

To achieve our goals, we construct an automatic analysis
pipeline named GPUBlob-Inspector as shown in Fig 1. The
pipeline begins with a firmware crawler that gathers Android
firmware images from various device manufacturers. The
firmware is then input into an image unpacker to extract
the proprietary vendor blobs. Afterward, the pipeline pro-
ceeds to identify the blob’s version number via Executable
and Linkable Format (ELF) fingerprints. Subsequently, our
pipeline employs a specially designed fuzzer on the GPU
vendor blobs to identify potential security vulnerabilities. Our
fuzzer utilizes metamorphic testing; it generates and feeds
a series of semantically equivalent GPU programs to the
GPU blobs to observe any irregular behaviors or inconsistent
program outputs. Unlike existing GPU fuzzers that necessitate
physical access to mobile devices, our system operates in an
offline manner. We achieve this by utilizing the fact that those
GPU blobs internally generate Low Level Virtual Machine
(LLVM) Intermediate Representation (IR) for the input GPU
program. We can capture the LLVM IR and use it to directly
generate an executable for performant CPU-based fuzzing. In
the final stage, we conduct a manual analysis to validate the
vulnerabilities on physical devices.

For our study, we curate a large-scale firmware dataset,
comprising 13,901 Android images from 74 distinct phone
vendors. The data span a period ranging from Jan 2017 to
April 2024. From this dataset, we unveil the following key
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Fig. 1: GPU-Inspector Pipeline.

research findings.
1) Most manufacturers neglect timely updates to the GPU

vendor blobs; approximately 82% of firmware images
in our dataset contain outdated GPU blobs. On average,
a GPU blob remains outdated for 273 days, with the
longest period stretching up to 1,128 days. In addition,
certain manufacturers tend to update these blobs far less
frequently than others.

2) Most GPU vendor blobs are built upon outdated LLVM
core libraries. A significant portion of them rely on
LLVM 2.8, a version that is released over 15 years ago.
Even the most recent LLVM dependency found among
these blobs dates back to 5 years ago.

3) Our offline fuzzer identifies 289 security vulnerabili-
ties and behavioral anomalies within the most recent
Qualcomm GPU blobs. These issues stem from mem-
ory access violations, endless iterations of optimization
passes, and incorrect program semantics. We present a
case study to exploit them via WebGL, which may lead
to denial of service or arbitrary code execution on a
target device.

To contribute to future research, we also make the source code
of our analysis pipeline and the dataset publicly available.

II. BACKGROUND: PROPRIETARY VENDOR BLOBS

Android is an open ecosystem, yet it still allows manu-
facturers to include closed-source blobs in their distributions.
This practice is typically used for hardware-specific code,
where manufacturers may opt to keep their implementation
details confidential. These vendor blobs must adhere to a
standardized set of interface definitions known as the Hard-
ware Abstraction Layer (HAL), as illustrated in Figure 2.
For instance, a fingerprint reader blob needs to implement
the biometrics.fingerprint@2.1 interfaces, while a
GPU blob needs to implement the core OpenGL ES or Vulkan
graphics interfaces. There are two types of HAL interfaces:
Binderized and Same-process. A binderized blob (e.g., finger-
print) is generally loaded into a high-privilege system service,
while a same-process blob (e.g., GPU) opens in the same
process in which it is used.

Vendor blobs generally operate within the user space and
have corresponding Linux modules that run in the kernel
space. These blobs and kernel modules communicate through
standard input-output subsystem protocols, such as IOCTL and
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Fig. 2: Proprietary Vendor Blobs in Android.

shared memory. To comply with the GNU General Public
License (GPL) of Linux, the kernel modules are open-source.
They generally just perform basic low-level tasks such as
register manipulation and memory management, while the core
logic for major hardware operations remains implemented and
concealed within the vendor blobs.

In the context of GPU blobs, there are two main hard-
ware vendors: Qualcomm Adreno and ARM Mali. They both
follow the aforementioned HAL architecture. For example,
Qualcomm employs a Linux kernel module named KGSL to
handle basic low-level hardware operations such as power
management and register initialization. Its user-space library
QGL handles the core GPU tasks, such as providing standard
graphics APIs (e.g., OpenGL ES and Vulkan) and compiling
GPU programs into hardware instructions. The user-space
library is closed-source for device end-users, while its source
code is provided to device manufacturers such as Google and
Xiaomi under a Non-Disclosure Agreement (NDA). Conse-
quently, the responsibility for updating the driver rests entirely
with the manufacturers.

III. GPU-INSPECTOR PIPELINE

In this section, we provide implementation details for our
GPUBlob-Inspector pipeline.

A. Firmware Curation and Vendor Blob Unpacking

We implement a web crawler to curate Android firmware
images from various vendors. Some vendors, such as Google
and Xiaomi, make all historical firmware versions available
on their official websites. However, others like Samsung and
OnePlus do not provide publicly accessible URLs. In such
cases, we source their firmware images from third-party sub-
scription services like SamMobile1 and Daxiaamu2. Alongside
firmware binaries, we also collect metadata information, in-
cluding firmware version, release date, and supported regions.

