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A B S T R A C T

Nowadays, publishers like Elsevier increasingly use graphical abstracts (i.e., a pictorial paper summary)
along with textual abstracts to facilitate scientific paper readings. In such a case, automatically identifying
a representative image and generating a suitable textual summary for individual papers can help editors
and readers save time, facilitating them in reading and understanding papers. To tackle the case, we
introduce the dataset for Scientific Multimodal Summarization with Multimodal Output (SMSMO). Unlike other
multimodal tasks which performed on generic, medium-size contents (e.g., news), SMSMO needs to tackle
longer multimodal contents in papers, with finer-grained multimodality interactions and semantic alignments
between images and text. For this, we propose a cross-modality, multi-task learning summarizer (CMT-Sum).
It captures the intra- and inter-modality interactions between images and text through a cross-fusion module;
and models the finer-grained image–text semantic alignment by jointly generating the text summary, selecting
the key image and matching the text and image. Extensive experiments conducted on two newly introduced
datasets on the SMSMO task showcase our model’s effectiveness.
1. Introduction

As scientific publications continue to increase (especially fuelled
after global challenges like COVID-19 and breakthrough technologies
like ChatGPT), they have become an important knowledge source for
data science and artificial intelligence (AI) research.2 To help scien-
tists/scholars to stay well-versed in the deluge of information, it is
essential to advance natural language processing (NLP) technologies for
scientific document summarization.

Scientific literature is deemed to be visually-rich documents, con-
veying not only text, but also images (e.g., charts, tables and figures).
Images help readers to gain a visualized understanding of the paper
while the text provides more details related to it. As illustrated in
Fig. 1, the theme of the paper is a model which can jointly perform
‘‘Chinese named entity recognition’’ (NER) and ‘‘Chinese word segmen-
tation’’ (CWS), with ‘‘shared information’’ and ‘‘self-attention’’ (see Text
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topics like multimodal language models, generative AI and healthcare AI.
3 From the survey work conducted by Yoon et al. (2017) [2] and Yang et al. (2019) [3], paper authors commonly used schematic diagrams and photos as

graphical abstract to enhance the illustration of their models and backgrounds in the paper, equally popular are charts and table for better-presenting result. We
describe more details in Section 2.2.

Abstract A1 to A3). Here, the Graphical Abstract (a schematic dia-
gram3) represent the relationships between different model elements
(e.g., self-attention, NER, CWS) and features (e.g., shared information)
through visual components such as colour and lines. However, the
diagram alone may not be sufficient in clearly expressing specific
content. Conversely, the text modality contains detailed descriptions of
individual model objects but has limitations in revealing their intrinsic
connections. In such a case, it is essential to have a multimodal summary,
which contains both a textual paper summary (a.k.a., text abstract) and
a representative image (a.k.a., graphical abstract) of the given papers.
The two sets of information can complement each other and enrich
summarization, thereby helping readers save time and read the papers
more effectively.

Scientific document summarization has been a long-standing re-
search topic in NLP [4–6]. The output of existing scientific summa-
rization systems are usually text-only [7–14]. Recently, Multimodal
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Fig. 1. A paper-summary example taken from our AVIATESMSMO dataset. To facilitate understanding, we manually segmented the text abstract into several parts, each corresponding
to specific themes or sections within the original paper. The blue words in the text summary represent keywords that exist in the source text, whereas the green words represent
concepts presented in the images. Underlined words represent items that presented in both the source text and images.
Summarization with Multimodal Output (MSMO) has been explored in
several areas, including news headline generation, legal fact-checking
and social media post summarization [15–17]. MSMO models aim
at generating both image and text summaries using a joint model.
Compared to the text-only methods, which only produce an unimodal
summary, MSMO provides a better user experience with an easier and
faster way to get useful information [18]. In this paper, we introduce a
novel dataset for Scientific Multimodal Summarization with Multimodal
Output (SMSMO). The objective of SMSMO is to train models that
can generate text summaries while also identifying the key image
associated with each individual paper. Its significance lies in the po-
tential to enhance the clarity and accessibility of research findings.
Accurate and comprehensive summaries enable better comprehension
and quicker assimilation of paper contents, which is critical in the
fast-paced research environment. Furthermore, multimodal summaries
can facilitate the development of (multimodal) paper retrieval systems,
with both text and visual abstracts captured by the search engines. This
helps increase the reach of the research as it is no longer restricted to
searchability by textual content [19].

In SMSMO, the multimodal information, be it image or text, de-
scribes the same paper. These two sets of information complement
each other during the summarization process. A direct way to encode
the two information sources is to combine them as a global feature
vector, using it to generate multimodal summarization [20]. However,
images and text generally have distinct feature spaces. Hence, directly
combining the two is not an effective approach for capturing the
essential information from both modalities. Indeed, this method may
introduce noise and hinder the performance of summarization [21].
Different methods have been proposed to fuse the image and text
features, ranging from specific task designs to different optimization
2 
strategies. For example, Xiao et al. (2024) [22] proposed a multi-stage
approach in which they first optimize the text summarizer, then the
image selector via self-labelling to preserve the images that are relevant
to the generated summary. Moreover, Zhu et al. (2020) [23] included
an image selection task into text summarization, selecting the pseudo
key image based on the full source text and the summary generated.
Furthermore, Phani et al. (2024) [24] incorporated a selective-gate
mechanism for multilingual MSMO tasks, aiming to fuse the text–
image features across multilingual news. Typically, these approaches
focus on either global or local image–text correspondences, with few
effectively addressing both simultaneously. Global-level approaches
focus on mapping all images and the entire document into a shared
space. For example, Krubinski et al. (2024) [25] used a large language
model to unify summary generation and image selection. It can fully
extract global-level features across image and text, but there is a large
gap between finer-grained feature spaces. While powerful in capturing
the high-level theme, they often overlook intricate details, neglecting
the fine-grained correspondences across modalities. Conversely, local-
level approaches focus on aligning images and text by accumulating
similarities of individual patch-phrase pairs [26,27]. For example, Jin
et al. (2024) [28] build a word graph from review text and enrich
it by linking detected image objects to their corresponding entities.
This approach results in summaries that are rich in specific, detailed
information but may lack cohesive structure or fail to convey the
document’s overarching message. It is important to consider how to
effectively learn features from multimodal modalities at different levels
to obtain high-quality summaries in SMSMO.

In scientific papers, text and images can convey information at
different levels of granularity or with varying degrees of semantic
similarity. Particularly, scientific papers are often organized by sections
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Knowledge-Based Systems 310 (2025) 112908 
(e.g., IMRaD4), in which text and images within the same section
exhibit high intra- and inter-modal correlation. On one hand, there exists
a hierarchical semantic relationship within the same modality between
isual and textual elements. As showcased in Fig. 1 (refer to S1 to
3), textual content at the word level (e.g., ‘‘The task of named entity

recognition (NER) is to..’’.) contributes to the broader section-level
ontext (i.e., Introduction) within individual papers. On the other hand,
ndividual image semantics typically align with the section’s textual
ontent referencing them (e.g., F1 visually illustrates the concept of
 NER task), displaying an inter-modal correlation. Furthermore, the
heme of Abstract A1 to A3 also aligns with the sectional content of
1 to S3 and F1 to F5. Understanding these correlations enables one
odality to compensate for missing information in the other (see the
nderlined words in A1 to A3). Additionally, by integrating multimodal
lements at various levels, the resulting summary can contain a fine-
rained description of the textual content as well as the most relevant
mage, offering a more informative, intuitive, and accessible narrative
ompared to conventional text-only summaries.

This paper presents CMT-Sum, a cross-modality multi-task learning
odel for SMSMO. CMT-Sum aims to learn both intra- and inter-
odal correlations in paper text and images. Initially, two unimodality

ncoders are utilized to learn individual image and text features at
n intra-modal level. Next, a cross-modality fusion (CFM) module is
ntroduced to capture the inter-modal correlation between the image
nd text. It includes two sub-modules, image–text (section) fusion,
nd section-word fusion. Therefore, the learned representation compre-
ensively captures information ranging from global-level semantics to
ocal-level correlations between text and images. The hierarchical and
rogressive design allows the model to generate sharper intra-modality
nd inter-modality fusion features effectively. To improve the quality of
ultimodal output (with consideration of the fine-grained interaction

etween text and images), we propose a multimodal objective function,
n which text summary generation, image selection and image–text
elevance matching are jointly optimized. The tasks aim to coalesce
arious levels of fused semantic features, encompassing word, section
nd image semantic features, along with their interaction. To evaluate
ur CMT-Sum, we construct the first dataset for SMSMO in scientific
LP. The experiment conducted on our datasets reveals that CMT-Sum
chieves better performance compared to other baseline methods in
oth automatic evaluations and human assessments.

2. Related work

2.1. Scientific document summarization

Automated summarization of scientific documents is a long-standing
esearch area in NLP [4–6]. Significant progress has been made with
he development of practical datasets and evaluation tasks. Exam-

ples include: abstract generation [29], citation sentence generation [12],
Related Work section generation [9] extreme summarization (i.e., one-
line summary of the entire paper) [11] and layman text generation
(i.e., generating a simple text from the source paper that non-experts
can understand) [30]. With the advancement in data, different summa-
rization models have also been developed. These include models that
exploit citation contexts [31]; and other techniques that exploit the
distinctive characteristics in scientific documents such as long length
nd structure [10,32,33]. The datasets and models denote valuable

resources in scientific NLP. They are intriguing (they help researchers
more quickly understand the basic ideas in a piece of research), but
inadequate for scientific summarization. Particularly, the output of
these models is usually in a single modality, notably text.

4 IMRaD (Introduction, Methods, Results, and Discussion) refers to a
common organizational structure in scientific writing.
3 
2.2. Graphical abstract

The long and complex structure of scientific text poses a challenge
n identifying the key semantic components and converting them into

a structured format. Hence, journal publishers have been exploring
concise summaries in other modalities like images (a.k.a. graphical ab-
stract). A graphical abstract (GA) provides a concise image summary of
a paper’s theme and contribution. Regarding this, Yoon et al. (2017) [2]
reported a 350% increase of GAs used in social science from 2011
to 2015. In computer science, Yang et al. (2019) [3] examined the
apers accepted in top conferences like ICCV (International Conference
n Computer Vision) and CVPR (Conference on Computer Vision and

Pattern Recognition). They observed that more than half of the authors
(68% in ICCV and 65% in CVPR) incorporated the ‘‘teaser figures’’ (a
form of GA) in their paper submissions. Among these figures, almost
alf of them are diagrams and pictures, which are used to provide an
verview of the proposed methods, models and backgrounds. Another
ypical use of GA is for better presenting research findings, using
harts, tables or plots. It is essential to have both text and visual
odalities. Particularly, the image modality (e.g., charts) represents

he relationships between elements/concepts and data features through
isual components such as colour and lines, while the text modality
ontains more detailed descriptions of individual elements and conveys
eep insights [3]. Hence, these two sets of information can complement

each other and enrich summarization. Nowadays, leading publishers of
scientific articles (e.g., Elsevier) also suggest authors provide multimedia
summaries (i.e., a textual abstract supplied with GA) to facilitate the
searching process [34].

