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Abstract

Traffic prediction is pivotal in intelligent transportation sys-
tems. Existing works mainly focus on improving the overall
accuracy, overlooking a crucial problem of whether predic-
tion results will lead to biased decisions by transportation au-
thorities. In practice, the uneven deployment of traffic sensors
in different urban areas produces imbalanced data, making
the traffic prediction model fail in some areas and leading to
unfair regional decision-making that eventually severely af-
fects equity and quality of residents’ life. Additionally, ex-
isting fairness machine learning models fail to preserve fair
traffic prediction for a prolonged time. Although they can
achieve fairness at certain time points, such static fairness
will be broken as the traffic conditions change. To fill this
research gap, we investigate prolonged fair traffic prediction,
introduce two novel fairness definitions tailored to dynamic
traffic scenarios, and propose a prolonged fairness traffic pre-
diction framework, namely FairTP. We argue that fairness in
traffic scenarios changes dynamically over time and across
areas. Each traffic sensor or city area has state that alter-
nates between “sacrifice” and “benefit” based on its predic-
tion accuracy (high accuracy indicates “benefit” state). Pro-
longed fairness is achieved when the overall states of sen-
sors similar within a given period.Accordingly, we first de-
fine region-based static fairness and sensor-based dynamic
fairness. Next, we designed a state identification module in
FairTP to discriminate between states of “sacrifice” or “ben-
efit” to enable prolonged fairness-aware traffic predictions.
Lastly, a state-guided balanced sampling strategy is designed
to select training examples to promote prediction fairness fur-
ther, mitigating the performance disparities among regions
with imbalanced traffic sensors. Extensive experiments in two
real-world datasets show that FairTP significantly improves
prediction fairness without causing much accuracy degrada-
tion.

Code — https://github.com/jiangnanx129/FairTP

Introduction
Traffic prediction is crucial to transportation planning, in-
frastructure management and optimizing resource allocation
and service provision (Miao et al. 2022, 2024, 2025; Xia

*These authors contributed equally.
†Corresponsing author

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Traffic sensor distribution and regional performance in HK

(b) Change of static fairness

Figure 1: Illustration of fairness issues in traffic prediction.

et al. 2022; Wang et al. 2024). However, existing models
generally only focus on prediction accuracy, but overlook
the key social impacts of traffic forecasting. In practice,
achieving equitable (or fair) traffic prediction across city ar-
eas is essential, which promotes unbiased decision-making
in traffic authorities and significantly improves the life qual-
ity of urban residents.

Actually, uneven distribution of traffic sensors deploying
in a city creates data volume disparities, making the traffic
prediction model fail to produce precise predictions in some
underprivileged regions with fewer sensors (Tedjopurnomo
et al. 2020). Figure.1(a) visualizes the uneven sensor dis-
tribution in HK and the regional performance of the traffic
prediction model DCRNN (Li et al. 2018), where the color
gradients highlight different areas. Predictive performance
in regions with sparse sensors is notably lower versus the re-
gions with more sensors deployed. The forecast bias raises
a fairness issue across city regions. Systematic underpredic-
tion of traffic in certain areas can result in insufficient trans-
portation services, reduced ridership. It creates a negative
feedback loop that amplifies existing inequities.

Existing fairness machine learning models fail to preserve
fair traffic prediction for a prolonged time (Dong et al. 2023;
Wan et al. 2023). Although existing approaches can achieve
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fairness at certain time points (Chai and Wang 2022; Li et al.
2024; Guo et al. 2023; Yang et al. 2023; Caton and Haas
2024), such static fairness may be broken as the traffic condi-
tions change over time. Figure. 1(b) presents the fluctuating
static fairness, clearly reflecting its temporal dynamics. This
metric is calculated based on a specific definition of group
fairness (Yan and Howe 2020). Moreover, existing methods
achieve static fairness but significantly reduce accuracy in
privileged areas. Enhancing fairness while achieving high
prediction accuracy remains an open research problem.

To fill this research gap, the paper explores prolonged al-
gorithmic fairness in traffic prediction, a challenging task
due to several factors. First, there lacks of clear definitions
of fairness to measure and quantify equity in dynamic traffic
environments. Second, the data scarcity issue in underpriv-
ileged areas hinders accuracy improvements without nega-
tively impacting performance in privileged regions. Third,
achieving both shortdated static and prolonged dynamic fair-
ness remains difficult.

To tackle these challenges, this paper introduces two
novel fairness definitions for dynamic traffic environments
and proposes a prolonged fairness traffic prediction frame-
work, FairTP. We argue that fairness in traffic prediction
changes over time and across regions. And traffic sensors
or regions have states that alternate between “sacrifice”
and “benefit” based on their prediction accuracy. Prolonged
fairness is achieved when overall “sacrifice” and “benefit”
among sensors similar in a period of time. Accordingly, we
first define region-based static fairness (RSF) and sensor-
based dynamic fairness (SDF) to measure performance dis-
parities across regions at each time point and state disparities
among road sensors over a period, respectively. Next, FairTP
is proposed that consists of the following two key modules.
The state identification module discriminates “sacrifice” and
“benefit” states, enabling prolonged fairness-aware predic-
tions, SDF calculation, and guiding the sampling module.
Then, the state-guided balanced sampling module is de-
signed to adjusts training examplesby increasing the sam-
pling frequency for sensors in a ”sacrifice” state. It improves
prediction accuracy in underprivileged areas and reduces
performance disparities between regions. Lastly, both RSF
and SDF are integrated into FairTP to achieve predictive
fairness at shortdated static and prolonged dynamic levels.