1https://www.sammobile.com/
2https://yun.daxiaamu.com



To enhance dataset diversity, we also incorporate data from
Android Dump, a public repository hosting firmware from
lesser-known phone vendors. Our dataset comprises 13,901
firmware images across 24 phone vendors, consuming a total
of 38 TBs of disk space. They are released between between
January 2018 and April 2024. Among them, the top five phone
vendors (Samsung, Xiaomi, Oppo, OnePlus, and Google)
collectively contribute to 93% of the images.

Generally, a firmware image consists of multiple com-
pressed partitions such as boot, recovery, system, and vendor.
Our goal is to decompress the vendor partition, where the
vendor blobs generally reside. To accomplish this, we adapt an
Android firmware analysis tool3 as recommended by previous
research. Upon decompression, we proceed to retrieve the
GPU vendor blobs. According to the Android framework
specifications, they must be situated within the directory
/vendor/lib64/egl and may be distributed as a singular
binary (libGLES.so) or as three separate binaries (libEGL.so,
libGLESv1 CM.so, and libGLESv2.so). It is important to note
that these GPU libraries may exhibit dependencies on other
libraries within the vendor partition, which in turn may have
further dependencies. To ensure a thorough extraction of
all dependent libraries, we utilize a tool named readelf 4 to
parse a library’s DT NEEDED header section and identify its
dependencies. We initiate this process with the GPU library
and we recursively apply readelf to each dependent library we
encounter.

B. Driver Version Identification

The next task is to identify the version of these GPU vendor
blobs. This process is not straightforward due to the absence of
version metadata within the binary. Consequently, we devise
our own versioning scheme, which comprises the following
three components:

1) Build ID: One rudimentary yet effective versioning ap-
proach is to use the build ID of each blob file. A build ID
is essentially a hexadecimal hash string that is dependent
on compilation inputs, particularly, the source files and
compiler optimization settings. If these elements remain
unchanged, the build ID will also remain consistent.
This characteristic makes the build ID superior to a
general-purpose file hash, which can vary due to non-
essential metadata such as timestamps or debugging
strings. The build ID can be directly extracted from a
specific metadata section .note.gnu.build-id of a library
file. It should be noted that build IDs alone are not
adequate for establishing the relative order of the blobs
(i.e., which blob has a more recent version).

2) Internal Blob Version: To overcome the Build ID’s
limitation, we introduce another component to our ver-
sioning scheme. We leverage the fact that certain GPU
blobs generate debug logs during their initialization
phase. These logs often include an internal version

3https://github.com/srlabs/extractor
4https://man7.org/linux/man-pages/man1/readelf.1.html

string with numerical components that can be com-
pared. Specifically, Qualcomm GPU blobs use the for-
mat EV{major}.{minor}.{patch}, while ARM
GPU blobs employ a version string in the format of
r{major}p{patch}. We can apply these regular
expressions to retrieve the internal version numbers.
However, it is worth noting that these debug strings may
not always be present if the GPU blob developers enable
aggressive optimizations during the build process.

3) LLVM Compiler Version: In the event of missing
internal version numbers, we resort to another
observation: both Qualcomm and ARM GPU blobs
incorporate an LLVM compiler library. The rationale
behind GPU blobs embedding a compiler lies in
their need to process shader programs. Specifically,
shader programs are executed by the GPU for graphics
rendering. They are typically written in a C-like high-
level language such as GLSL or HLSL. As such, they
must be compiled into corresponding GPU hardware
instructions prior to execution. The LLVM library
itself contains a version string following a format of
{major}.{minor}.{patch}.{commithash}.
We employ a regular expression to search for this
version string if the LLVM binary is not stripped. In
case of a stripped library, we can still use fingerprinting
strategies to estimate the LLVM library version. One
simple fingerprint is the textual strings found in the
prevalent logging statements within the LLVM library.
As LLVM evolves, for instance, with the introduction
of new optimization passes, new strings are frequently
added. This characteristic makes it a robust method
for identifying the LLVM version. In addition, we can
incorporate a more complicated fingerprint known as
Binshape [4]. This approach extracts a combination of
features from the body of each function, such as the
initial byte sequences (i.e., the prologue), call graphs,
and statistics of machine instructions within a function.
This approach allows us to identify not only the version
but also the LLVM function names in a stripped binary.

C. GPU Blob Fuzzing

The upcoming task it to identify potential bugs within the
GPU vendor blobs. A commonly-used method is fuzzing,
where we supply a system with randomly generated inputs
and observe any resulting exceptions. For GPU, a particular
fuzzing technique known as metamorphic testing is often
favored [5]. This process commences with a reference shader
program, typically procured from readily available mobile
games. We then apply various transformations that preserve
the semantics of the source code (e.g., converting a ‘for’
loop to a ‘while’ loop). This generates a collection of shader
variants with heavily modified source code, yet maintaining
the same output effect. If a variant shader produces an output
significantly different from the reference shader, it indicates a
potential bug in the GPU stack. This method is employed by
the state-of-the-art GPU fuzzer GraphicsFuzz [6]. However,
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Fig. 3: LLVM Compiler Pipeline.

for our large-scale study, we find GraphicsFuzz unsuitable
since it requires physical access to mobile devices. Further-
more, GraphicsFuzz provides a fuzzing speed of less than
ten shaders per second. Considering the substantial volume of
GPU blobs in our dataset, we require a fuzzer with a higher
speed to complete the analysis within a practical timeframe.