2.3. Multimodal summarization

In general NLP, multimodal summarization (MMS) is rapidly ex-
anding, with various applications such as review summarization [35]

and discussion summarization [36]. Different from the traditional
ingle summarization with Single Output (SSO), MMS aims to ex-
ract salient information from various input modalities, including text
nd images, to produce a concise summary encapsulating the core
ulti-modal semantics. MMS methodologies are broadly classified into

wo categories: Multi-modal Summarization with Single-modal Out-
put (MSSO), characterized by a unimodal summary (e.g., text), and
Multi-modal Summarization with Multi-modal Output (MSMO), which
generates both textual and visual summaries for comprehensive repre-
entation.

In MSSO, researchers often concerned about how to improve the
uality of text summarization through multimodal data sources. For ex-
mple, Li et al. (2018) [37] presented an extractive approach aimed at
ummarizing sentences from a collection of articles, audio clips, images,
nd videos. To address the noise present in multimodal sources, Lu
t al. (2024) [38] use cascade gates to balance the contribution of each

modality. Besides, Argadea et al. (2024) [39] introduce a two-level
ttention mechanism, which involves a first-level pairwise computation

of the attention weights between text and other modalities, followed by
a second-level attention that focuses on the pairwise attention feature.
A different approach was taken by Jin et al. (2024) [28], who employed
a bi-hop graph to achieve alignment between different modalities. Their
method first aligns the word with its corresponding sentence in the
ocument and then aligns the sentence with the image caption, thereby
stablishing a connection between the image and the text. Other stud-
es also explored attention activation [40], selective gating [41], and

self-labelling [22] techniques to guide the selection and filtering of mul-
timodal noise, thereby improving summarization performance. Apart
from reducing data noise, some studies explore modality-specific fea-
tures. For example, Zhang et al. (2021) [42] leveraged image location
information via multimodal fusion blocks to capture high-order text–
mage interactions. In the e-commerce domain, Li et al. (2020) [43]

used both product images and textual descriptions of product aspects



X. Zhong et al.

i
r
L

p
r
h
g
(
p
a
S

i
t

e

o
m

f
r
e
c

w
O

m
s
e

a
n

i
c
t

i
Y

o
a
e
o

i
w

r
v
(

s
a
t
H
e
h
t

F

O
t

a

w
f

Knowledge-Based Systems 310 (2025) 112908 
to enhance their multimodal summarization model. Other than that,
some studies explore using pre-training models/strategies. For example,
Jing et al. (2023) [44] used contrastive pre-training to connect text and
mage attributes semantically. They aim to align the text and image
epresentations of images and text by enhancing their similarity. Also,
iu et al. (2023) [45] employed knowledge distillation techniques to

extract relevant information from pre-trained vision–language models,
improving their multimodal headline generation model. Another type
of approach aims to model the intricate relationship between semantic
elements like words/phrases and image segments. For example, Jiang
et al. (2023) [46] and Li et al. (2020) [47] partition the image into
atches and model the similarity between these patches and word
epresentations. Subsequently, they identify the patches that exhibit
igh similarity with the text and utilize them as the image gate to
uide the text encoding procedure. Along similar lines, Xiao et al.
2023) [27] present two visual complement modules at the word and
hrase levels. By leveraging images to enhance semantic understanding
t these levels, they facilitate comprehensive multi-modal alignment.
ome approaches focus on aligning semantic details across modalities

at the attention layer, bridging the semantic divide between text and
mage models. For instance, Yu et al. (2021) [48] enhance pre-trained
ext embeddings (BART) by integrating visual cues through a newly

introduced cross-attention mechanism in each encoder layer. Suman
t al. (2021) [49] and Overbay et al. (2023) [17] embed cross-attention

layers into the Transformer architecture [50], allowing simultaneous
bservation of input texts and images. There are also other align-
ent techniques, depending on optimal transport [51] and video–text

time correspondences [52]. This enables nuanced cross-modal learning,
leading to superior text summarization quality.

Unlike MSSO, MSMO enhances the interaction between multi-modal
eatures by incorporating auxiliary tasks (e.g., key image selection),
esulting in better text summarization performance. For instance, Zhu
t al. (2018) [18] proposed the first MSMO model, where they use a
ross-attention mechanism to fuse the text–image features for better

text generation, and the coverage mechanism is used to help select
representative images. Later on, Zhu et al. (2020) [23] improved the
MSMO model by replacing the coverage mechanism with pseudo image
labels. These labels were obtained by comparing the image caption

ith the target summary and the order in which the images appear.
verbay et al. (2023) [17] and Liu et al. (2024) [53] utilize hierar-

chical attention to merge textual and visual features for generating
a summary, enclosing also a key frame from associated videos to
enrich the summary. Zhang, Meng et al. (2022) [54] introduced a joint

odel, which simultaneously outputs abstractive and extractive text
ummaries and a representative image. Variant MSMO tasks have also
merged recently. For example, Krubiński et al. (2023) [15] proposed

a dataset and explored the use of a hierarchical attention mechanism
for MMSO in Czech news. Subsequently, the authors explored the
pplication of large language models like BART and T5 for generating
ews headlines from images and videos [25]. Additionally, Phani et al.

(2024) [24] propose a selective gate to align the text–image semantics
in multilingual news. In the legal domain, Yao et al. (2023) [16]
ntroduced an MSMO dataset for explanation generation and legal fact-
hecking. They further explore using a shared encoder with multitask
raining to predict the veracity (Supported or Refuted) based on textual

and visual evidence while also generating relevant explanations for the
predictions.

In contrast to the growing work of MMS in different domains, there
s inadequate work in scientific MMS. Some emerging works include
ang et al. (2019) [3] and Atri et al. (2021; 2023) [7,55], who incor-

porated paper images and presentation videos for paper summarization.
But still, their outputs are represented in a single modality, either text
r images (not both). Other than that, most existing studies on text
nd vision alignment concentrate on mapping images with texts at
ither a broad, global level (covering entire documents and all images)

r a more specific, localized correspondence (between image patches

4 
and individual words/phrases). This tends to overlook the intricate
hierarchical semantic relationships within multimodal scientific text,
spanning from words to sections. Furthermore, existing MSMO datasets
n general domains often lack labelled images in the training set,
hich somewhat restricts supervised training for image selection [27].

In contrast to these approaches, our model is designed to grasp the
hierarchical semantic structure from words to sections and the nuanced
correlations between images and text. Moreover, we will develop a
dataset for Scientific Multimodal Summarization with Multimodal Output
(SMSMO). This dataset aims to facilitate multimodal learning with
supervised information in scientific contexts.

3. Problem definition

In SMSMO, a summarizer takes a paper along with its correspond-
ing images as the input, and generates a multimodal summary. This
summary encompasses both textual abstract (i.e., a text summary) and
graphical abstract (i.e., a representative image for the paper). Formally,
each paper input consists of a sequence of word tokens 𝑋𝑡 = 𝑤1,… , 𝑤𝑚,
and a sequence of paper images 𝑋𝑖 = 𝑖𝑚𝑔1,… , 𝑖𝑚𝑔𝑛. The output text
is a word sequence 𝑌𝑡 = 𝑦1, 𝑦2,… , 𝑦𝑡, while the output image is the
epresentative image 𝑌𝑖 = 𝑖𝑚𝑔𝑛. The summarization model can be
iewed as an optimization problem of its set of trainable parameters
𝜃):

arg max
𝜃

𝑀 𝑂 𝐷 𝐸 𝐿(𝑌𝑡, 𝑌𝑖|𝑋𝑡, 𝑋𝑖; 𝜃) (1)

4. Our model

Our SMSMO incorporates multimodal information into scientific
ummarization, aiming to improve the (summarization) performance
nd the diversity of generated summaries. On the one hand, the mul-
imodal information, be it image or text, describes the same paper.
ence, these two sets of information can complement each other and
nrich summarization. On the other hand, a multimodal summary
elps readers save time and read the papers more effectively, with
he graphical abstracts help readers to gain a brief, visualized under-

standing of the paper while the text abstracts provide more details re-
lated to it. Currently, cutting-edge scientific summarizers typically con-
sider summaries of a single modality, either text or images (not both)
(e.g., [3,7,55]). Here, we introduce a cross-modality, multi-task learn-
ing model (CMT-Sum). It captures not only the intra-modal features
within individual paper text and images, but also their inter-modality
correlation.

As shown in Fig. 2 (left), CMT-Sum comprises three modules: the
eature Encoder encodes the intra-modal features of images/text in

individual papers; the Cross Fusion Module (CFM) learns cross-modality
correlation and fuses the intra- and inter-modal features; the Multimodal

bjective Generator (MOG) utilizes the fused features to output the
ext abstract and chooses the key image as the graphical abstract for

individual papers. Additionally, it computes a fine-grained alignment
score (Image-Text Matching loss) between images and text.

4.1. Feature encoder

To encode the intra-modality features in images and text, we deploy
 Feature Encoder which contains an Image Encoder and a Text Encoder.

4.1.1. Image encoder
Given a set of paper images and captions 𝑋𝑖 = {𝑖𝑚𝑔1, 𝑖𝑚𝑔2,… , 𝑖𝑚𝑔𝑛},

e utilize the ResNet-101 model [56] to encode image features. These
eatures are then fed into a Transformer encoder [50] to learn the intra-

modal information among individual images. The visual embeddings of
the 𝑛th image (𝑣𝑛) is learned as follows:

𝑣𝑛 = 𝑅𝑒𝑠𝑁 𝑒𝑡 (𝑖𝑚𝑔𝑛) (2)



X. Zhong et al. Knowledge-Based Systems 310 (2025) 112908 
Fig. 2. The overview of our CMT-Sum.
4.1.2. Text encoder
Paper texts are usually long, consisting e.g., 100–200 sentences.

Generally, a paper is divided into multiple sections, each describing
certain themes. Here, we hierarchically encode paper text. Particularly,
a local word encoder will encode individual word contents, followed
by a global section encoder to obtain a sequentially contextualized
embedding for each paper, using all the surrounding sections as global
context (see Fig. 2 bottom left). Intuitively, our hierarchical encoder
first absorbs the local word context on each section level, which is then
transferred to a global, section-level paper context.