To summarize, our main contributions are as follows.

• We systematically explore prolonged fairness in traffic
prediction and propose two novel fairness definitions
RSF and SDF for dynamic traffic scenarios.

• We propose the novel FairTP framework that can seam-
lessly integrate with existing traffic prediction models to
enhance fairness with minimal accuracy degradation.

• Extensive experiments on two real-world traffic datasets
demonstrate that FairTP maintains high predictive ac-
curacy while achieving both shortdated static and pro-
longed dynamic fairness.

Related Work
Traffic prediction. It has garnered significant research at-
tention, attributable to the availability of urban data and

its wide range of applications (Choi et al. 2022; Xia et al.
2024). Deep neural networks, notably Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
have gained popularity in traffic prediction due to their su-
perior learning capabilities (Yao et al. 2019). However, these
models are designed for spatio-temporal grid data and are
not suitable for graph-based data, which is prevalent in road
networks. Recently, there has been a rising research interest
in leveraging Graph Neural Networks (GNNs) for spatio-
temporal data prediction (Zheng et al. 2023b; Yang et al.
2021; Ye et al. 2022). Existing models have combined GNN
with RNN, Temporal Convolutional Networks (TCN), or
attention mechanisms to capture the complex spatial and
temporal dependencies in traffic data. These models, like
DCRNN (Li et al. 2018), DGCRN (Li et al. 2023), and
DSTAGNN (Lan et al. 2022), have made advancements in
capturing the dynamics of road networks.

Different from existing models, this paper pioneers a sys-
tematic study on fair traffic prediction, introduces two novel
fairness definitions suitable for dynamic traffic scenarios,
and develops FairTP that can seamlessly integrate with ex-
isting traffic prediction models and make their predictions
fair with very slight accuracy degradation.

Algorithmic Fairness. A considerable volume of re-
search in machine learning highlights that models can ex-
hibit discriminatory behavior towards certain groups across
different domains (Boratto et al. 2023; Mahapatra, Dong,
and Momma 2023; Hua et al. 2023). Previous fairness re-
search has primarily focused on identifying and mitigating
biases towards specific sensitive groups, such as race, in
the outcomes (Ghani et al. 2023; Mehrabi et al. 2021). Var-
ious fairness metrics, including group and individual fair-
ness, have been proposed (Dong et al. 2023).

Fairness research in transportation is in its early stages,
with recent efforts exploring fairness in mobility demand
prediction (Du et al. 2024). For example, Yan et al. proposed
FairST, introducing two fairness metrics to promote equity
across demographic groups (Yan and Howe 2020). However,
their approach relies on sensitive features like race or gender
and applies regularization at time point (static). Similarly,
Zheng et al. developed SA-Net that uses socially-aware con-
volution operations to integrate socio-demographic and rid-
ership data for fair demand prediction (Zheng et al. 2023a).
This method also depends on external data and static fair-
ness regularization.Dynamic fairness is a form of long-term
fairness. It has been explored in decision-making but lacks a
clear definition. Song et al. defined a dynamic fairness based
on general static individual fairness (Song, Ma, and King
2022). However, their method relies on an oracle similarity
matrix created with domain knowledge or human judgment
(Song et al. 2022), making it unsuitable for traffic scenarios.

Significantly different from prior works that focus on
static fairness at specific time points, we propose RSF and
SDF, two novel fairness measures for dynamic traffic. They
are free from sensitive attributes and can enhance predictive
fairness at shortdated static and prolonged dynamic levels.

Problem Statement
Given the following:



Road network G = {V,E}: A graph where V represents
road sensors, and E indicates the connections between sen-
sors. Historical traffic data (Xt−T+1, Xt−T+2, ..., Xt):
Traffic observations over T time steps, where Xt =
{xt

vi |vi ∈ V } and xi
vi is the observation of sensor vi at time

t. Region traffic conditions Xt
Re = {xt

rp |rp ∈ Re}: The
city is divided into m regions Re = (r1, r2, ..., rm), and xt

rp

is the mean of all node observations in region rp at time t.
Sampled number Nsam: The number of road sensors sam-
pled for training. Dynamic time length Td: The batch length
that controls the sampling frequency and enables the calcu-
lation of SDF.

The goal is to: Sample Nsam sensors from the road net-
work G every Td batches using a specified strategy. Predict
regional traffic conditions (Xt+1

Re , Xt+2
Re , ..., Xt+T

Re ) for the
next T time steps.

Objective: Minimize prediction errors while maximizing
RSF and SDF (elaborated in the methodology section).