In this paper, we develop a performant offline fuzzer for
the proprietary GPU blobs. We exploit the fact that both
Qualcomm and ARM GPU blobs are constructed on the LLVM
compiler infrastructure. LLVM encompasses a three-phase
compilation process, as depicted in Figure 3. The frontend
is responsible for converting the shader source code into
an intermediate representation (IR). This IR is a platform-
agnostic representation that preserves the semantic meaning
of the source code. Subsequently, the optimizer ingests the
frontend IR and applies a series of transformations to augment
the code’s efficiency. Exemplary transformations encompass
constant folding, dead code elimination, and loop optimiza-
tions. Finally, the backend is responsible for translating the
optimized LLVM IR into machine code for the target GPU
architecture.

Our fuzzer instruments the LLVM library to capture IR
after the optimization passes. Instead of sending the IR to
a GPU backend, we reroute it to an X86 backend to create
an executable for native CPU execution. This approach lets
us efficiently compare the output of the reference shader and
variant shader without access to mobile phone GPUs. Below,
we outline the implementation details of our fuzzer.

Reference Shader Database: Our fuzzer requires a ref-
erence shader database to generate shader variants. In this
study, we curate a shader database from real-world games.
We commence by crawling and analyzing the popular Android
app stores such as Google Play, APKPure, and APKMirror.
As of Feb 2024, we compile a list of 145,732 gaming
apps from these platforms. We also gather relevant metadata,
such as game descriptions, categories, and download counts.
Through our analysis on the metadata, we identified 10 popular
game genres including 1) Action, 2) Adventure, 3) Board, 4)
Causal, 5) Puzzle, 6) Racing, 7) Role-Playing, 8) Simulation,
9) Sports, and 10) Strategy. For each genre, we employ a
weighted random sampling technique to select 20 games. The
weight assigned to each candidate app is proportional to its
download count. It ensures our selection leans towards popular
games in the app stores. Afterward, we use Patrace5 to extract
the shader extraction from the selected games. Specifically,

5https://github.com/ARM-software/patrace

Patrace is designed to capture GLES calls at runtime from a
gaming app and record them into a trace file for performance
analysis. To extract the shader sources, we can filter out the
glShaderSource command from the trace files. In our
study, we assigned a researcher with extensive experience in
mobile gaming to evaluate each selected game for a minimum
of 10 minutes. During this process, we activate the Patrace’s
capturing functionality, which results in approximately 2000
minutes of trace recording. From these trace files, we recover
18,923 shader programs.

Variant Shader Generation: To generate the shader vari-
ants, we adapt a series of semantic-preserving transformations
from Graphicfuzz on our shader database. These transforma-
tions can be categorized as follows:

1) Statement Mutation: This transformation process takes a
simple statement denoted as origin and converts it into a
more complex one using constructs from GLSL. One ex-
emplary construct is the function mix(origin, unused,
c), which yields a linear combination of origin ∗ c +
unused ∗ (1 − c). Consequently, if we set c = 1, the
output will remain as origin.

2) Control Flow Mutation: In this transformation, we can
interchange certain control flow constructs, for example,
switching from ‘if’ to ‘switch’, or from ‘for’ to ‘while’.
We can also insert additional control flow elements, such
as wrapping a code segment in a loop that executes
only once. Alternatively, we can make a control flow
construct more complex, for instance, unrolling a loop
or splitting a loop.

3) Code Donation: In this transform, we extract a group of
statements from a randomly selected reference shader.
These statements are then injected into the target shader.
To avoid affecting the output of the target shader, we
randomly rename each variable in the donated code and
store the computational results to some unused built-in
output variables.

These transformations can be chained in a random order and
in a recursive manner to generate complex variant shaders.

LLVM IR Capturing: After generating shader variants,
we feed them to the GPU blobs to perform shader com-
pilation and capture the LLVM IR. One approach is to
leverage the standard OpenGL graphics interfaces exposed
by the GPU blobs. Specifically, we can first leverage the
eglCreateContext API to initialize a global EGL context,
which serves as an interface between OpenGL APIs and
underlying hardware. Afterward, a shader object can then
be created using the glCreateShader function. Subse-
quently, the shader source code is attached to the object using
glShaderSource. Finally, the shader can be compiled
using glCompileShader. To capture the LLVM IR during
the compilation, we can leverage a LLVM command line
option, -print-after-all. It instructs the compiler to
print out the IR after each optimization pass for debugging
purposes. We can inject this option by invoking an LLVM
function named cl::ParseCommandLineOptions. The



; Input/Output Variables
@a_color = external global <4 x float>, align 16
@v_fragmentColor = external global <4 x float>, align 16
define void @llvm_main() {
; Shader Input
%reg_a_color_0 = call float @llvm.qgpu.fget.reg.f32.p0v4f32
(<4 x float>* @a_color, i32 0, i32 1)
; Shader Math Operations
%color_rsq = call float @llvm.qgpu.rsq(float %reg_a_color_0)
; Shader Sample Functions
%texture_val = call <4 x float> @llvm.qgpu.fsampler.v4f32.
v2i16.v2f32.i32 (i32 0, <2 x i16> zeroinitializer,
<2 x float> %sample_coords, i32 undef,
<4 x i32> <i32 128, i32 0, i32 0, i32 0>,
i16 0, i16 0)
; Shader Output
call void @llvm.qgpu.global.fset.reg.p0f32.v4f32
(float* getelementptr inbounds (<4 x float>*
@v_fragmentColor, i32 0, i32 0), <4 x float> %4,i32 0,i32 4)

}

Fig. 4: Example LLVM IR Code for an OpenGL Shader

memory address of this function can be identified using the
string fingerprint method, as discussed in Section III-B.