Word Encoder. We utilize the Longformer [57] to encode long
paper text with reduced computational costs. Here, the text input is first
tokenized and padded to form a fixed-length sequence. The Longformer
then captures contextual word features for each text. The computation
of the 𝑚th token embeddings within a paper can be expressed as
follows:

𝑡𝑚 = 𝐿𝑜𝑛𝑔 𝑓 𝑜𝑟𝑚𝑒𝑟(𝑤𝑚) (3)

Section Encoder. We extend the hierarchical encoding scheme in
BERTSUM [58] from sentence level to section one. Academic papers of-
ten follow the typical IMRaD structure with sections like Introduction,
Method, Result, and Discussion. This inherent structure can be ex-
tracted with off-the-shelf paper parsers like Grobid [59]. Then, a [CLS]
token is added at the start of each section. It collects features for the
tokens preceding it. Formally, the token embeddings are mapped into
section embeddings as:

𝑠𝑗 =
{

𝑡𝐶 𝐿𝑆 , 𝑡1,… , 𝑡𝑇
}

. (4)

4.2. Cross Fusion Module (CFM)

A graphical abstract (i.e., visual summary) should cover the main
theme of a paper, while the text abstract will also contain the essential
information from source articles. Hence, the two sets of information
complement each other in the summarization process. Here, we in-
corporate a cross-fusion module (CFM) to jointly model the visual–
textual dependency of the image and text. CFM contains 3 parts:
5 
cross-attention, self-attention and feed-forward layers (see Fig. 2 bot-
tom right). To fuse the section embeddings {𝑠1, 𝑠2,… , 𝑠𝑗} and visual
embeddings {𝑣1, 𝑣2,… , 𝑣𝑘}, a cross-attention layer is deployed as:

𝛼 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 (

𝑠𝑐 𝑜𝑟𝑒(𝑠𝑗 , 𝑣𝑘)
)

(5)

𝐶 𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑠→𝑣 = 𝛼 𝑣𝑘 (6)

where 𝑠𝑗 is a query section embeddings, 𝑣𝑘 is visual image embeddings,
and 𝑠𝑐 𝑜𝑟𝑒 denotes a product function that computes the similarity
between individual section and image embeddings. The three layers in
CFM are defined as follows:
𝑠𝑐 𝑟𝑜𝑠𝑠𝑗 = 𝐶 𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑠→𝑣

(

𝑠𝑗 , {𝑣1, 𝑣2,… , 𝑣𝑘}
)

,

𝑠𝑠𝑒𝑙 𝑓𝑗 = 𝑆 𝑒𝑙 𝑓 𝐴𝑡𝑡𝑠→𝑣

(

𝑠𝑐 𝑟𝑜𝑠𝑠𝑗 , {𝑠𝑐 𝑟𝑜𝑠𝑠𝑗 }
)

,

𝑠𝑜𝑢𝑡𝑗 = 𝐹 𝐹
(

𝑠𝑠𝑒𝑙 𝑓𝑗

)

(7)

where 𝑠𝑐 𝑟𝑜𝑠𝑠𝑗 and 𝑠𝑠𝑒𝑙 𝑓𝑗 are the results after the cross-attention layer and
the self-attention layers (resp.), followed by the feed-forward layers
denoted as 𝐹 𝐹 (⋅).

We learn the inter-modal correlation between text and image using
cross-modality attention. The fused representations are denoted as:

𝑠1𝑗 = 𝐶 𝐹 𝑀 (

𝑠𝑗 , {𝑣1, 𝑣2,… , 𝑣𝑘}
)

(8)

𝑣1𝑘 = 𝐶 𝐹 𝑀 (

𝑣𝑘, {𝑠1, 𝑠2,… , 𝑠𝑗}
)

(9)

where 𝑠1𝑗 is the image-aware embeddings of the 𝑗th section text after the
fusing in CFM, and 𝑣1𝑘 is the text-aware embeddings of the 𝑘th images
after fusing with text.

4.3. Multimodal Objective Generator (MOG)

Suppose we have the image reference besides the text reference
during model training. To utilize the multimodal reference in training,
we propose a generator with a multimodal objective function, which
considers not only the negative log-likelihood loss of text summary
but also a cross-entropy loss for selecting GA and a binary cross-
entropy loss on image–text matching. Concretely, we decompose the



X. Zhong et al.

i
g

t
P

s

i
a
e

𝑑

t

a
h
p
c
d

𝑦
𝑠
T
o
d
w
s
c

t
d
t
e

t
𝑠

a
r
t
e
r

t
a
i

𝑝

𝑦

F

b
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multimodal summarization into three subtasks: text summary generation,
mage selection and image–text matching (see Fig. 2 top right). The text
enerator creates the (text) summary; the image selector picks the most

relevant figures in the paper as its graphical abstract; and the image–
ext matcher determines whether an image is related to the text content.
articularly, the text generator employed a hierarchical attention mech-

anism to enhance its learning of the text features, which combines
the local word and the global image-aware section representation (as
obtained from the CFM) for decoding the output word at the current
state. Concurrently, the key image will be chosen, ensuring that it
aligns closely with the semantics of the generated text summary at
each stage of the decoding process. Consequently, the target image
chosen at the final step aligns closely with the complete semantics of
the generated text summary. The matching task captures nuanced text–
image expressions within sections, balancing global and local alignment
strategies. We apply multi-task learning [60,61] to train the three
ubtasks simultaneously. We now describe the task details.

4.3.1. Visual-aware summary generation
For summary generation, it needs to incorporate multimodal infor-

mation. To accomplish this, we designed a hierarchical decoder that
nitially focuses on the multimodal semantic alignment representation
nd subsequently directs attention to the existing text summary to
xtract the relevant context vector for summary generation. Our hier-

archical decoder follows the transformer architecture. Specifically, we
use the last hidden state of the text representation 𝑡𝑚 as the initial state
0 of the transformer decoder, and the 𝓁𝑡ℎ generation procedure is:

𝑑𝓁 = 𝑇 𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟𝑑 𝑒𝑐 (𝑑𝓁−1, 𝑦𝓁−1, 𝐶𝓁−1), (10)

where 𝑑𝓁 denotes the hidden state at 𝓁𝑡ℎ decoding step, 𝑦𝓁−1 denotes
he previous output and 𝐶𝓁−1 is the context vector. Here, we want

our context vector to benefit from both the word representation (𝑡)
nd the image-aware section representation (𝑠1). Hence, we deploy a
ierarchical attention mechanism over the two representations, com-
uting a higher-level context vector. Particularly, we first compute the
ross-attention weight 𝛽𝑠𝑒𝑐 between the section content 𝑠1 and the last
ecoding state 𝑑𝓁−1:

𝛽𝑠𝑒𝑐 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑐 𝑜𝑟𝑒(𝑠1, 𝑑𝓁−1)
)

. (11)

where the last decoding state 𝑑𝓁−1 is derived from the decoder input
𝓁−1, and is combined with the image-aware section representation
1 to compute the section-relevant score for the input source text.
he scores are constrained to a range of 0 to 1 using the softmax to
btain section-relevant attention weights 𝛽𝑠𝑒𝑐 . The weight captures the
ependency between the decoding state and individual source sections,
hich can be an indicator of section relevancy. For example, when

ummarizing research findings, the chart and text in the Result section
an be more relevant (see the connection between F3, F4, S3 and A3 in

Fig. 1). The section-guided attention indicates which section content is
relevant when decoding each word. Consequently, we use the section
attention to guide the word attention. Formally, the word attention is
denoted as:

𝛽𝑤𝑜𝑟𝑑 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 (𝛽𝑠𝑒𝑐 ⋅ 𝑠𝑐 𝑜𝑟𝑒(𝑡, 𝑑𝓁−1)
)

(12)

where the last decoding state 𝑑𝓁−1 is combined with the word represen-
ation 𝑡 to compute the word-relevant score, which captures the depen-
ency between the decoding state and individual words. Then, taking
he section attention 𝛽𝑠𝑒𝑐 as guide/condition, the attention weight on
ach word 𝛽𝑤𝑜𝑟𝑑 can be computed. After that, 𝛽𝑤𝑜𝑟𝑑 is used to weigh

the source word representation 𝑡𝑚 to obtain the context vectors:

𝐶𝓁 =
∑

𝑖
𝛽𝑤𝑜𝑟𝑑 𝑡. (13)

The context vector (𝐶𝓁), which contains relevant contents from both
he word representation 𝑡 and the image-aware section representation
1, are concatenated with the decoder state 𝑑 . A linear layer then uses
𝓁

6 
the concatenated vector to create the probabilities for each word (𝑃𝑤):

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝓁 = 𝜎
(

𝐹 𝐹 ([𝑑𝓁 ;𝐶𝓁])
)

, (14)

𝑃𝑤 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝐹 𝐹 (𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝓁 )
)

. (15)

For the text summary generation task, its loss is computed using
negative log-likelihood against the target word 𝑦𝓁 :

𝐺 𝐸 𝑁
𝜃 =

∑

𝓁

𝑙 𝑜𝑔 𝑃𝑤(𝑦𝓁). (16)

4.3.2. Image selection
We assume that the importance of an image is related to two

spects: the information conveyed solely in the raw images and the
elevancy of the image information that complements/aligns with the
ext. Hence, the graphical abstract (i.e., the representative image of
ach paper) is chosen based on two representations, the original image
epresentation (𝑣) and the text-aware image representation 𝑣1. Here,

we incorporate a fusion gate to weight the two sets of representations.
The fusion gate’s weight is determined by the last hidden state of the
ext decoder (𝑑𝓁−1). That way, the gate uses images as the main guide
nd text as support to find the salient information. Consequently, the
mage score is computed as:

𝛾 = 𝜎
(

𝐹 𝐹 (𝑑𝓁−1)
)

, (17)
𝑖𝑚𝑎𝑔 𝑒 = 𝛾 𝑣 + (1 − 𝛾) 𝑣1, (18)

𝑖 = 𝜎
(

𝐹 𝐹 (𝑝𝑖𝑚𝑎𝑔 𝑒)) . (19)

When generating text summary in Eq. (15), the fusion gate is
activated to balance the source image representation 𝑣 and the text-
aware image representation 𝑣1. The gate observes the last decoding
state 𝑑𝓁−1 during text summary generation to obtain the gating score
𝛾. The score controls whether the image selector focuses more on the
original image representation (larger 𝛾) or the text-aware one (smaller
𝛾). Subsequently, each image’s probability 𝑝𝑖𝑚𝑎𝑔 𝑒 is calculated, and the
highest probable image (𝑦𝑖) is picked as the graphical abstract. We
calculate the loss function for the image selection task as:

𝐼 𝑆
𝜃 = 1

𝑁

𝑁
∑

𝑖=1
−
[

�̂�𝑖 𝑙 𝑜𝑔 𝑦𝑖 + (1 − �̂�𝑖) 𝑙 𝑜𝑔(1 − 𝑦𝑖)
]

. (20)

The loss function for image selection measures the difference between
the predicted image and the ground truth image (�̂�𝑖) using cross-
entropy. Including image selection with text summary generation seeks
to improve the coherence between the text summary and the visual
summary, thereby enhancing the accuracy of the ultimate image sum-
mary. Consequently, the image selected at the final step of the text
summary generation is regarded as the definitive image summary.