Methodology
We begin with introducing RSF and SDF, tailored metrics
for assessing shortdated static and prolonged dynamic fair-
ness in traffic prediction scenarios, followed by an exposi-
tion of our FairTP.

Region-based Static Fairness
Uneven road sensor placement causes imbalanced traffic
prediction and further leads to serious fairness problems. Ex-
isting fairness models rely on sensitive features and focus
only on fairness at specific time points, failing to capture
the dynamic nature of traffic. Therefore, we propose RSF, a
novel fairness that avoids using sensitive features and short-
dated static fairness in dynamic traffic scenarios.

Different from existing group equity (Dong et al. 2023)
that relies on sensitive attributes, there is no additional sen-
sitive information (e.g. race) in our traffic scenarios. Thus,
the proposed RSF focuses on measuring the disparity in pre-
dictive performance between two regions at each time point
without using sensitive information. Areas with fewer road
sensors suffer from larger prediction errors due to smaller
data volume. This data imbalance in different areas of a city
makes the model to perform poorly in certain areas, leading
to unfair regional decisions and impacting residents’ equity.
To this end, we can directly reduce the performance differ-
ence by constraining the gap between regions.

RSF. We now formally define RSF (rp, rq) between re-
gion rp and rq at time point t as follows

RSF (rp, rq) = |M[ŷtrp ]−M[ŷtrq ]|, (1)

where ŷtrp represents the predicted region traffic condition
for region rp at time t. And M[ŷtrp ] is the mean absolute
percentage error for region rp at time t. RSF quantifies the
predictive performance disparity between two regions in the
city at each time point. A smaller RSF value indicates higher
fairness.

RSF Loss. We define the RSF loss at time t as follows

LRSF =
2

m(m− 1)

∑
rp,rq∈Re

|M[ŷtrp ]−M[ŷtrq ]|, (2)

where m is the number of regions. The average of the differ-
ence in predictive performance between all regional pairings
is measured by LRSF . It is calculated at each time point. To
maximize shortdated static fairness in predictions, we aim to
minimize LRSF during training.

Sensor-based Dynamic Fairness
RSF measures immediate prediction errors across regions at
individual time points but cannot make the prediction model
preserve fair traffic prediction for a prolonged time. In addi-
tion, directly optimizing RSF may reduce accuracy in priv-
ileged regions with dense sensors, forcing them to compro-
mise for underprivileged regions with fewer sensors. How-
ever, this does not necessarily improve the performance of
underprivileged regions. As a result, while the RSF value
may decrease, the performance decline in privileged regions
remains unfair.

To this end, we propose SDF, a novel sensor-based met-
ric for dynamic traffic scenarios. SDF ensures prolonged
fairness by evaluating the overall state discrepancy between
sensor pairs over a duration Td. Different from existing in-
dividual equity methods (Dong et al. 2023), SDF has dy-
namic characteristics, requires no domain knowledge. We
argue that fairness in traffic scenarios evolves over time. To
achieve fairness, the state of each traffic sensor should al-
ternately “sacrifice” or “benefit” based on its prediction ac-
curacy. And these states are identified by a dedicated state
identification module. The prolonged fairness is achieved
when the overall states of road sensors are similar within
a defined period Td.

SDF. For road sensors vi and vj , the SDF (vi, vj) be-
tween them is defined as follows

SDF (vi, vj) = |DTd
[vi]−DTd

[vj ]|, (3)

where dtkvi is the state of the road sensor vi at time point
tk. Its value is given by the state identification module. And
DTd

[vi] = dt1vi +dt2vi + ...+dTd
vi

represents the overall state of
road vi over a period of time Td. SDF calculates the sum of
state differences between all pairs of road sensors over a pe-
riod. A smaller SDF value indicates higher fairness, meaning
sensors are treated more consistently in Td.

SDF Loss. We define the SDF loss during a period Td as
follows

LSDF =
2

n(n− 1)

∑
vi,vj∈V

|DTd
[vi]−DTd

[vj ]|, (4)

where n is the number of sensors used in Td. V is the set
of road sensors that have been sampled in Td. The average
of the overall state difference between all sensor pairings
in the training data is measured by LSDF . It is calculated
every Td batches. To maximize prolonged dynamic fairness
in predictions, we aim to minimize LSDF during training.



Figure 2: The framework of the proposed FairTP.

Prolonged Fairness Traffic Prediction Framework
In this section, we introduce FairTP, a framework for achiev-
ing prolonged fair traffic prediction as shown in Figure 2.
FairTP consists of three parts: (a) a state-guided balanced
sampling module for sensor selection, (b) a ST dependen-
cies learning module for learning spatio-temporal correla-
tions, and (c) a state identification module for sensor status
assessment.