To execute the aforementioned APIs without access to
physical devices, we can set up a QEMU full-system emulator
to run a vanilla Android system (i.e., AOSP). By default, the
emulated Android system employs a software-based OpenGL
implementation. We can upload the proprietary GPU blobs to
the emulator and replace the default implementation by adjust-
ing an environment variable named debug.gles.layers6.
This action alone is not sufficient. When creating an EGL con-
text, the proprietary binary needs to issue IOCTL system calls
to the GPU kernel module for querying hardware information
such as GPU model and VRAM size. Since this kernel module
is absent in the emulator, an EGL exception will be raised. We
circumvent this issue by implementing a shim Linux kernel
module for the emulator. We stub out most IOCTL calls in the
original GPU kernel drivers and retain only those necessary
for EGL context creation.

For Qualcomm GPU blobs, we can adopt a more effi-
cient approach by exploiting the fact that Qualcomm GPU
drivers partition the compiler component into a separate
library named libllvm-glnext.so. This library relies only on
C runtime libraries (bionic C) and exposes accessible com-
pilation interfaces. This allows us to directly invoke the
compiler component via a user-space ARM CPU emulator
(i.e., aarch-qemu), which is more performant than full
system emulation. Specifically, we first utilize the dynamic
linking API dlopen() to load the target library into the
memory. Afterward, we retrieve the function pointers of com-
piler interfaces via the API dlsym(). A primary function is
QGLCCompileToIRShader, which ingests a shader source
code string buffer and returns the optimized LLVM IR. An
illustrative snippet of LLVM IR is presented in Figure 4.

CPU Binary Generation and Execution The next step is to
generate a CPU executable from the captured IR. Specifically,
we first use the LLVM static compiler llc to translate the IR
into x86 assembly language. The resulting assembly output is

6https://developer.android.com/ndk/guides/rootless-debug-gles

then passed through the x86 assembler llvm-mc and the x86
linker lld to produce a native executable. Special attention is
required during the linkage phase, as the captured IR often
includes invocations to various intrinsic functions. These func-
tions represent computational operations that can be translated
into efficient GPU machine instructions. They are identifiable
by their unique naming convention, which begins with llvm.
Since these intrinsic functions are not available on the X86
platform, we provide our software implementation to prevent
linkage errors as follows.

Shader Input/Output: In OpenGL, an input variable and
output variable can be defined using the keywords in and
out, respectively. Access to these variables is translated
to intrinsic function invocations, llvm.qgpu.fget and
llvm.qgpu.fset respectively. These functions accept a
GPU memory address as input. In our backend, we remap
the GPU addresses into heap memory regions, which are pre-
allocated using the system call mmap. At the entry point of
each shader program, we populate the input memory regions
with randomly generated values using predetermined seeds.
Upon the shader program’s exit, we generate hashes for the
contents of the output memory regions. This allows us to
compare the output of a variant shader with that of a reference
shader.

Math Operations: Another common type of intrinsics en-
compasses mathematical computations. For example, the in-
trinsic llvm.qgpu.rsqf is employed to compute the recip-
rocal square root of a floating-point number. In a Qualcomm
GPU, this intrinsic can be directly mapped into the machine
instruction rsq, which consumes only three GPU cycles. In
our X86 backend, we need to remap it to corresponding math
functions within the libm.so library. A technical challenge
is that OpenGL allows developers to use half-precision floating
point numbers in a shader. However, on the X86 platform, the
libm library does not support half floating-point computations.
One naive workaround is to emulate half-precision operations
using software (e.g., Berkeley Softfloat). This inevitably incurs
significant performance penalty. Instead, we implement an
LLVM transformation pass that iterates over all IR instructions
and examines each float operand. If an operand is of half-
precision, we then promote it to single precision. Special
attention is given to the fpext instruction, which extends
a value from a smaller to a larger floating-point type. Since
all floating-point operands have already been promoted to the
highest precision, we convert fpext to bitcast to make it
a no-op operation. This strategy is implemented at compilation
time and does not incur any runtime performance overhead.

Shader Sampler: Another common type of
intrinsic functions is sampler function, for instance,
llvm.qgpu.fsampler. A sampler is used to fetch
and process texels from texture resources. It controls various
aspects of texture representation, such as filtering, wrapping,
and mipmapping. Executing these sampler functions on
x86 CPUs can be computationally intensive and inefficient.
Instead, we simplify the sampler function as a hash function.
Given the same sampling parameters and global random seed,



it consistently generates the same random texture output.
It behaves as if we are providing procedurally generated
textures to the shaders.

We implement these intrinsic functions in C and compile
them into object files using Clang. These object files are
subsequently linked with the LLVM IR to produce an ELF
executable. In this process, we need to address differences
in the Application Binary Interface (ABI), which governs the
data exchange protocol between object files originating from
different source languages. Specifically, when LLVM attempts
to pass a small float vector (e.g., 4 * float) to C, the data
is, by default, passed through an xmm register. However, a
C function expects the float array to be passed on the stack.
To resolve this issue, we explicitly define the incoming pa-
rameter in the C function using Clang’s ext_vector_type
attribute. This enforces Clang to retrieve incoming float arrays
from the xmm register.