4.3.3. Image-Text Matching (ITM)
Unlike generic text (e.g., news), scientific papers are longer and

more structured, containing multiple sections in which images and text
within the same section often share similar semantic. To capture the
section-level semantic alignment between image and text, we proposed
the image–text matching (ITM) task to jointly train in our model.
ITM helps our model to also consider the sectional image–text align-
ment information while calculating attention for both image and text.
ormally, ITM is defined as follows:

𝑦𝑖𝑐 = 𝜎
(

𝑊𝑡𝑥𝑡 𝑠
1 +𝑊𝑠 ℎ

𝑠𝑖𝑚
𝑖𝑐 +𝑊𝑖𝑚𝑔 𝑣

1) (21)

where ℎ𝑠𝑖𝑚𝑖𝑐 is a similarity matrix whose element denotes the similarity
etween individual section text and image representation, 𝑊𝑡𝑥𝑡, 𝑊𝑠

and 𝑊𝑖𝑚𝑔 are trainable parameters on the section representation (𝑠1),
similarity matrix (ℎ𝑠𝑖𝑚𝑖𝑐 ) and image representation (𝑣1) respectively.
Intuitively, at each decoding timestep, in addition to the words and
images in the papers, our model also attends to the relevant section.
The ITM loss is a binary cross-entropy loss that is optimized to predict
whether or not individual image–text pair matches (i.e., came from the
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Table 1
Corpus statistics of our dataset.

PubMedSMSMO AVIATESMSMO

Train Valid Test Train Valid Test

Num. Docs 5167 659 638 1647 205 206
Avg. Num. Words in Articles 4254.77 4225.27 4138.04 4817.20 4858.91 4853.15
Avg. Num. Sections in Articles 15.03 14.41 15.44 13.03 13.17 13.38
Avg. Num. Words in Summary 255.71 250.43 257.55 138.49 137.40 139.82
Avg. Num. Image in Articles 4.50 4.61 4.47 7.07 6.62 6.88
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same paper section). We consider an image to belong to the section(s)
that has inline-mentioned it (e.g., ‘‘Fig. X describes ..’’.). The loss
unction for the ITM task is:
𝐼 𝑇 𝑀
𝜃 = − [

�̂�𝑖𝑐 𝑙 𝑜𝑔 𝑦𝑖𝑐 + (1 − �̂�𝑖𝑐 ) 𝑙 𝑜𝑔 (1 − 𝑦𝑖𝑐 )
]

(22)

where �̂�𝑖𝑐 is the ground truth label (i.e., 1 for matching pair and 0
therwise).

4.4. Joint training

Finally, we jointly trained our CMT-Sum model with the sum-
mary generation, image selection and image–text matching. The model
simultaneously minimizes the three loss functions:

𝑇 𝑂 𝑇 𝐴𝐿
𝜃 = 𝐺 𝐸 𝑁

𝜃 + 𝐼 𝑆
𝜃 + 𝐼 𝑇 𝑀

𝜃 (23)

5. Experimental settings

5.1. Dataset

Due to the lack of multimodal reference in existing scientific sum-
marization datasets, the gold standard is either pure text or pure images
(not both) during the training and validation. Here, we create two
new datasets (namely AVIATESMSMO and PubmedSMSMO) from existing
scientific summarization datasets to enrich the benchmarks in the
SMSMO research area. Table 1 shows our dataset statistics.

Yang et al. [3] proposed PubMed, a scientific paper dataset whose
figures were annotated for central figure identification. In PubMed, the
authors of each paper identified a central figure that represents their
papers. We take the central figure as the graphical abstract; we also
incorporate the paper text abstract as the ground-truth summary so that
he dataset now contains multimodal references, making it suitable for
MSMO task. To train our summarizer with the Image-Text Matching
odule (see Section 4.3.3), we obtained the PDFs of individual papers

n PubMed, and extracted their paragraph/section text and images
sing Grobid [59] and Pdffigures [62] (resp.). Finally, we obtained 35k

paragraph text–image pairs from the dataset. We use the train, valid
and test split as provided by Yang et al. [3] (8:1:1). We call this dataset
ubMedSMSMO.
AVIATESMSMO is a modified version based on the AVIATE dataset

[7], which took the first step to study the effect of multimodal signals
(i.e., presentation videos) on paper abstract generation. In the AVIATE
dataset, presentation videos from 28 social science and computer sci-
ence conferences were collected and used to create corresponding paper
abstracts (text-only). Here, we utilize the paper sources from AVIATE
to build our new dataset. We obtained the open PDFs of individual
papers and extracted their paragraph text and images using Grobid and
Pdffigures (like we did in PubmedSMSMO). We filter out the data examples
which contain no images. Then, we employ a heuristic method to
generate the pseudo image selection labels for our data. Specifically,
in research articles, images that provide summary information are
often captioned with keywords like ‘‘overall, framework, overview, etc’’..
Here, we leverage this property and use a list of summary-related
keywords5 to identify the key images for individual papers. We did

5 The full list of keywords are provided in Appendix, Table A.8.
 r

7 
not prioritize the keywords, and we picked the image with the caption
that contains most of the keywords (In case there is a tie, we pick the
larger image6). We compare our keyword lists with the ones generated
utomatically by Rapid Automatic Keyword Extraction (RAKE) [63]

and TextRank [64]. We also compare our methods with Order-ranking
and ROUGE-ranking proposed by Zhu et al. [23], which extract GA by
onsidering the image’s order appearing in the paper and the ROUGE
alue between individual image captions and the text abstract. For com-

parison, we take the manually-labelled key figures in PubMedSMSMO.
We compare this ground truth with the results obtained from ours
and other methods, achieving a top-3 accuracy of 62%, notably higher
than the one obtained from the RAKE (53%), TextRank (51%), Order-
ranking (48%) and ROUGE-ranking (59%). Consequently, we use our
keyword list to obtain the key figures in AVIATESMSMO. To ensure the
est set is reliable, two volunteers are engaged for post-validation, in
hich they check if the selected figures can represent the paper given

ts abstract. The inter-annotator agreement amounts to 0.65 Cohen’s
appa, which denotes a fair agreement. Using our methods, we get
058 data samples with pseudo image selection labels. The data was

split into train, validation, and test sets following the 8:1:1 ratio from
Atri et al. [7].

5.2. Implementation detail

Preprocessing. We tokenized all the characters in the source pa-
per text and target summaries with the Longformer’s subwords tok-
enizer [57].

Model. In the text encoder module of our CMT-Sum model, we
initialize our embedding matrix using the word embedding of Long-
ormer [57]. It contains 30,522 vocabularies with an embedding dimen-

sion of 4096. The paper text and summaries share the same vocabulary.
The paper image feature is extracted by the ResNet-101 encoder [56],
which represents each image by a 2048-dimensional vector. We ran-
domly initialize all trainable parameters using a uniform distribution
within [−0.1, 0.1].

Training. During training, we configured the model batch size to
5, the learning rate to 0.0001 and the maximum gradient norm to 1.0.

dditionally, we set the dropout ratio to 0.1. We employ an Adam [65]
optimizer. The experiments are deployed in Pytorch on an NVIDIA RTX

5000 GPU.
Testing. In the testing phase, we configured the decoding beam size

s 5. The minimum and maximum decoding lengths were configured
o 100 and 300 (resp.). To avoid repetitive trigrams in the generated
ummaries, we incorporated trigram blocking [66], and set the length
enalty and summary coverage penalty as 0.9 and 5 (resp.) as used by
u et al. [67].

5.3. Baselines and evaluation

For evaluation, we compare our model performance against differ-
nt baselines, covering extractive and abstractive approaches, as well

as unimodal and multimodal summarization models.

6 Typically, images of greater importance are allocated more space in
esearch articles to accommodate the rich content they need to display [3].
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Unimodal Summarization Models. Lead3 [68] is a widely used ex-
tractive baseline that adopts the first three sentences of individual
documents as their summary. TextRank [64] is an extractive baseline,
which ranks sentences using graph-based similarity and importance
scoring. LexRank [69] is a graph-based extractive baseline. It takes
ndividual sentences as nodes, their (sentence) similarity as edges and
xtracts the key sentences by their similarity scores. Here, we apply
extRank and LexRank on the paper text and image captions to extract
he key text and the representative image (TextRank (with caption)
nd LexRank (with caption)). MemSum [70] is an extractive method
hat learns summarization as a multi-step episodic Markov Decision

Process (MDP) with awareness of the extraction history. GoSum [71]
s a graph-based summarization method which encodes the sentence

states of the source documents using graph neural networks (GNNs),
followed by training an agent’s action based on its state in a rein-
forcement learning environment to evaluate and select sentences and
produce an extractive summary. Lodoss [72] develop a determinantal
regularizer to optimize the segmentation and summarization tasks in
parallel, ensuring a set of representative and diverse sentences are
selected for the summary.

Seq2Seq (RNN) [73] and Seq2Seq (Transformer) [58] are both
built upon the standard sequence-to-sequence (seq2seq) architecture.
Their difference is that Seq2Seq (RNN) employed the Recurrent Neu-
ral Network (RNN) encoder–decoder with a global attention mech-
anism; while the Seq2Seq (Transformer) use a BERT encoder and a
ransformer-based decoder to learn summarizing text abstractively.
Pointer Generator (PG) [74] extends the standard seq2seq architec-
ure to enable word generation from the vocabulary as well as copying
ords directly from the source document. Long-T5 [75] and Pegasus-
[76] are the extension of the T5 and Pegasus encoding methods

or handling longer input sequences; DYLE [77] is an ‘‘extract-and-
summarize’’ method that jointly trains an extractor to select key text
snippets and a generator to create a summary from those snippets.

Multimodel Summarization Models. Multimodal Transformer (con-
catenate) extend our Seq2Seq (Transformer) model. It fuses image
and textual features by concatenating their feature vectors, and the
vectors to a transformer decoder to generate textual summaries. Multi-
BART [17] fine-tune Bart model with both the source text and figure
aption for better multimodal summarization. VG-BART [48] enhances
ext summarization by integrating visual information using a vision-
uided multi-head attention mechanism within a pre-trained BART
odel; MAST [78] employs a hierarchical trimodal attention tech-

nique, first computing pairwise attention weights between text and
ther modalities, then applying second-level attention to these pairwise
eatures. CFSum [27] propose a contribution network that selects

more important parts of images for multimodal summarization and
effectively enhances the multimodal representation for summarization.