State-guided balanced sampling module. Spatial imbal-
ances in traffic data often lead to unfair predictions and bi-
ased decisions by transportation authorities. Effective sam-
pling of real-world traffic data is essential for building fair
machine learning models. It helps counteract biases from
uneven sensor deployment and reduces spatio-temporal re-
dundancies. Moreover, it can improve models’ generaliza-
tion, enhance training efficiency, and balance performance
between well-instrumented and under-instrumented areas.
Therefore, we propose a state-guided sampling strategy to
provide balanced training data and reduce performance dis-
parities caused by uneven sensor distribution. The strategy
enhances predictions in underprivileged areas by sampling
Nsam sensors from the road network. The sampling scheme
is periodically adjusted based on sensor states, giving more
training opportunities to those sensors identified as “sac-
rifice” (elaborated in the state identification module). This
helps to improve prediction performance in these underpriv-
ileged areas.

Specifically, based on the sampled number Nsam, we start
with stratified sampling to initialize the sampling. Then, af-
ter each time interval Td, we calculate the sampling prob-
abilities for all the sensors according to the results of the
training feedback, and perform the next round of sampling.
A greedy algorithm is employed to adjust the sampled data
every Td batches, prioritizing sensors with lower sampling
probabilities until Nsam is reached. Notably, each sampling
round is influenced by the results of the previous round.
Next, we describe this process in detail.

To begin the sample data collection, we use stratified sam-
pling. This method calculates the number of road sensors in
different city regions and selects a proportionate number of
sensors from each region based on Nsam. It effectively re-
duces sampling errors and improves the representativeness

and reliability of the sample. The initial sampled sensors are
denoted as Sam0(v).

Second, we train the model using Sam0(v) to determine
the states d of the sampled sensors via the state identification
module. Over a period Td, these states are aggregated into
an overall state D. And the unsampled sensors are assigned
D=0. Then, new sampling probabilities for all sensors in
V are calculated based on D. It guides the next sampling
round. The process for sensor vi ∈ V is shown as follows

dtkvi =

{
dtkvi − 0.5, vi ∈ Saml(v),

0, vi ∈ V and vi ̸∈ Saml(v),

DTd
[vi] = dt1vi + ...+ dtkvi

+ ...+ dTd
vi ,

P l
vi

= sigmoid(DTd
[vi]), vi ∈ V,

(5)

where dtkvi is the state of sensor vi at time tk, determined by
the state identification module. Saml(v) represents the sen-
sors sampled in the l-th round, and DTd

[vi] accumulates the
overall state of sensor vi over the period Td. The sampling
probability Pvi for sensor vi is calculated using a sigmoid
function and is used to guide the sampling strategy for the
(l+1)-th round.

Third, to ensure balanced sampling among different re-
gions in the (l+1)-th round, we calculate the sampling prob-
abilities for each region. This encourages an equal number
of sensors to be selected from each region during the pro-
cess. The formula is shown as follows

(P l
r1 , P

l
r2 , ..., P

l
rm)

= softmax(Cr1 − Ca, Cr2 − Ca, ..., Crm − Ca),
(6)

where {Crp |p = 1, 2, ...,m} denotes the number of sensors
sampled in region rp. Ca = Nsam/m is the target number
of sensors to be sampled in each region under balanced sam-
pling. Prp represents the sampling probability for region rp.
A smaller Prp indicates that the number of sampling nodes
in rp is farther away from the balance.

Fourth, we combine the region sampling probabilities and
the sensor sampling probabilities to update the sampling
probabilities for all sensors in the road network. The process
is shown as follows

P l
rp ∗ P l

vi

Partition−−−−→ P l+1
vi , rp ∈ Re, vi ∈ V, (7)

where Partition refers to the zoning of the city, and P l+1
vi ,

vi ∈ V represents the updated sampling probability for sen-
sor vi in the (l + 1)-th round.

Finally, based on P l+1
vi , vi ∈ V , we use a greedy algo-

rithm to select sensors with the lowest sampling probabili-
ties as training samples. Steps 3 and 4 are repeated, updat-
ing sampling probabilities and selecting sensors iteratively
until the desired number Nsam is reached. The new sample
data Saml+1(v) is then used for the next training period Td.
This approach ensures a representative and balanced sample
across different road network regions.

ST dependencies learning module. After data sampling,
we utilize a ST model to capture spatial relationships and
temporal trends within the sampled data for accurate traffic
forecasting. The process can be represented as follows

Ost, Hst = ST (Sam(v)), (8)



where Sam(v) denotes the sampled data. Ost represents the
predicted traffic results, and Hst is the hidden representation
that contains the spatio-temporal dependencies learned by
the traffic model. In this paper, the ST model is replaceable,
as FairTP can be extended to any traffic prediction model.

State identification module. We design a state identifica-
tion module that consists of a state marker and a discrimina-
tor for real-time sensor state evaluation. The discriminator
is trained to infer sensor states with no ground truth during
testing.