IV. EVALUATION

In this section, we present our research findings for our
two primary research questions: 1) What is the update pattern
of GPU vendor blobs? and 2) How vulnerable are these GPU
vendor blobs? Additionally, we conduct a case study to exploit
these vulnerabilities to launch a denial-of-service or even
arbitrary code execution attack on the target device.

A. Experiment Setup

We deploy our GPUBlob-Inspector pipeline on an Ubuntu
24.04 machine. The machine is equipped with two AMD
EPYC 7742 64-Core Processor CPUs, 1024 GB of RAM,
128 TB SSD hard disks, and a 10 Gbps network connection.
We provide a detailed breakdown of the time taken at each
stage of the pipeline. The initial phase of firmware crawling
(approximately 13,000 images) is completed within 27 hours.
The subsequent task of firmware extraction is accomplished in
147 minutes. The average processing time for each firmware
is approximately 38 seconds, with the maximum processing
time recorded at 278 seconds. The version identification stage
is completed within 22 minutes, with an average processing
time of 12 seconds and a maximum of 19 seconds per GPU
blob. In the fuzzing stage, we generate 200 variants for each
reference shader. The generation process takes approximately
491 minutes. We then input the variant shaders into a GPU
blob to generate LLVM IR, which consumes 189 minutes. The
compilation of these IRs into x86-64 executable ELF files
requires 127 minutes. Executing these files and comparing
their outputs takes about 7 minutes. It is important to note
that the duration of the fuzzing stage is contingent on the
number of shader variants generated. Increasing the number
of shader variants enhances the probability of bug discovery
but also prolongs the process.

B. RQ1: Driver Update Frequency

Our pipeline successfully analyzed 13,901 firmware images.
Among these, a significant proportion, 78%, contain Qual-
comm GPU blobs. Only 21% of the images contain ARM GPU

TABLE I: GPU Composition Across Major Manufacturers

Qualcomm / ARM Firmware Distinct
Driver Device

Samsung 73% / 27% 60% / 40% 61% / 39%
Xiaomi 70% / 30% 67% / 33% 73% / 27%
Oppo 72% / 28% 64% / 36% 62% / 38%
Google 75% / 25% 56% / 44% 58% / 42%
OnePlus 82% / 18% 61% / 39% 78% / 22%
Total 78% / 22% 60% / 40% 69% / 31%
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Fig. 5: Update Count for Firmware and GPU Blobs per Device

blobs. The remaining fraction is made up of Nvidia Tegra and
MediaTek Dimensity. Due to their minimal market shares, we
exclude these two from our results. We further de-duplicate
all the GPU blobs in our dataset using their Build IDs. We
identify 792 distinct versions. Specifically, 65% are provided
by Qualcomm, while 35% are sourced from ARM. We also
provide the GPU composition ratio across several top-tier
mobile device manufacturers in Table I. The device count also
indicates a significantly higher popularity of Qualcomm GPUs
compared to ARM GPUs. We observe that Qualcomm GPUs
are predominantly found in mid-range to high-end devices
potentially due to their higher graphics rendering capabilities.
In contrast, ARM GPUs are typically utilized in entry-level
models. These findings are consistent with a previous report7.

Vendor Blob Update Count per Device: We quantify the
number of firmware and GPU driver updates across different
manufacturers. The findings are presented in Figure 5. For
comparative purposes, the average update number per device
is reported. A notable observation is that the number of
firmware updates substantially surpasses that of GPU vendor
blobs. It suggests that device manufacturers tend to prioritize
firmware updates in a device’s life cycle. Another interesting
observation is that certain manufacturers, such as Xiaomi and
Oppo, exhibit an average GPU driver update count close to
one. This indicates that the majority of their devices rarely
receive GPU vendor blob updates throughout their lifecycle.
In stark contrast, Google devices receive, on average, six GPU
vendor blob updates. This discrepancy could be attributed
to Google’s role as the first-party developer of the Android
operating system. As such, Google likely has more resources
for device maintenance and possesses greater influence over
its software and hardware ecosystem.

Vendor Blob Update Delay: A blob update delay is
defined as a situation where a firmware release contains a GPU
blob version that is not as up-to-date as the version already

7https://www.techcenturion.com/mobile-gpu-rankings
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Fig. 6: Blob Update Delay Estimation

in use by another device with the same GPU hardware. This
means the firmware release could have potentially utilized the
newer blob for enhanced performance or security. The degree
of the GPU blob update delay can be estimated as follows:

1) Given a target firmware image with a release date rf
and its associated GPU blob version vo, we search
our firmware database for the oldest firmware image
containing the same blob and denote its release date as
ro. This process estimates the date when this version of
the GPU blob was first introduced.

2) Following this, we filter our database for firmware that is
equipped with the same GPU model and is released prior
to the date rf . Among these filtered results, we identify
the most recent GPU driver version, vl. In other words,
the target firmware could have updated the blob version
from vo to vl.

3) In the final step, we search our firmware database for the
earliest firmware that incorporates the driver version vl
and denote its release date as rl. We then can compute
the delay as D = rl− ro, which estimates the degree of
blob outdatedness.