MSMO [18] is the first multimodal summarization model with
ultimodal output, which applies attention to combine the text–image

eatures for better text generation, and the coverage mechanism is
used to help select representative images. MOF [23] extended the
MSMO model, in which it integrates image precision as an addi-
tional training loss. UNMHG [25] is a unified model which leverages
the large language model to both generate text summary and select
GA. SITransformer [53] utilizes hierarchical attention for capturing
topically-aligned image–text features. MLASK [15] develop a Dual-
level Interaction Summarizer to generate multimodal summarization.
2Summ [52] builds upon the transformer framework and learns

nter-modality and intra-modality correlations by contrastive losses.
We employ the widely-used ROUGE [79] to evaluate the generated

extual summary. We follow previous works (e.g., [8,9,74]) by report-
ing the 𝐹1 scores of ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L
(R-L). These scores are computed using the pyrouge package.7 Further-
more, we evaluate the quality of the chosen key image using the top-1

7 https://github.com/bheinzerling/pyrouge
8 
and top-3 accuracy metrics introduced by Yang et al. [3]. These metrics
etermine whether the positive sample is correctly identified within the
op-1 or top-3 positions of the predictions.

6. Results

6.1. Main result

To assess the performance of CMT-Sum, we evaluate it against three
types of baselines: Text-only Models (both extractive and abstraction,
SSO), Multimodal Summarization Models (with text and image as input
only, MSSO), and Multimodal Summarization with Multimodal Output
Models (with text and image as input and output, MSMO). Table 2
shows the results. Here, we can obtain several findings. First, we see
a better result from the abstractive models, demonstrating the paper
summaries in our proposed dataset are generally abstractive in nature;
and merely extracting a few sentences from the paper as the summary
may not be as effective in capturing the key information.

Second, for the MSSO methods, MAST and CFSum integrate mul-
timodal information through hierarchical attention and word/phrase-
image attention (resp.), leading to a more pronounced enhancement
in text summarization performance. In contrast, some MSSO meth-
ods (e.g., VG-BART, Multimodal Transformer and Multi-BART) per-
form even worse than the text-only methods when the integration
of image semantic information into the text modal is not effectively
accomplished. This implies that simply using an attention sub-layer
(VG-BART) or concatenating text/image/caption features (Multimodal
Transformer and Multi-BART) are not effective in fusing multimodal
information, resulting in a decline in performance. In our CMT-Sum,
the CFM (Cross Fusion Module) computes multi-modal fusion with
self-attention and cross-attention as described in Eq. (7), enabling our
model to capture both intra-modality (i.e., word and section) and
nter-modality (text and image) correlations within multimodal data.
urthermore, our model benefits from second-level attention computed
y Eq. (11) and (12), allowing it to selectively attend to relevant word-

or section-level semantics for summarization, leading to achieving the
best text summary performance.

Finally, for the MSMO methods, we notice that our image selection
task in Eq. (20) can improve both the visual and textual representation
and deepen the degree of multi-modal alignment, resulting in improved
accuracy of text summary. Differing from other methodologies that
elect the key image solely from the text (e.g., UNMHG) or the image
idden state (e.g., MSMO), our image selector chooses the key image
y considering the multi-modal semantic alignment representation,
omputed through the fusion gate in Eq. (19). This approach enables
ur model to pick the key image that captures the essence of both

the source text and the source image. Compared to MLASK and MOF,
our model incorporates three joint tasks, as computed in Eq. (15),
20) and (22), which effectively learns integrated features from the

multimodal content. Notably, the selection of the key image considers
both the generated text summary and its alignment. Moreover, the
uality of the text summary is influenced by the quality of the image
election. This mutual dependency not only enhances the performance
f image summaries but also drives improvements in text summaries.
onsequently, our model attains superior performance in both tasks.

6.2. Ablation study

We conducted ablation experiments to assess the impacts of the two
undamental modules in our CMT-Sum: the Cross Fusion Module (CFM)

and the Multi-Objective Generator (MOG). Correspondingly, two sets of
models are designed, with CFM present or removed from the full model
(W/o CFM v.s., with CFM) and MOG performing individual tasks on
text generation (T), image selection (I), text and image tasks (T+I) and
text and image tasks with the image–text matching (T+I+M):

https://github.com/bheinzerling/pyrouge
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Table 2
The ROUGE and Accuracy scores of all baselines compared on our PubmedSMSMO and AVIATESMSMO datasets. The best scores are bold.

Model PubmedSMSMO AVIATESMSMO

R-1 R-2 R-L Acc@1 Acc@3 R-1 R-2 R-L Acc@1 Acc@3

Extractive Models
(Text only)

Lead3 [80] 16.30 1.01 1.03 – – 21.71 0.71 11.21 – –
LexRank (with caption) 21.21 5.02 12.01 28.46 69.81 25.91 4.42 12.12 13.17 40.48
TextRank (with caption) 17.88 6.03 11.34 28.77 65.09 16.31 5.82 13.94 17.56 47.80
Lodoss [72] 19.14 6.33 16.37 – – 23.18 6.42 19.43 – –
MemSum [70] 21.88 7.3 17.76 – – 28.66 6.08 16.27 – –
GoSum [71] 20.45 8.28 18.25 – – 16.46 6.45 14.93 – –

Abstractive Models
(Text only)

Seq2Seq (RNN) 20.36 3.89 15.12 – – 28.82 4.78 14.22 – –
Seq2Seq (Transformer) 22.12 4.13 17.21 – – 33.48 5.75 15.7 – –
PG [74] 23.67 4.28 16.62 – – 29.27 4.85 14.72 – –
Long-T5 [75] 28.28 7.88 16.23 – – 30.41 6.95 16.18 – –
Pegasus-X [76] 27.46 8.15 16.28 – – 26.14 6.75 15.26 – –
DYLE [77] 30.12 6.85 20.61 – – 29.05 6.47 25.99 – –

Multimodal Summarization Models
(Text+Image, input only)

Multimodal Transformer (concatenate) 24.85 4.73 20.35 – – 34.35 6.33 16.24 – –
Multi-BART [17] 24.54 6.37 23.04 – – 24.54 5.83 21.2 – –
VG-BART [48] 27.94 7.84 20.83 – – 24.29 6.55 23.71 – –
MAST [78] 28.42 7.91 25.21 – – 25.12 6.89 24.21 – –
CFSum [27] 30.75 8.14 28.67 – – 28.15 7.06 26.26 – –

Multimodal Summarization Output Models
(Text+Image, input and output)

MSMO [18] 25.32 4.95 21.12 28.62 72.96 32.05 6.17 24.89 21.46 56.09
MOF [23] 26.75 5.62 23.86 29.12 69.41 32 6.49 17.84 51 67.21
UNMHG [25] 28.7 6.36 25.88 25.49 51.29 30.74 6.58 25.51 50.24 56.1
SITransformer [53] 26.5 5.55 23.2 26.9 69.7 24.9 5.57 24.44 57.24 72.5
A2sum [52] 29.57 7.56 26.71 30.29 73.06 28.59 7.2 25.62 59.51 78.78
MLASK [15] 31.96 8.72 27.62 27.55 70.07 33.13 6.58 25.83 60 85.37

CMT-Sum (Ours) 36.67 9.5 33.8 33.03 74.05 35.55 7.23 32.19 68.63 86.08
Table 3
Ablation study on our modules in CMT-Sum, Cross Fusion Module (CFM) and Multi-Objective Generator (MOG). We compare them with (CFM) or without CFM (w/o CFM), and
heir performance on training with different tasks: text generation (T), image selection (I), text and image tasks (T+I) and text and image tasks with the image–text matching
T+I+M).

Fusion Tasks PubmedSMSMO AVIATESMSMO

R-1 R-2 R-L Acc@1 Acc@3 R-1 R-2 R-L Acc@1 Acc@3

W/o CFM

T 23.05 4.21 21.21 – – 26.86 4.02 24.09 – –
I – – – 26.56 70.6 – – – 58.21 78.23
T+I 31.05 5.98 28.52 27.97 72.64 33.07 5.92 29.72 61.46 80.73
T+I+M 33.19 6.86 30.83 28.98 73.7 33.71 6.08 30.05 62.93 82.41

With CFM

T 24.37 4.99 22.56 – – 29.11 4.64 25.9 – –
I – – – 28.12 71.23 – – – 62.12 80.63
T+I 36.4 8.72 33.51 29.45 73.7 35.49 7.21 32.08 65.37 83.66
T+I+M (ours) 36.67 9.5 33.8 33.03 74.05 35.55 7.23 32.19 68.63 86.08
e

o
o

Table 3 presents our results. Here, we observe that our model
erforms better when CFM is equipped. Using self-attention and cross-
ttention (as described in Eq. (7)), the CFM effectively learns both the
ntra-modality semantic and the inter-modality correlation between im-
ge and text. That way, CFM grounds the image content on the text seg-
ents and fuses the text information into individual images, producing

n image-aware text representation and a text-aware image represen-
ation for the text generation and image selection tasks (resp.). In con-

trast, when the two types of contents are combined/concatenated di-
rectly (i.e., w/o CFM), the model cannot effectively learn the modality
nteraction, which accordingly affects the performance.

In our multi-task ablation experiment, we observed a notable im-
rovement in the ROUGE scores by incorporating the image selector

into our model (i.e., Task 𝑇 v.s., T+I). This finding highlights the
essential role of learning the visual subtasks (in Eqs. (20) and (22))
in enhancing the performance of the textual subtask. Indeed, scholarly
papers have diverse types of images, covering overview figures, tables,
charts, etc. Such diversity introduces noise and irrelevant information.
Thus, it is not sufficient to merely fuse the image and text, and assume
that all images are beneficial for the summary without considering the
potential interference of irrelevant images. In this regard, the inclu-
sion of an image selector (in Eq. (20)) becomes crucial in effectively
iltering out noisy images and ensuring that only key images and their

relevant visual content contribute to the text summarization process.
In addition, we also need an effective matching strategy to learn a
comprehensive multi-modal representation. Hence, when incorporat-
ing the image–text matcher (Task I+T+M), the model can further be
 (
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enhanced to align multi-modal information (computed as Eq. (22)),
yielding the best overall scores in our experiment. By combining text
summarization, image selection, and image–text matching, CMT-Sum
effectively learns the multimodal semantics in a more comprehensive
manner. In the AVIATESMSMO dataset, the pseudo image reference we
construct (using the key-image heuristic) helps generate a better text
summary, which indirectly leads to the improvement of ITM (image–
text matching). In the PubmedSMSMO dataset, our full CMT-Sum (with all
modules included) outperforms others, indicating that it can effectively
improve the multimodal summarization when a large-scale dataset with
real multimodal reference is available.

6.3. Module visualization

In this part, we will demonstrate the role of our Cross Fusion
Module (CFM) and Multi-Objective Generator (MOG) in the model by
valuating and visualizing their effects.