To begin with, we manually assign state labels to the sen-
sors based on their performances. A state label of 1 indi-
cates a “benefit” state, and a label of 0 indicates a “sacrifice”
state. We use the output Ost of the ST model to calculate
the MAPE for each sensor. This MAPE is then compared
to a predefined threshold to determine the state of the sen-
sor. And the threshold is obtained from the previous training
round. Specifically, we argue that each sensor’s prediction
accuracy varies in every training round. If a sensor’s MAPE
is lower than the threshold, we label it as 1 (state “benefit”)
for that round, indicating an improvement in performance.
If the MAPE exceeds the threshold, we mark it as 0 (state
“sacrifice”), indicating a drop in performance. Notably, the
threshold is determined based on the selected ST model. We
train the original ST model and record the MAPE for each
round. This MAPE value is then used as the threshold when
embedding the ST model into FairTP. A detailed example is
provided in the appendix.

Next, we introduce a discriminator to classify sensor
states at each time point. The discriminator takes the hid-
den representation Hst as input and outputs a state predic-
tion d ∈ (0, 1). We denote the discriminator as Disθdis :
Hst → d, where θdis represents the model parameters. The
discrimination loss is computed as follows

Ldis = −
(
d log(Y ) + (1− d) log(1− Y

)
, (9)

where d represents the sensor states predicted by the dis-
criminator Disθdis . And Y denotes the corresponding state
label. By minimizing the discrimination loss Ldis during
training, the discriminator can accurately identify the sen-
sor states during prediction. This, in turn, guides FairTP to
perform appropriate sampling, leading to fair prediction re-
sults.

Overall Objective Function. FairTP is trained end-to-end
by minimizing a composite loss function that combines ac-
curacy and fairness objectives

L = Lacc + λ1LRSF + λ2LSDF , (10)

where Lacc represents the mean absolute error (MAE).
LRIF and LSDF correspond to formula (2) and (4), respec-
tively. The latter is periodically included every Td batches.
Both L and Ldis are co-train to ensure that sampling is con-
tinuously adjusted in a fair direction, ultimately yielding fair
traffic predictions.

Experiments
Experiment Setup
Dataset. We use two real-world datasets for regional traf-
fic prediction: the HK and the SD datasets. The HK dataset
contains six months of taxi trajectory data with 938 road
sensors. The SD dataset includes data from 716 road sen-
sors, sourced from the PeMS platform in 2019. Details are
provided in the appendix.

Baseline. We select several types of representative traf-
fic prediction models as underlying ST models, includ-
ing DCRNN(Li et al. 2018), AGCRN(Bai et al. 2020),
GWNET(Wu et al. 2019), ASTGCN(Guo et al. 2019),
DSTAGNN(Lan et al. 2022), DGCRN(Li et al. 2023) and
D2STGNN(Shao et al. 2022). These models help demon-
strate the effectiveness and scalability of the proposed
FairTP. Additionally, we compare with fairness mitigation
baselines FairST(Yan and Howe 2020) and SA-Net(Zheng
et al. 2023a) are compared as fairness mitigation baselines.
Details of these models are provided in the appendix.

Implementation Details. We set the sampled number
Nsam to 200 for both the SD and HK datasets. The dynamic
time length Td is fixed at 3, representing 3 batches. We set
the hyperparameters λ1 and λ2 to 0.01 and 0.1, respectively.
The proposed FairTP can be extended to various traffic pre-
diction models. All models are implemented on the GeForce
RTX 3090. Full implementation details are provided in the
appendix.

Comparison With Baselines
First, we extend the proposed FairTP framework to multi-
ple baselines, denoted as FairTP -baseline. The results are
shown in Table.1, with the best performance highlighted in
bold. Notably, the calculation of SDF relies on the sensor
state predicted by FairTP’s state identification module. Since
it is absent in the baselines, they cannot produce SDF out-
puts.

The newly proposed FairTP (FairTP -baseline) demon-
strates superior performance in most scenarios. It outper-
forms the corresponding baselines in terms of both fair-
ness and accuracy. On the HK dataset, the baselines show
a reduction in MAE by 0.93% to 13.76%, and an im-
provement in RSF by 20.94% to 128.69%. While the MAE
slightly gains (2.46% to 5.24%) over DGCRN, ASTGCN,
and D2STGNN, the fairness improvements are substan-
tial. On the SD dataset, FairTP -baseline significantly en-
hances the MAE performance of each baseline, with im-
provements ranging from 12.38% to 55.12%. RSF per-
formance is enhanced by 15.89% to 90.58%. Notably, all
FairTP -baseline models incorporate SDF, ensuring pro-
longed fairness. These results demonstrate FairTP’s adapt-
ability to various traffic prediction models, achieving strong
overall performance while significantly improving short-
dated static and prolonged dynamic fairness. This improve-
ment can be attributed to the effectiveness of data sampling,
which boosts the predictive performance of underprivileged
regions without significantly impacting privileged regions.
Further details on the trade-off between accuracy and fair-
ness are provided in the appendix.