From our dataset, we observed that 82% of firmware images
contain outdated GPU blobs. The median value of the delay D
is 273 days, with the highest value reaching 1, 128 days. This
observation suggests that most device manufacturers neglect
timely updates on vendor blobs, potentially leaving devices in
a more vulnerable state. In Figure 6, we provide a detailed
breakdown of the results based on device manufacturers. We
can infer that certain manufacturers, such as Google, update
their proprietary GPU drivers significantly more promptly than
others.

We further investigated whether the update delay is influ-
enced by the GPU vendors. Our research indicates that 85% of
firmware images utilizing Qualcomm GPUs contain outdated
GPU blobs. This is in contrast to the 64% of firmware images
with ARM GPUs that are outdated. When considering the
median delay for firmware updates, Qualcomm devices lag
behind at 281 days, while ARM devices show a slightly better
result at 231 days. It is concerning to note that Qualcomm
devices, despite their significantly larger adoption rate, tend
to receive blob updates less promptly.

LLVM Compiler Outdatedness: A key element of the
GPU blobs is the LLVM library. We investigate their LLVM
versions and present their distribution in Figure 7. An impor-
tant observation is that all Qualcomm GPU blobs rely on the
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considerably outdated LLVM version 2.8, which is released
nearly 15 years ago. In contrast, ARM appears to adopt more
recent LLVM versions. Specifically, the majority of ARM
blobs are based on LLVM 9.0, followed by LLVM 10.0,
and LLVM 11.0. The remaining drivers employ LLVM 5.0
versions. However, these versions are also relatively outdated,
with LLVM 11.0 having been released in 2020. This implies
that all the GPU blobs could potentially be susceptible to
a multitude of LLVM bugs that have been discovered since
their respective release dates. One potential reason for Qual-
comm and ARM’s reluctance to update their LLVM library
could stem from the LLVM project’s emphasis on innovation
and performance enhancements. This focus often results in
significant API changes across different LLVM versions and
managing these breaking changes is known to be a challenging
and labor-intensive task.

C. Vulnerability Impacts

In this section, we present the fuzzing outcome for the most
recent Qualcomm GPU blob to highlight potential security
vulnerabilities. This particular blob is sourced from a Xiaomi
Note 13 Pro 5G device firmware, released on February 23,
2024, with the internal blob version number 031.42.23.11.

Vulnerabilities Finding: Over the course of approximately
14 hours of fuzzing, our fuzzer identifies 289 instances of
irregular program behaviors or incorrect program outputs. To
ensure that the anomalies identified are not a result of a bug
within our fuzzer, we validate these instances on physical de-
vices. In brief, we substitute the reference shader in the retrace
file with a variant shader. Following this, we employ Patrace
to replay the updated retrace file. We utilize an offscreen
rendering mode, which facilitates us to transfer the rendered
frames into main memory and store them onto a hard disk
file. Subsequently, we compare the frames with the reference
frames using the chi-square test on their respective histograms.
If the test indicates a significant difference, an offending
instance is validated. We perform a thorough analysis on
the offending variants shaders to pinpoint the root causes of
anomalous behaviors. We categorize the causes into several
distinct groups as follows.

1. Memory Access Violation: The first type of offend-
ing variants triggers memory access violation during the
shader compilation stage (i.e., during the invocation of
glCompileShader). This results in an immediate crash of
the application process. We conduct an analysis of the 29
problematic cases using their stack traces. Our observations



reveal that 5 of these cases are triggered by null pointer
references, while the rest result from invalid memory access
violation. Upon further investigation of these invalid mem-
ory addresses, we find that most of them are low memory
addresses, such as 0x7 or 0x1b. These could potentially be
produced by an offset operation with a zero base address,
which once again ties back to a null pointer error. However,
we identify four addresses as heap memory. By instrumenting
the application process with the memory checker Valgrind, we
infer that these are likely triggered by a use-after-free heap
error. This is alarming, as it potentially allows an attacker
to construct arbitrary code execution exploits. Additionally,
we aim to identify the positions of the bugs. One useful
technique is to utilize the LLVM debugging command line
option -print-after-all, which displays the output IR
of each LLVM component. If a component fails to generate
output IR, we can identify it as the faulty one. Our findings
reveal that 7 of them are found in LLVM analysis passes,
including type-based alias analysis and dead code analy-
sis. Another 17 originate from LLVM function optimization
passes, such as peephole optimization, dead code elimination,
and constant expression folding. The remaining 5 are located
in backend optimization passes, specifically machine code
constant folding and peephole optimization.

2. Compilation Stalls: The second type of problematic
shader variants results in the application process stalling
during the shader compilation. Our fuzzer identifies three such
instances. By attaching a GNU GDB debugger to the compiler
thread and performing single-step execution, we observe that
they are induced by infinite iteration of optimization passes,
such as loop unrolling, control flow graph simplification,
and instruction combination. In LLVM, the execution of an
optimization pass generates a new set of LLVM IR, which
may open up additional opportunities for optimization. To
harness them, certain optimization passes are designed to
operate iteratively. However, it’s not unusual for logic flaws to
be present within these passes and exemplary bug reports can
be found in [7], [8], [9]. They prevent the IR from achieving a
stable state, resulting in the optimization pass being executed
repeatedly. As such, a malicious actor could potentially craft a
denial-of-service shader payload, which can cause the targeted
application to become unresponsive.