First, we evaluate our CFM module in ensuring a better fusion be-
tween image and text output. Here, we compute the Euclidean Distance
n the representation of the text summary output (𝑦𝑡) and the image
utput (𝑦𝑖), as follows:

𝐸 𝐷(𝑡𝑒𝑥𝑡, 𝑖𝑚𝑎𝑔 𝑒) =

√

√

√

√

√

(

1
𝑚

𝑚
∑

𝑗
𝑦𝑡 −

1
𝑛

𝑛
∑

𝑖
𝑦𝑖

)2

(24)

where 𝑚 and 𝑛 denote the total number of text and image summaries
resp.); 𝑦 and 𝑦 are the text and image representations produced
𝑡 𝑖
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Fig. 3. Euclidean distance measurement on a set of text and image summaries on the validation set of 𝐴𝑉 𝐼 𝐴𝑇 𝐸𝑆 𝑀 𝑆 𝑀 𝑂 . For the same set of samples, Fig. 3(a) show the text and
image representation without processing through the CFM modules, while Fig. 3(b) does. For visualization, the representation was processed using the dimensionality reduction
by PCA.
Table 4
The total Euclidean distance on the text and image samples in the
𝐴𝑉 𝐼 𝐴𝑇 𝐸𝑆 𝑀 𝑆 𝑀 𝑂 dataset.

Train Valid Test

With CFM 29.52 25.64 24.85
W/o CFM 46.91 42.76 36.12

by our CMT-Sum model. In Table 4, we report the total Euclidean
Distance for the multimodal summary on the train, valid and test part
of the 𝐴𝑉 𝐼 𝐴𝑇 𝐸𝑆 𝑀 𝑆 𝑀 𝑂 dataset. It is evident that via the CFM, text
and image features exhibit a relatively consistent fusion across all data
subsets, and their feature distance is shorter (i.e., more semantically
similar) compared to those without CFM. In Fig. 3, we visually present
the Euclidean distance measurements for the text and image samples
within the semantic space. Specifically, for the same set of samples
in the validation dataset, Fig. 3(a) illustrates the representation of
the summary text and image generated by a model lacking the CFM
module, while Fig. 3(b) showcases the same sample sets generated by
a model with CFM. The representation was processed with PCA for
the dimensionality reduction to be displayed in the same semantic
space. Thanks to the self-attention and cross-attention (as computed
in Eq. (7)), the CFM learn how much information to integrate from
multimodal source and how much information to retain from the
original modality. Consequently, it strengthens the correlation between
text and image representation, as reflected in Fig. 3(b). By integrating
relevant multimodal information with our CFM, the representations of
the text and image samples are closer (i.e., more semantically similar)
compared to those without CFM (Fig. 3(a)). It suggests that CFM
effectively learn to link text and images, helping the model better
understand and process multimodal information.

Next, we explore the effectiveness of the MOG. We take the example
shown in Fig. 1 and visualize the attention maps generated from the
hierarchical attention mechanism by our Visual-aware Text Generator
(in Eq. (15)). The map is shown in Fig. 4. It displays the weights
connecting image and text semantics at each summary generation step,
demonstrating how the two modalities complement each other. We in-
spect the maps generated with both text generation and image selection
performed (green row), in comparison with a baseline model which
only performs text generation (red row). We randomly pick five source
words that appear in the summary text to show. From Fig. 4, it can be
observed that the baseline model (red row) exhibits a more ‘‘sparse’’
attention distribution, where the word weights are spread across dif-
ferent images (e.g., the word ‘‘pre-defined’’ attends across F2 and F4).
Conversely, our model’s attention map focuses more on the images
corresponding to the text in that section (e.g., the word ‘‘boundary’’
attends mostly on F1), thanks to the integration of the image selector.
10 
Table 5
Human evaluation results of generated summary.

Inf Coh Acc

SSO MemSum 1.42 1.6 1.25
Long-T5 1.24 2.15 1.78
Pegasus-X 1.6 2.10 2.12
DYLE 1.11 2.14 2.01

MSSO VG-BART 1.74 2.13 2.01
MAST 1.86 2.42 2.51
CFSum 2.02 2.45 2.52

MSMO MSMO 2.34 2.41 2.51
MOF 2.71 2.52 2.67
UNMHG 2.84 2.63 2.15
SITransformer 2.81 2.02 2.14
A2sum 2.76 2.15 2.86
MLASK 2.85 2.57 2.96
CMT-Sum (ours) 3.31 3.06 3.12

Particularly at each decoding step, when the text generator summarizes
the content relating to a particular section (e.g., Methodology), the
image selector simultaneously identifies the most relevant visual con-
tent (e.g., a schematic diagram). This real-time, step-by-step alignment
ensures the visual context closely matches the textual content being
generated. It reinforces the semantic context of the current section and
helps the text generator maintain focus on the specific section/theme
being summarized. In cases where textual content might be ambiguous,
the selected images (or attended image representation) can provide
clarifying information, guiding the text generator towards more precise
language and descriptions. Later on, when the text generator moves
from one section (or decoding step) to another, the changing image
selections help shift its focus accordingly. This adaptive mechanism
ensures that the generated summary maintains relevance throughout its
length. Additionally, since the final image summary is selected based
on the last decoding context, the image summary will include complete
semantics of the decoded context.

In Fig. 5, we explore the effectiveness of the ITM by observing
the relevance of the section text and images shown in Fig. 1 (i.e., S1
to S3 and F1 to F4). Each colour block denotes the cosine similarity
between the image-aware text representation (𝑆1

𝑗 ) and the text-aware
image representation (𝑣1𝑗 ) of each section. The darker colour refers to
a higher similarity in the heatmap. By training with the ITM alignment
loss (Eq. (22)), our model learns a multi-modal semantic alignment
representation for the section’s text and image content. From Fig. 5a,
we can see that by aligning multimodal relevant information with our
ITM, the image–text similarity is more relatively concentrated along
each section (e.g., F1-S1, F2-S2) as compared to the one without ITM
(Fig. 5b).
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Fig. 4. Visualization of the attention map in our Visual-aware Text Generator, generated with both text generation and image selection performed (in green row), in comparison
with a baseline model which only performs text generation (in red row). For the abstract segment A1 to A3 we presented in Fig. 1, we show five words (in blue) that appear in
the source text and their associated attention map with the images in the paper. The baseline shows a ‘‘sparse’’ distribution across different images and words. In contrast, our
model shows a more concentrated distribution on related images and text corresponding to the abstract section/theme.

Fig. 5. The heatmap demonstrates the cosine similarity among the representations of images (F1 to F4) and sections (S1 to S3) presented in Fig. 1. Map (a) is generated by a
model with ITM incorporated, whereas map (b) lacks ITM.
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6.4. Human evaluation

A human evaluation is designed to analyse the summary output
from three aspects. Informativeness (Inf) assesses whether the summary
contains sufficient and necessary information from the input. Coher-
ence (Coh) assesses whether the summarized content is presented in a
coherent order. Accuracy (Acc) assesses the correctness and clarity of
he summary content. From our AVIATESMSMO dataset, we randomly

selected 50 examples generated by our comparison methods. Three
graduate students volunteered to evaluate the output. They are tasked
to score each output from 0 to 5, where 0 and 5 indicate the lowest and
ighest scores of corresponding metrics. The final results are averaged
cross subjects.

Table 5 presents the results of the human evaluation. Our CMT-
um achieves the highest scores in all metrics. The results indicate that
ummaries generated by CMT-Sum are more informative and cohesive,
ith high accuracy on both text and image information summarized.
ompared with the SSO and MSSO models with text-only output, CMT-
um provides a relevant image, which can include diagrams, graphs, or
llustrations that complement the textual summary, offering additional
nformation that might not be explicitly stated in the text. Additionally,
ur model’s CFM Module (in Eq. (7) plays a role in enhancing the

integration of information across different levels. Particularly, when
our text generator produces each word, it can draw upon both sectional
(intra-modality) and visual (inter-modality) information. This integra-
tion allows for a more comprehensive understanding of the content,
otentially leading to more accurate and detailed summaries. Finally,
ur step-by-step alignment of text generation with image selection (in
q. (20)) helps maintain temporal coherence in the summary, which

ensures that visual references in the text accurately correspond to the
content being discussed.

6.5. Case study and relevance visualization

Table 6 and 7 present the summary outputted by different mod-
els. We also include the original abstract for reference (top line in
Table 6). Table 6 displays the text summary generated by the SSO
models (Seq2seq and DYLE) and MSSO models (MAST and CFSum). We
can see that the SSO models, which only incorporate text information,
neglect some concepts that presented in the image (e.g., the nil-aware
passage extractor). In contrast, MAST, CFSum, and our CMT-Sum all
utilize multimodal input, allowing them to consider both text and
image semantics. However, MAST and CFSum focus on either global or
ocal correspondences, but not both. Particularly, MAST maps the entire
ocument and its images into a single shared space, capturing overall
hemes but potentially overlooking important details. For example,
he model mentioned the ‘‘nill-aware answer extraction framework’’
nd the ‘‘evidence-decomposition’’, but there is not much description
f them. On the other hand, CFSum focuses on word-/phrase-level
usion, which good at capturing details but potentially overlooking the
verall context. We can see that CFSum described a lot of model detail
e.g., ‘‘matching the first Q tokens with the second Q tokens’’, which is
he model details of the nill-aware answer extractor). By comparison,
ur CMT-Sum designs a fusion approach that operates at both word
nd section levels, incorporating intra-text and inter-text–image fusion
hrough a hierarchical structure. In brief, the unimodal encoders (in
q. (2) and (3)) capture the intra-modality features separately for text
nd image inputs. Then, the CFM in Eq. (7) fuse the inter-modality

feature of the two (feature) sets at a sectional level. Finally, with
the hierarchical attention in Eq. (11) and (12), the model generates
he target summary by jointly considering both local-level features
word-specific) and global-level features (section-specific) through a
ierarchical attention mechanism. As can be seen in Table 7, the

summary outputted by our model incorporates both global structure
(e.g., Problem scope/aim, model description and experiment results),
12 
as well as local detail description (e.g., describe the purpose of the
evidence aggregation).

In comparison to the text-only output, the multimodal output in
Table 7 provides additional information by including a selected image
along with the text summary. This additional visual element serves to
reinforce or clarify the textual content, and vice versa, leading to better
overall comprehension. However, the effectiveness of this approach
depends on the relevance of the chosen image to the textual content.
If a model selects an image that is contextually irrelevant to the text
ummary, it may cause ambition and confuse readers (see e.g., the
utput from MSMO). MSMO selects the image summary by observing

only the image’s hidden state. In contrast, our image selector identifies
the key image by considering the multi-modal semantic alignment
epresentation (as computed by Eq. (19)). The generated text provides

the image encoder with richer global representations, comprising the
ull semantic content of both the source image and text. Other than

that, when compared to MLASK, our model incorporates a multi-task
module that includes image–text matching, as computed in Eq. (22).
t enables both the text generator and image selector to better align
nd more effectively learn fused features from the multimodal content.
articularly, the image–text matcher improves the alignment between
he visual and textual elements of each section (see Fig. 5), enabling the
ext generator to create summaries that are more accurately tailored

to each particular section of the source material. From our case in
Table 7, the ‘‘evidence aggregation module’’ overlooked in MLASK has
been covered in our summary (i.e., enforcing complete evidence from
 paragraph).