HK SD
MAE RMSE MAPE RSF SDF MAE RMSE MAPE RSF SDF

DCRNN 2.353 3.694 0.048 1.779 - 28.437 44.359 0.131 2.427 -
FairTP-DCRNN 2.411 3.734 0.050 1.471 0.085 21.709 32.893 0.113 1.668 1.299

AGCRN 1.957 2.974 0.040 1.613 - 19.215 29.067 0.078 1.337 -
FairTP-AGCRN 1.939 3.243 0.039 0.907 0.057 14.798 20.782 0.082 1.002 1.602

GWNET 2.189 3.323 0.046 1.688 - 21.158 31.117 0.096 1.206 -
FairTP-GWNET 2.132 3.448 0.042 0.835 1.999 18.828 27.836 0.094 0.945 6.533

ASTGCN 2.005 3.065 0.042 1.632 - 23.689 35.812 0.103 1.320 -
FairTP-ASTGCN 2.110 3.264 0.043 0.945 0.067 17.965 25.269 0.103 1.048 0.614

DSTAGNN 2.373 3.662 0.049 1.697 - 22.005 31.298 0.113 1.113 -
FairTP-DSTAGNN 2.086 3.351 0.042 0.973 2.612 18.209 25.708 0.104 0.584 0.907

DGCRN 2.257 3.271 0.047 1.790 - 33.346 49.799 0.150 1.758 -
FairTP-DGCRN 2.399 3.606 0.049 1.241 3.795 21.497 31.182 0.109 1.517 4.944

D2STGNN 1.992 2.895 0.042 1.873 - 18.012 25.941 0.072 1.242 -
FairTP-D2STGNN 1.928 3.086 0.039 0.819 0.739 13.725 19.083 0.071 0.736 2.292

Table 1: Performance comparison of FairTP and traffic prediction model

(a) AGCRN on HK (b) D2STGNN on HK (c) AGCRN on SD (d) D2STGNN on SD

Figure 3: Regional performance on two datasets

Table 2: Performance comparison of FairTP and fairness
mitigation methods.

HK SD
MAE RSF SDF MAE RSF SDF

FairST-AGCRN 1.86 1.87 - 19.33 1.19 -
SA-Net-AGCRN 1.88 1.65 - 18.91 1.21 -
FairTP-AGCRN 1.94 0.91 - 14.80 1.00 -

FairST-D2STGNN 2.06 1.86 - 19.80 1.26 -
SA-Net-D2STGNN 2.02 1.69 - 19.26 1.13 -
FairTP-D2STGNN 1.93 0.82 - 13.72 0.74 -

Next, we compare FairTP with existing fairness mitiga-
tion methods. Due to the strict 7-page limit, we present re-
sults based on two representative baselines, AGCRN and
D2STGNN, both of which perform well.

As shown in Table.2, FairTP consistently achieves the
highest fairness across all cases. On the HK dataset, FairTP
improves RSF by 82.2% to 127.2%, with MAE reductions
ranging from 4.6% to 6.7%. On the SD dataset, FairTP
achieves 19.0% to 71.9% RSF improvements and enhances
MAE performance by 27.8% to 44.3%. FairTP achieves
19.0% to 71.9% RSF improvements and enhances MAE per-
formance by 27.8% to 44.3%. In summary, compared to
FairST, which directly constrains predicted values, and SA-
Net, which constrains MAPE values, our proposed FairTP
focuses on minimizing regional MAPE differences to bal-

ance performance across areas for shortdated static fairness.
Additionally, SDF is introduced to achieve prolonged dy-
namic fairness for road sensors.

Regional Performance Analysis

In this section, we provide the regional visualizations to ver-
ify the specific performance of FairTP -baseline in the dif-
ferent regions.

The regional prediction performance are shown in Fig-
ure. 3. In the HK dataset, FairTP -baseline significantly
improves performance in underprivileged regions such as r8,
r12 and r13, which have fewer road sensors. At the same
time, the performances in the privileged regions, such as r1,
r2 and r10, with more sensors, remains largely unaffected.
Similarly, in the SD dataset, FairTP -baseline shows no-
ticeable improvements in underprivileged regions like r6,
r7, r11, and r12. The performances in privileged regions
like r1 and r2 do not observably deterioration. We also con-
ducted similar experiments with six other baseline models,
and the results are consistent. FairTP -baseline improves
the predicted performance of the underprivileged regions
on both data, while the performance of the privileged re-
gions does not decline significantly. These results demon-
strate that FairTP indeed improves the prediction perfor-
mance of underprivileged regions, leading to the better over-
all city-wide performance and enhancing fairness by reduc-
ing performance disparities.



Table 3: Performance of ablation study

HK SD
MAE RSF SDF MAE RSF SDF

Fa
ir

T
P-

A
G

C
R

N noS 2.02 1.01 0.18 14.81 1.12 2.35
noD 1.99 0.88 188.20 15.50 1.05 344.12

noAS 1.78 1.07 0.65 12.40 1.23 2.18
ALL 1.94 0.91 0.06 14.80 1.00 1.60

Fa
ir

T
P-

G
2S

T
G

N
N noS 1.94 0.95 0.83 13.80 0.80 2.32

noD 2.14 0.83 181.89 14.00 0.74 83.30
noAS 1.73 1.04 1.38 11.42 0.98 2.47
ALL 1.93 0.82 0.74 13.72 0.74 2.29

(a) FairTP-AGCRN on HK (b) FairTP-AGCRN on SD

Figure 4: Effect of dynamic time length Td.