3. Incorrect Program Semantics: The most common type
of offending shader variants causes the compiler to produce
incorrect program semantics. This kind of errors may cause
artifacts in the graphics output and does not necessarily lead
to security vulnerability. Nevertheless, as suggested by prior
research [10], we anticipate a positive correlation between
the number of these behavior bugs and the count of security
vulnerabilities. To identify the incorrect section of program
semantics, we can generate and compare Data Dependency
Graphs (DDGs) of the variant IR and the reference IR. A DDG
is a directed graph where nodes represent instructions, and
edges denote data dependencies between these instructions.
For example, if a variable is defined in instruction A and used
in instruction B, there will be an edge flowing from A to B.

Given a DDG, we start from instructions that produce shader
output variables and backtrack the graph until we reach all
instructions that consume the shader input variables. By doing
so, we can identify the chain of instructions used to transform
those input variables into an output variable. For a correct
variant program, its instruction chain should be semantically
equivalent to that of the reference program. Using DDGs, we
pinpoint several flawed optimization passes, including instruc-
tion combination, dead code elimination, and loop simplifica-
tion. For example, when dealing with a complicated control
flow, these passes may incorrectly deduce that certain instruc-
tions do not affect the program’s observable behavior. If such
an instruction is removed, and the values it defined are still
used elsewhere in the program, those values are replaced with
a keyword undef (e.g., %2 = fmul float %1, undef).
According to the LLVM IR specification, the keyword undef
has special semantics; it serves as a placeholder for a constant
value that can be any arbitrary value. The compiler can replace
undef with any value (e.g., zero or one) in a completely non-
deterministic manner, leading to unpredictable shader output.

Fuzzing Speed: We conduct a performance comparison of
our fuzzer against the state-of-the-art GraphicsFuzz. Graph-
icsFuzz features a client-server architecture. We run its server
program glsl-server on a desktop PC equipped with an AMD
5990x CPU and 128 GB of RAM for variant shader generation.
Its client-side program gles-worker is run on a high-end ASUS
ROG Phone 8 to fetch, compile, and execute these shaders.
GraphicsFuzz achieves a fuzzing speed of approximately 7
shaders per second. In contrast, our fuzzer operates at a
significantly faster speed, processing about 75 shaders per
second. This enhanced speed enables us to uncover more
vulnerabilities within the same timeframe.

Different Blob Versions: We also validate the problematic
shaders across 10 versions of GPU blobs, which are evenly
sampled from the dataset based on time intervals. Our findings
indicate that these problematic shaders consistently trigger the
same anomalous behaviors in all selected GPU blobs, suggest-
ing that most vulnerabilities have existed for a considerable
period. This aligns with the observation that Qualcomm GPU
blobs have been using a very deprecated LLVM compiler for
an extended period.

D. Case Study: WebGL

In the previous section, we identified shaders that can induce
insecure behaviors during compilation. This section presents
a case study to exploit them, which may result in denial of
service (via compiler stalling) or arbitrary code execution (via
use-after-free memory violations) on a target device.

The first step is to identify a widely accessible interface
that can accept arbitrary shader input for compilation. One
such interface is WebGL, a JavaScript API for rendering 3D
graphics in a web environment. WebGL is derived from the
OpenGL ES specification and can be considered a subset
of OpenGL ES. In WebGL, shaders can be compiled using
the gl.compileShader JavaScript interface. Internally, the
shader programs are still processed by the vendor GPU blob,



thus triggering its vulnerabilities. WebGL are not only avail-
able in system browsers but also in apps that embed browser
engines (e.g., WebKit or V8) to support in-app browsing.
These apps are not uncommon and they are generally referred
to hybrid apps. According to a recent empirical study [11], 149
apps among the top 500 most downloaded apps are hybrid.

To launch an attack via WebGL, an adversary can host
a web page with malicious shader code on the internet.
Users are then deceived into visiting this page in a system
browser or a hybrid app through phishing emails, instant
messages, or rogue wireless access point attacks. The exploit
shader is then downloaded and executed automatically on the
victim’s machine. It should be noted that Chrome introduces
an intermediary layer called Almost Native Graphics Layer
Engine (ANGLE)8 to optimize and sanitize input shaders
before feeding them to vendor GPU blob. As a result, it
necessitates the modification of our fuzzing pipeline to identify
new offending shaders. Specifically, we incorporate ANGLE
to sanitize generated variant shaders before feeding them into
the LLVM compiler. In the course of a 4-hour fuzzing session,
we identify 9 sanitized shaders that crash the Chrome browser.

V. DISCUSSION

GPU backend bug detection: Our fuzzer redirects a shader
program’s LLVM IRs to an x86 backend to generate a CPU
executable. It allows us to compare shader outputs without
access to mobile GPUs. However, this method bypasses cer-
tain GPU backend processes (e.g., instruction scheduling or
register allocation). Therefore, our fuzzer is not capable to
detect vulnerabilities in these stages. This implies that the data
reported in our evaluation section represents a conservative
estimate of the severity. We are currently implementing an
interpreter to directly execute GPU instruction output from the
GPU blobs using CPUs. This allows us to uncover more bugs
in the GPU backend stages. Our interpreter adopts a traditional
decode-execute loop design; upon decoding a GPU instruction,
the interpreter dispatches it to a corresponding function for
execution. To facilitate the instruction decoding, we employ
GPU disassemblers from the Mesa 3D Graphics Library9.
Before executing the program, we randomize all register
values before a GPU program begins. Upon the program’s
completion, we compare the values in the register sets. Any
discrepancy could indicate a potential bug.