7. Conclusion

This paper introduces a new model for scientific summarization
that leverages cross-modality and multi-task learning techniques. Our
model effectively improves multimodal summary generation and the
diversity of the generated summaries, encompassing both text and
image information in scientific papers. The novelty of our paper lies in
the finer-grained fusion of the two modalities through our cross-fusion
module, as well as the generation of aligned multimedia summaries
that capture the semantics of different modalities through our multi-
objective generator. This approach distinguishes our work from existing
studies in scientific NLP, which often handle modalities independently
and primarily focus on text content. Our research complements current
research, which mainly builds upon text-only corpora (and lacks mul-
timodal semantics). Experimental results demonstrate that our multi-
modal model generates summaries that are more coherent, informative,
and accurate, showcasing the effectiveness of our approach.
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Table 6
Summary output comparison between CMT-Sum and SSO (Seq2seq and DYLE) and MSSO (MAST and CFSum) baselines. In the comparison,
valid and relevant contexts w.r.t the ground truth are highlighted in blue, while irrelevant or incorrect contexts are highlighted in red.
13 
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Table 7
Summary output comparison between CMT-Sum multimodal output baselines (MSMO, MOF, UNMHG, MLASK and ours). In the comparison,
valid and relevant contexts w.r.t the ground truth are highlighted in blue, while irrelevant or incorrect contexts are highlighted in red.
.
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Appendix. Keywords used to identify key figures in 𝐀𝐕𝐈𝐀𝐓𝐄𝐒𝐌𝐒𝐌𝐎

See Table A.8.
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Table A.8
Here, we present the keywords that we use to identify the key figures in our
AVIATESMSMO dataset. The key image of individual papers is determined by the number
of keywords each image caption contains. If there is a tie, the image that appears earlier
in the paper will be taken. Images which cannot align with any keywords are excluded

Keywords

flow chart, flowchart, illustration, general block diagram, system
structure, system architecture, overall, overview, framework, workflow,
structure, flow, demonstration, graphic visualization, graphical (model),
theoretical model

Data availability

Data will be made available on request.



X. Zhong et al. Knowledge-Based Systems 310 (2025) 112908 
References

[1] Stanford, Stanford AI index report, 2023, https://aiindex.stanford.edu/wp-
content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf.

[2] J. Yoon, E. Chung, An investigation on graphical abstracts use in scholarly
articles, Int. J. Inf. Manage. 37 (1) (2017) 1371–1379.

[3] S.T. Yang, P.-S. Lee, L. Kazakova, A. Joshi, B.M. Oh, J.D. West, B. Howe,
Identifying the central figure of a scientific paper, in: 2019 International
Conference on Document Analysis and Recognition, ICDAR, IEEE, 2019, pp.
1063–1070.

[4] C.D. Paice, The automatic generation of literature abstracts: an approach based
on the identification of self-indicating phrases, in: Proceedings of the 3rd Annual
ACM Conference on Research and Development in Information Retrieval, 1980,
pp. 172–191.

[5] S. Teufel, M. Moens, Summarizing scientific articles: experiments with relevance
and rhetorical status, Comput. Linguist. 28 (4) (2002) 409–445.

[6] X. Chen, H. Alamro, M. Li, S. Gao, R. Yan, X. Gao, X. Zhang, Target-aware
abstractive related work generation with contrastive learning, in: Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2022, pp. 373–383.

[7] Y.K. Atri, S. Pramanick, V. Goyal, T. Chakraborty, See, hear, read: Leverag-
ing multimodality with guided attention for abstractive text summarization,
Knowl.-Based Syst. 227 (2021) 107152.

[8] Q. Xie, J.A. Bishop, P. Tiwari, S. Ananiadou, Pre-trained language models with
domain knowledge for biomedical extractive summarization, Knowl.-Based Syst.
252 (2022) 109460.

[9] X. Chen, H. Alamro, M. Li, S. Gao, X. Zhang, D. Zhao, R. Yan, Capturing
Relations Between Scientific Papers: an Abstractive Model for Related Work
Section Generation, Association for Computational Linguistics, 2021.

[10] Y. Dong, A. Mircea, J.C.K. Cheung, Discourse-aware unsupervised summarization
for long scientific documents, in: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume,
2021, pp. 1089–1102.

[11] I. Cachola, K. Lo, A. Cohan, D. Weld, TLDR: Extreme summarization of scientific
documents, Findings of EMNLP (2020).

[12] K. Luu, X. Wu, R. Koncel-Kedziorski, K. Lo, I. Cachola, N.A. Smith, Explaining
relationships between scientific documents, in: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
2021, pp. 2130–2144.

[13] M. La Quatra, L. Cagliero, Transformer-based highlights extraction from scientific
papers, Knowl.-Based Syst. 252 (2022) 109382.

[14] Y. Du, Q. Li, L. Wang, Y. He, Biomedical-domain pre-trained language model for
extractive summarization, Knowl.-Based Syst. 199 (2020) 105964.

[15] M. Krubiński, P. Pecina, Mlask: multimodal summarization of video-based news
articles, in: Findings of the Association for Computational Linguistics: EACL 2023,
2023, pp. 910–924.

[16] B.M. Yao, A. Shah, L. Sun, J.-H. Cho, L. Huang, End-to-end multimodal fact-
checking and explanation generation: A challenging dataset and models, in:
Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2023, pp. 2733–2743.

[17] K. Overbay, J. Ahn, J. Park, G. Kim, et al., MRedditSum: A multimodal
abstractive summarization dataset of reddit threads with images, in: Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing,
2023, pp. 4117–4132.

[18] J. Zhu, H. Li, T. Liu, Y. Zhou, J. Zhang, C. Zong, MSMO: Multimodal sum-
marization with multimodal output, in: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 4154–4164.

[19] Editage, How are graphical abstracts effective in academic communica-
tion?, 2024, https://www.editage.com/services/graphical-abstract-design-visual-
abstract-services.

[20] J. Chen, H. Zhuge, Extractive summarization of documents with images based
on multi-modal RNN, Future Gener. Comput. Syst. 99 (2019) 186–196.

[21] K. Liu, Y. Li, N. Xu, P. Natarajan, Learn to combine modalities in multimodal
deep learning, 2018, arXiv preprint arXiv:1805.11730.

[22] M. Xiao, J. Zhu, F. Zhai, Y. Zhou, C. Zong, DIUSum: Dynamic image utilization
for multimodal summarization, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 38, (17) 2024, pp. 19297–19305.

[23] J. Zhu, Y. Zhou, J. Zhang, H. Li, C. Zong, C. Li, Multimodal summarization with
guidance of multimodal reference, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34, (05) 2020, pp. 9749–9756.

[24] S. Phani, A. Abdul, M.K.S. Prasad, H.K.D. Sarma, MMSFT: Multilingual
multimodal summarization by fine-tuning transformers, IEEE Access (2024).

[25] M. Krubiński, P. Pecina, Towards unified uni-and multi-modal news headline
generation, in: Findings of the Association for Computational Linguistics: EACL
2024, 2024, pp. 437–450.

[26] L. Zhang, X. Zhang, J. Pan, Hierarchical cross-modality semantic correlation
learning model for multimodal summarization, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, (10) 2022, pp. 11676–11684.
15 
[27] M. Xiao, J. Zhu, H. Lin, Y. Zhou, C. Zong, Cfsum: Coarse-to-fine contribution
network for multimodal summarization, in: The 61st Annual Meeting of the
Association for Computational Linguistics, 2023.

[28] L. Jin, J. Chen, Self-supervised opinion summarization with multi-modal
knowledge graph, J. Intell. Inf. Syst. 62 (1) (2024) 191–208.

[29] A. Cohan, F. Dernoncourt, D.S. Kim, T. Bui, S. Kim, W. Chang, N. Gohar-
ian, A discourse-aware attention model for abstractive summarization of long
documents, in: Proceedings of NAACL-HLT, 2018, pp. 615–621.

[30] Y. Guo, W. Qiu, Y. Wang, T. Cohen, Automated lay language summarization
of biomedical scientific reviews, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, (1) 2021, pp. 160–168.

[31] M. Yasunaga, J. Kasai, R. Zhang, A.R. Fabbri, I. Li, D. Friedman, D.R. Radev,
Scisummnet: A large annotated corpus and content-impact models for scientific
paper summarization with citation networks, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 7386–7393.

[32] J. Pilault, R. Li, S. Subramanian, C. Pal, On extractive and abstractive neural
document summarization with transformer language models, in: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP, 2020, pp. 9308–9319.

[33] Y. Lu, Y. Dong, L. Charlin, Multi-xscience: A large-scale dataset for extreme
multi-document summarization of scientific articles, in: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020,
pp. 8068–8074.

[34] Elsevier, How to produce a good visual abstract, tools and resources for authors,
2021, https://www.elsevier.com/authors/tools-and-resources/visual-abstract.

[35] J. Im, M. Kim, H. Lee, H. Cho, S. Chung, Self-supervised multimodal opinion
summarization, in: Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), 2021, pp. 388–403.

[36] C. Zhu, R. Xu, M. Zeng, X. Huang, A hierarchical network for abstractive meeting
summarization with cross-domain pretraining, in: Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020, pp. 194–203.

[37] H. Li, J. Zhu, C. Ma, J. Zhang, C. Zong, Multi-modal summarization for
asynchronous collection of text, image, audio and video, in: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, 2017,
pp. 1092–1102.

[38] M. Lu, Y. Liu, X. Zhang, A modality-enhanced multi-channel attention network
for multi-modal dialogue summarization, Appl. Sci. 14 (20) (2024) 9184.

[39] D. Argade, V. Khairnar, D. Vora, S. Patil, K. Kotecha, S. Alfarhood, Multi-
modal abstractive summarization using bidirectional encoder representations
from transformers with attention mechanism, Heliyon 10 (4) (2024).

[40] X. Fu, J. Wang, Z. Yang, Multi-modal summarization for video-containing
documents, 2020, arXiv preprint arXiv:2009.08018.

[41] K. Yu, C. Zhang, J. Ding, Y. Yue, Y. Wu, Multimodal dialogue response generation
based on selective attention and gating mechanisms, 2023.

[42] Z. Zhang, J. Wang, Z. Sun, Z. Yang, Lams: a location-aware approach for
multimodal summarization (student abstract), in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35, (18) 2021, pp. 15949–15950.

[43] H. Li, P. Yuan, S. Xu, Y. Wu, X. He, B. Zhou, Aspect-aware multimodal
summarization for chinese e-commerce products, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34, (05) 2020, pp. 8188–8195.

[44] L. Jing, Y. Li, J. Xu, Y. Yu, P. Shen, X. Song, Vision enhanced generative pre-
trained language model for multimodal sentence summarization, Mach. Intell.
Res. 20 (2) (2023) 289–298.