(a) FairTP-AGCRN on HK (b) FairTP-AGCRN on SD

Figure 5: Effect of sampled number Nsam.

Ablation Study
We further conduct an ablation study to evaluate the contri-
bution of each component in FairTP to the performance gain.
We deactivate different components and form the following
variants. noS removes the LRSF which does not consider
static fairness constraints, noD removes the LSDF which
does not consider constraints on fairness at the prolonged
dynamic level, and noSA removes the state-guided sampling
module but uses the fixed stratified sampling.

The results of the ablation study are shown in Table.3.
One can see that the LRSF , LSDF and the sampling mod-
ule are all useful for FairTP as removing any one of them
increases the prediction error or decreases the RSF or DSF.
Among these, the LSDF appears to have the most signif-
icant impact. When it is removed, the SDF decreases re-
markably, demonstrating the importance of the prolonged
fairness. Removing the LRSF results in a decline in both
RSF and SDF, highlighting the importance of static fairness
constraints. When using fixed stratified sampling, the per-
formance of the model improves. It may contribute to the

Figure 6: Case study.

adaptive matrix in the baseline that is able to learn more ST
information based on the fixed road sensors. The improve-
ment in RSF is slightly noticeable, likely because the predic-
tive performance of most privileged regions is already quite
close, but the SDF performance significantly decreases.

Parameter Analysis
We investigate the effects of dynamic time length Td and
sample size Nsam on the performance of FairTP-AGCRN.
The results are shown in Figure.4 and Figure.5. For Td, we
vary it from 2 to 5 and find that the best performance, in
terms of RSF and SDF, occurred at Td = 3. Performance de-
clined when Td increased beyond 3, likely due to the greater
fluctuations in sensor states. Similarly, we tune Nsam from
100 to 300. A small number of sensors result in insufficient
data representation, while excessive sensors introduce noise.
The optimal number of sensors for balanced performance is
Nsam = 200

Case Study
Comparative visualizations in Figure 6 illustrate the effec-
tiveness of FairTP by comparing its predicted traffic flow to
the ground truth. The case study is conducted on underpriv-
ileged regions (r12) with minimal sensor coverage in both
HK and SD, highlights the ability of FairTP-AGCRN to
accurately capture the real traffic patterns, including sharp
fluctuations. The close alignment between the orange pre-
dicted curves and the blue ground truth curves demonstrates
the model’s high predictive accuracy and its success in im-
proving fairness at both short-term static and long-term dy-
namic levels.

Conclusion
In this paper, we investigate prolonged fair traffic predic-
tion for the first time. Two novel fairness definitions, RSF
and SDF, are proposed for dynamic traffic prediction. More-
over, we innovatively devise FairTP. It is a prolonged fair-
ness traffic prediction framework that can easily integrated
into existing traffic models to enhance their short-term and
prolonged prediction fairness with minimal impact on accu-
racy. Extensive experiments on two real-world datasets ver-
ify that FairTP keeps or even enhances prediction accuracy
while significantly improving predictive fairness.
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A. Terminologies
We define some terminologies to state the studied problem.

Road network is represented as G = {V,E}, which re-
flects the spatial correlation among roads. vi ∈ V represents
the road sensor in the city. eij ∈ E refers to binary-valued
connectivities if vi and vj are connected with each other.

Traffic sequence data We use xt
i represent the traffic

observation of node vi at time t, and the observations in
T time points form a time series (x1

i , ..., x
t
i, ..., x

T
i ). The

traffic observations of all roads in G in T time points
form the traffic sequence data, which can be denoted as
(X1, ..., Xt, ..., XT ).

Region traffic conditions. We divide the whole city into
regions like Re = (r1, r2, ..., rm) according to certain rules,
where m is the number of regions. Different regions have
different numbers of road nodes, we use the mean of traf-
fic observations of all nodes at time t in the p-th region as
the corresponding region traffic conditions xt

rp . And Xt
Re =

(xt
r1 , x

t
r2 , ..., x

t
rm) is the region traffic conditions in city at

time point t.
Sampled number represents as Nsam. It is the total num-

ber of road sensors contained in sampled training data.
Dynamic time length represents as Td, which means the

length of the batch, is used to control the frequency of sam-
pling and calculate the SDF.

B. Stratified Sampling
In this section, we provide a detailed description of the strat-
ified sampling for the data in this paper.

To initiate the sample data collection, we use stratified
sampling. This calculates the number of road sensors in dif-
ferent areas of the city and selects a proportionate number
of sensors from each region as training samples based on
Nsam. It could effectively reduce sampling errors and im-
prove the representativeness and reliability of the sample.
And the initial sampled sensors are represented as Sam0(v).

C. Specific Example of State Identification
Module

In this section, a detailed description of the process in the
state identification module is provided.

We argue that each sensor has different prediction accu-
racy in every round of training. If the prediction accuracy of
a sensor is higher than a preset threshold, its performance
improves in this round of training with the selected samples.
We annotate it as a “beneficial” state in this round of training
and mark it as 1. Otherwise, we mark it as 0, denoting the
state of performance drops.