Fuzzer Support for Vulkan and ARM: In this study, our
primary focus is on the OpenGL ES graphics APIs. This is due
to the fact that Android mandates each device manufacturer to
provide an implementation of OpenGL ES. Recently, a number
of high-end mobile devices have begun supporting Vulkan
Graphics APIs. Compared to OpenGL ES, Vulkan offers
reduced CPU overhead and more detailed control over GPU
resources. To support Vulkan, the GPU vendors integrate an
extra LLVM frontend to transform Vulkan code (i.e., SPIR-V)
into LLVM IR. As such, our fuzzer can also be adapted to sup-
port Vulkan by providing an Vulkan variant shader generator.

8https://github.com/google/angle
9https://www.mesa3d.org/

In addition, this study places emphasis on Qualcomm GPUs,
primarily due to its dominant market share. Nevertheless, our
methodology can be easily replicated to ARM GPUs with little
modification. Our preliminary experiments identifies 19 vul-
nerabilities in Mali GPU blobs. We speculate that ARM GPUs,
benefiting from a more recent LLVM compiler version, may
have fewer vulnerabilities compared to Qualcomm. Further
investigation is warranted.

Vulnerabilities in Vendor Blobs Beyond GPUs: We carry
out preliminary measurements on other types of vendor blobs
in Android firmware, such as accelerometers and fingerprint
readers. Unlike GPUs, these blobs are only loaded into a single
process, making them likely less critical to system security due
to fewer exploitation code paths. They are also sourced from
a wide range of hardware manufacturers, which complicates
the comparison of update patterns and vulnerability discovery.
Nevertheless, further research in this area is warranted.

VI. RELATED WORK

The Android firmware encompasses a variety of software
components. Extensive research efforts have been made to
scrutinize their security implications.

Linux Kernel: Linux Kernel is often identified as the
primary source of vulnerabilities that can compromise An-
droid system security. Consequently, it is subject to extensive
scrutiny. For instance, Zhou et al. [12] conducted research
investigating the security risks arising from hardware ven-
dors’ unsafe customizations in Linux kernel drivers. Several
surveys [13], [14] also indicate that a significant portion of
Android vulnerabilities are located in kernel-mode drivers.
However, given that the kernel component is open source, it
facilitates developers in conducting regular code reviews and
swift integration of patches to mitigate vulnerabilities. Zhang
et al.[1] examined the Android kernel patch process, uncov-
ering bottlenecks in patch propagation. Similarly, Farhang et
al.[15] investigated the latency between a hardware vendor
releasing a patch and its integration into the Android kernel
repositories. Recently, several studies [16], [17] also explore
the kernel-level security module SEAndroid to confine system
services and reduce the kernel attack surface.

AOSP System Framework: A considerable number of
Android vulnerabilities also stem from the system frame-
work [14]. Although Google frequently releases framework
security patches to address these vulnerabilities, it is the
responsibility of device manufacturers (OEMs) to distribute
these patches to their users. Extensive research studies have ex-
amined this process. For instance, Zheng et al. [18] developed
a tool called DroidRay to assess the security patch level of
the Android system framework from various firmware images.
Similarly, Hou et al. [19] evaluated a large-scale firmware
dataset and found that even when a device claims to be
updated to the latest system framework, there is no guarantee
that all corresponding patches have been integrated by the
manufacturers. Additionally, Jones et al. [20] conducted an
extensive study to reveal that the Android framework security



updates rollout process is effectively affected by the carrier-
manufacturer relationship. A recent study [21] also observes
that the framework patches may not undergo thorough testing
before being rolled out by manufacturers, thus resulting in low
code coverage.

Pre-installed Android Apps: Pre-installed apps often come
with pre-approved, highly sensitive permissions and capabili-
ties. If these apps contain vulnerabilities, they can significantly
impact system security. Consequently, extensive research has
been conducted to analyze vulnerabilities in these apps. Gamba
et al. [22] analyzed pre-installed Android apps to understand
their potential impact on device users such as personally
identifiable information leakage and pervasive user behavior
tracking. Elsabagh et al. [3] applied an automated analysis
system named FirmScope over two thousand firmware images
to uncover privilege escalation vulnerabilities in pre-installed
apps. Similarly, Zhang et al. [23] implemented an automated
tool called PITracker to detect insecure intent vulnerabilities
in Android pre-installed apps.

VII. CONCLUSION

This paper presents an empirical study on the security impli-
cations of proprietary vendor blobs within Android images. In
particular, we focus on GPU vendor blobs, as they are loaded
into every app’s memory space and expose many exploitation
code paths. We design an automatic analysis pipeline and
a performant fuzzer to understand their update pattern and
uncover security vulnerabilities. We investigate over 13,000
Android firmware images released between January 2018 and
April 2024. Our study reveals that device manufacturers often
neglect vendor blob updates during a device’s life cycle.
Approximately 82% of firmware images contain outdated GPU
blobs (up to 1,128 days). Additionally, a significant number
of these vendor blobs are constructed on an obsolete LLVM
library released almost 15 years ago. This exposes numerous
security vulnerabilities and poses immediate threats to mobile
devices. Our work highlights the urgency for timely updates
of these vendor blobs by device manufacturers.
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