[45] Y. Liu, L. Qiao, C. Lu, D. Yin, C. Lin, H. Peng, B. Ren, OSAN: A one-stage
alignment network to unify multimodal alignment and unsupervised domain
adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 3551–3560.

[46] C. Jiang, H. Xu, W. Ye, Q. Ye, C. Li, M. Yan, B. Bi, S. Zhang, F. Huang, J. Zhang,
COPA: Efficient vision-language pre-training through collaborative object-and
patch-text alignment, in: Proceedings of the 31st ACM International Conference
on Multimedia, 2023, pp. 4480–4491.

[47] H. Li, J. Zhu, J. Zhang, X. He, C. Zong, Multimodal sentence summarization
via multimodal selective encoding, in: Proceedings of the 28th International
Conference on Computational Linguistics, 2020, pp. 5655–5667.

[48] T. Yu, W. Dai, Z. Liu, P. Fung, Vision guided generative pre-trained language
models for multimodal abstractive summarization, in: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, 2021, pp.
3995–4007.

[49] C. Suman, A. Naman, S. Saha, P. Bhattacharyya, A multimodal author profiling
system for tweets, IEEE Trans. Comput. Soc. Syst. 8 (6) (2021) 1407–1416.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[51] J. Qiu, J. Zhu, M. Xu, F. Dernoncourt, T. Bui, Z. Wang, B. Li, D. Zhao, H. Jin,
Mhms: Multimodal hierarchical multimedia summarization, 2022, arXiv preprint
arXiv:2204.03734.

[52] B. He, J. Wang, J. Qiu, T. Bui, A. Shrivastava, Z. Wang, Align and attend:
Multimodal summarization with dual contrastive losses, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
14867–14878.

https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb2
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb2
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb2
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb3
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb4
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb5
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb5
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb5
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb6
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb7
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb7
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb7
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb7
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb7
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb8
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb8
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb8
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb8
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb8
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb9
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb9
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb9
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb9
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb9
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb10
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb11
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb11
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb11
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb12
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb13
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb13
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb13
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb14
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb14
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb14
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb15
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb15
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb15
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb15
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb15
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb16
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb17
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb18
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb18
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb18
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb18
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb18
https://www.editage.com/services/graphical-abstract-design-visual-abstract-services
https://www.editage.com/services/graphical-abstract-design-visual-abstract-services
https://www.editage.com/services/graphical-abstract-design-visual-abstract-services
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb20
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb20
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb20
http://arxiv.org/abs/1805.11730
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb22
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb22
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb22
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb22
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb22
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb23
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb23
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb23
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb23
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb23
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb24
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb24
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb24
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb25
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb25
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb25
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb25
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb25
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb26
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb26
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb26
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb26
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb26
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb27
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb27
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb27
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb27
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb27
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb28
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb28
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb28
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb29
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb29
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb29
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb29
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb29
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb30
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb30
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb30
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb30
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb30
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb31
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb32
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb33
https://www.elsevier.com/authors/tools-and-resources/visual-abstract
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb35
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb36
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb36
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb36
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb36
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb36
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb37
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb38
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb38
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb38
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb39
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb39
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb39
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb39
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb39
http://arxiv.org/abs/2009.08018
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb41
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb41
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb41
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb42
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb42
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb42
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb42
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb42
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb43
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb43
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb43
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb43
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb43
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb44
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb44
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb44
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb44
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb44
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb45
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb46
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb47
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb47
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb47
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb47
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb47
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb48
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb49
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb49
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb49
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb50
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb50
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb50
http://arxiv.org/abs/2204.03734
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb52


X. Zhong et al. Knowledge-Based Systems 310 (2025) 112908 
[53] S. Liu, L. Wang, X. Zhu, X. Lu, Z. Wang, K. Hu, Sitransformer: Shared
information-guided transformer for extreme multimodal summarization, 2024,
arXiv preprint arXiv:2408.15829.

[54] Z. Zhang, X. Meng, Y. Wang, X. Jiang, Q. Liu, Z. Yang, Unims: A unified
framework for multimodal summarization with knowledge distillation, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, (10) 2022,
pp. 11757–11764.

[55] Y.K. Atri, V. Goyal, T. Chakraborty, Fusing multimodal signals on hyper-complex
space for extreme abstractive text summarization (TLDR) of scientific contents,
in: KDD23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data MiningAugust 2023, 2023.

[56] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[57] I. Beltagy, M.E. Peters, A. Cohan, Longformer: The long-document transformer,
2020, arXiv preprint arXiv:2004.05150.

[58] Y. Liu, M. Lapata, Text summarization with pretrained encoders, in: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 3730–3740.

[59] Grobid, Grobid parser, 2020, https://github.com/kermitt2/grobid.
[60] R. Collobert, J. Weston, A unified architecture for natural language processing:

Deep neural networks with multitask learning, in: Proceedings of the 25th
International Conference on Machine Learning, 2008, pp. 160–167.

[61] R. Caruana, Multitask Learning, Springer, 1998.
[62] C. Clark, S. Divvala, Pdffigures 2.0: Mining figures from research papers, in:

Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries,
2016, pp. 143–152.

[63] S. Rose, D. Engel, N. Cramer, W. Cowley, Automatic keyword extraction from
individual documents, Text Min.: Appl. Theory (2010) 1–20.

[64] R. Mihalcea, P. Tarau, Textrank: Bringing order into text, in: Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing, 2004,
pp. 404–411.

[65] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[66] R. Paulus, C. Xiong, R. Socher, A deep reinforced model for abstractive
summarization, in: International Conference on Learning Representations.

[67] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y.
Cao, Q. Gao, K. Macherey, et al., Google’s neural machine translation system:
Bridging the gap between human and machine translation, 2016, arXiv preprint
arXiv:1609.08144.

[68] R. Nallapati, F. Zhai, B. Zhou, Summarunner: A recurrent neural network based
sequence model for extractive summarization of documents, in: Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 31, (1) 2017.
16 
[69] G. Erkan, D.R. Radev, Lexrank: Graph-based lexical centrality as salience in text
summarization, J. Artif. Intell. Res. 22 (2004) 457–479.

[70] N. Gu, E. Ash, R. Hahnloser, MemSum: Extractive summarization of long
documents using multi-step episodic Markov decision processes, in: S. Muresan,
P. Nakov, A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, Dublin, Ireland, 2022, pp. 6507–6522, http://dx.
doi.org/10.18653/v1/2022.acl-long.450, URL https://aclanthology.org/2022.acl-
long.450.

[71] J. Bian, X. Huang, H. Zhou, S. Zhu, Gosum: Extractive summarization of long
documents by reinforcement learning and graph organized discourse state, 2022,
arXiv preprint arXiv:2211.10247.

[72] S. Cho, K. Song, X. Wang, F. Liu, D. Yu, Toward unifying text segmentation
and long document summarization, in: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022, pp. 106–118.

[73] M.-T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based
neural machine translation, in: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 1412–1421.

[74] A. See, P.J. Liu, C.D. Manning, Get to the point: Summarization with pointer-
generator networks, in: R. Barzilay, M. Kan (Eds.), Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, Association for
Computational Linguistics, 2017, pp. 1073–1083, http://dx.doi.org/10.18653/
v1/P17-1099.

[75] M. Guo, J. Ainslie, D. Uthus, S. Ontanon, J. Ni, Y.-H. Sung, Y. Yang, LongT5:
Efficient text-to-text transformer for long sequences, in: Findings of the Associa-
tion for Computational Linguistics: NAACL 2022, Association for Computational
Linguistics, 2022.

[76] J. Phang, Y. Zhao, P.J. Liu, Investigating efficiently extending transformers for
long input summarization, in: Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, 2023, pp. 3946–3961.

[77] Z. Mao, C.H. Wu, A. Ni, Y. Zhang, R. Zhang, T. Yu, B. Deb, C. Zhu, A.H.
Awadallah, D. Radev, DYLE: Dynamic latent extraction for abstractive long-input
summarization, in: 60th Annual Meeting of the Association for Computational
Linguistics, ACL 2022, Association for Computational Linguistics (ACL), 2022,
pp. 1687–1698.

[78] A. Khullar, U. Arora, MAST: Multimodal abstractive summarization with trimodal
hierarchical attention, in: Proceedings of the First International Workshop on
Natural Language Processing beyond Text, 2020, pp. 60–69.

[79] C.-Y. Lin, Rouge: A package for automatic evaluation of summaries, in: Text
Summarization Branches Out, 2004, pp. 74–81.

[80] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural
networks, Adv. Neural Inf. Process. Syst. 27 (2014).

http://arxiv.org/abs/2408.15829
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb54
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb55
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb56
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb56
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb56
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb56
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb56
http://arxiv.org/abs/2004.05150
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb58
https://github.com/kermitt2/grobid
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb60
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb60
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb60
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb60
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb60
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb61
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb62
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb62
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb62
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb62
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb62
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb63
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb63
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb63
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb64
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb64
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb64
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb64
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb64
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.08144
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb68
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb68
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb68
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb68
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb68
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb69
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb69
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb69
http://dx.doi.org/10.18653/v1/2022.acl-long.450
http://dx.doi.org/10.18653/v1/2022.acl-long.450
http://dx.doi.org/10.18653/v1/2022.acl-long.450
https://aclanthology.org/2022.acl-long.450
https://aclanthology.org/2022.acl-long.450
https://aclanthology.org/2022.acl-long.450
http://arxiv.org/abs/2211.10247
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb72
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb72
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb72
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb72
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb72
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb73
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb73
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb73
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb73
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb73
http://dx.doi.org/10.18653/v1/P17-1099
http://dx.doi.org/10.18653/v1/P17-1099
http://dx.doi.org/10.18653/v1/P17-1099
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb75
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb76
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb76
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb76
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb76
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb76
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb77
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb78
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb78
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb78
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb78
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb78
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb79
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb79
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb79
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb80
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb80
http://refhub.elsevier.com/S0950-7051(24)01542-9/sb80

	SMSMO: Learning to generate multimodal summary for scientific papers
	Introduction
	Related Work
	Scientific Document Summarization
	Graphical Abstract
	Multimodal Summarization

	Problem Definition
	Our Model
	Feature Encoder
	Image Encoder
	Text Encoder

	Cross Fusion Module (CFM)
	Multimodal Objective Generator (MOG)
	Visual-aware Summary Generation
	Image Selection
	Image-Text Matching (ITM)

	Joint Training

	Experimental Settings
	Dataset
	Implementation Detail
	Baselines and Evaluation

	Results
	Main Result
	Ablation Study
	Module Visualization
	Human Evaluation
	Case Study and Relevance Visualization

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Keywords used to identify key figures in AVIATESMSMO
	Appendix. Keywords used to identify key figures in AVIATESMSMO
	Data availability
	Appendix . Data availability
	References