Taking DCRNN as an example, by running DCRNN, the
MAPE of each round of training is recorded as the thresh-
old value, and then we apply FairTP to DCRNN and get
Fair-DCRNN. In each round of training of Fair-DCRNN,
the states of sensors are obtained by comparing MAPE of
FairTP-DCRNN to the threshold values.

D. Experiment Setup Detail
D.1 Dataset
We provide detailed descriptions of the datasets adopted in
experiments.

HK Didi dataset spans from October 1, 2020 to March
31, 2021, contains trajectory data of Didi taxis over 6
months, covering 938 road sensors in HK, and traffic speed
data are served as a feature. SD dataset is collected from the



(a) Partition in HK (b) Partition in SD

Figure 7: Illustration of datasets partition

PeMS platform, comprises 716 road sensors for San Diego
County in 2019, and we use sensor readings as traffic fea-
tures. The partitions are shown in Fig. 7, with different col-
ored dots representing road sensors in different areas. HK is
divided into 13 regions and SD is divided into 12 regions.
We chronologically split the data into train, validation, and
test sets, with a ratio of 6:2:2 for all datasets.

D.2 Baseline
We elaborate baselines utilized in experiments, which con-
tain general traffic prediction models and fairness enhanced
models.

• DCRNN (Li et al. 2018) used a novel diffusion convolu-
tion that works alongside GRU.

• AGCRN (Bai et al. 2020) used adaptive adjacency ma-
trix and RNN to predict traffic flow.

• GWNET (Wu et al. 2019) developed a novel adaptive
dependency matrix and a stacked dilated 1D convolution
component to capture ST correlations.

• ASTGCN (Guo et al. 2019) utilized ST attention mech-
anism to capture the dynamic ST correlations in traffic
data.

• STGODE (Fang et al. 2021) leveraged neural ordinary
differential equations to effectively model the continuous
changes of traffic signals.

• DSTAGNN (Lan et al. 2022) proposed a dynamic ST
aware graph to learn dynamic spatial relevance among
nodes.

• DGCRN (Li et al. 2023) generated a dynamic matrix that
combines with the original road network matrix to cap-
ture more spatial information.

• D2STGNN (Shao et al. 2022) utilized a Decoupled
Spatial-Temporal Framework (DSTF) that separates the
diffusion and inherent traffic information and learned dy-
namic characteristics of traffic networks.

• FairST (Yan and Howe 2020) is a fairness-aware model
designed for mobility prediction. It fused several con-
volutional branches and incorporated fairness metrics
as regularization to enhance equity across demographic
groups.

• SA-Net (Zheng et al. 2023a) integrated social demo-
graphics and ridership information, and introduced a

Table 4: Trade-off between predictive performance and
fairness

HK SD
MAE RMSE RSF MAE RMSE RSF

FairTP-DCRNN −1.20% −1.95% +70.77% +25.65% +27.80% +42.16%
FairTP-AGCRN +4.91% −3.46% +64.98% +31.21% +40.81% +89.01%
FairTP-GWNET +3.78% −3.26% +58.77% +14.24% +13.05% +49.30%
FairTP-ASTGCN −0.28% +0.27% +89.97% +42.30% +53.68% +88.96%

FairTP-DSTAGNN +13.03% +7.86% +65.00% +12.29% +19.04% +70.17%
FairTP-DGCRN +8.89% +3.15% +30.06% +50.28% +54.49% +61.80%

FairTP-D2STGNN −1.14% −1.98% +27.84% +32.48% +37.83% +73.70%

bias-mitigation regularization for fair ride-hailing de-
mand forecasting.

D.3 Implementation Details
We obtained baseline codes from their GitHub repositories,
ensuring thorough cleanup and integration for ease of com-
parison and reproducibility. For baselines lacking code, cor-
responding models were developed according to their pa-
per specifications. Since FairST and SA-Net target image
data, we only utilize their fairness regularization, integrat-
ing it with existing graph models for forecasting to match
our graph data. Experiments adhered to the training con-
figurations recommended in their original sources, which
were conducted on an Nvidia GeForce RTX 3090 GPU with
Python 3.8, CUDA 11.1, and PyTorch 1.8.2. For all base-
lines without FairTP, we use all sensors for training.

E. Trade-off between accuracy and fairness
We evaluate all methods and compare the trade-off between
predictive performance and fairness on two datasets. The re-
sults are shown in Table.5.

One can see that the proposed FairTP -baseline can im-
prove the fairness in prediction while ensuring or even im-
proving the prediction performance. In HK dataset, the im-
provement of MAE fluctuates from -1.14%-13.03%, while
the improvement of the fairness metric RSF can reach
27.84% to 94.00%. For SD dataset, MAE performance on
all methods improved by 4.86% to 50.28%, while RSF
improved by 42.16% to 89.01%. This validates that our
methods can improve fairness while minimizing the perfor-
mance drops. In addition, by introducing SDF, we can fur-
ther achieve fairness at prolonged dynamic level.


