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Abstract—Personalized federated learning (PFL) is a popular
framework that allows clients to have different models to address
application scenarios where clients’ data are in different domains.
The typical model of a client in PFL features a global encoder
trained by all clients to extract universal features from the raw
data and personalized layers (e.g., a classifier) trained using the
client’s local data. Nonetheless, due to the differences between
the data distributions of different clients (aka, domain gaps),
the universal features produced by the global encoder largely
encompass numerous components irrelevant to a certain client’s
local task. Some recent PFL methods address the above problem
by personalizing specific parameters within the encoder. However,
these methods encounter substantial challenges attributed to
the high dimensionality and non-linearity of neural network
parameter space. In contrast, the feature space exhibits a lower
dimensionality, providing greater intuitiveness and interpretabil-
ity as compared to the parameter space. To this end, we propose
a novel PFL framework named FedPick. FedPick achieves PFL
in the low-dimensional feature space by selecting task-relevant
features adaptively for each client from the features generated
by the global encoder based on its local data distribution. It
presents a more accessible and interpretable implementation of
PFL compared to those methods working in the parameter space.
Extensive experimental results show that FedPick could effec-
tively select task-relevant features for each client and improve
model performance in cross-domain FL.

Index Terms—Personalized Federated Learning, Feature Se-
lection, Low-dimensional Feature Space.

I. INTRODUCTION

IN recent years, the rapid progress of big data has sig-
nificantly accelerated the unprecedented growth of deep

learning. Nonetheless, in real-world scenarios, the data typ-
ically originate from geographically dispersed clients, such as
mobile phones or wireless sensors [1], [2]. Due to concerns
regarding privacy or communication limitations, centralizing
these scattered data for model training is commonly infeasible.
To address the above challenges, federated learning (FL)
emerges as a promising solution that enables multiple clients
to collaboratively train the model without sharing their raw
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data. Currently, FL has shown broad prospects for applications
in various fields such as mobile edge computing [3], [4],
healthcare [5], [6], [7], and finance [8], [9]. However, in
practical applications, the data distributions across clients are
commonly heterogeneous, which brings significant perfor-
mance degradation to the FL model [10], [11].

Cross-domain FL, where the raw data on different clients
come from various domains, is a prevalent source of statis-
tical heterogeneity that appears in practical FL applications.
In cross-domain FL, the raw data on different clients are
distributed across various spaces, namely X1 ≠ X2 ≠ · · · ≠ X𝑁 .
However, it is assumed that the labels on different clients share
the same space, namely Y1 = Y2 = · · · = Y𝑁 . For instance,
when multiple hospitals collaborate to train a deep model for
detecting pneumonia (e.g., COVID-19) [12], the diagnostic
images (e.g., CT or MRI) from these hospitals can exhibit
significant variations due to differences in sensor parameters,
scanning protocols, and subject populations [13], [14], [15].
Another cross-domain example is autonomous driving [16],
[17], where the data acquired from different automobiles
encompass a wide range of weather conditions, lighting con-
ditions, and geographical locations. The above cross-domain
cases introduce domain gaps across clients, leading to a so-
called feature shift [18] in the feature space. The feature shift
can subsequently degrade the model performance of standard
FL methods, such as FedAvg [19].

Personalized FL (PFL) [20], [21], [22] is a widely known
means of mitigating the performance degradation in cross-
domain FL. The fundamental concept behind PFL involves
training a personalized model for each client that can adapt to
this client’s own data distribution with the collaborative assis-
tance of other clients. Currently, most PFL methods necessitate
the sharing of a global encoder among all clients to extract
high-level semantics from raw data, while personalizing other
components of the model, such as the classifier [23], [24],
to adapt the models to diverse domains. It is worth noting
that the concept of employing a shared encoder across diverse
domains stems from centralized cross-domain learning [25].
The rationale behind this approach lies in the belief that the
shallow parameters in the encoder are less sensitive to data
heterogeneity and thus can be applied to various domains [25].

However, due to the domain gaps across clients in cross-
domain FL, the global encoder tends to extract universal
features that are applicable for different domains simultane-
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ously. These universal features often encompass numerous
components that are irrelevant to the local task of a certain
client, thereby potentially impairing the performance of the
FL model. Although some recent PFL methods can tackle the
above issue by personalizing specific parameters within the
encoder [18], [26], [27], [28], it is important to note that these
methods are commonly conducted within the parameter space.
Given the complex nature of neural networks, characterized
by high dimensionality and non-linearity, identifying an ap-
propriate personalization strategy within the parameter space
often proves challenging. Therefore, we wonder whether it is
possible to implement PFL in a low-dimensional feature space,
which would offer a more straightforward and interpretable
alternative to PFL methods conducted in the parameter space.

We conduct several experiment to answer the above ques-
tion. In these experiments, we employ the Fisher Score [29]
to assess the importance of the features. The Fisher Score,
which captures both intra-class consistency and inter-class
discrimination, assigns higher scores to components of greater
importance in features. We first arrange the features in de-
scending order based on their Fisher Score, and then select
a predetermined proportion of top-ranked features to retrain
a classifier to probe the quality of features [30], [31], [32].
Fig. 1 illustrates the test accuracy on several commonly used
cross-domain datasets using various feature subsets to retrain
the classifier. The highest accuracy occurs when a feature
subset with high Fisher Score is selected, surpassing even
the accuracy obtained when utilizing all available features.
The above results indicate that even using a simple metric to
conduct PFL in the low-dimensional feature space, it is still
feasible to achieve relatively good performance.
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Fig. 1. Test accuracy when different feature subsets are selected to retrain a
classifier, (a) Digits-Five, (b) Office-Caltech-10, (c) DomainNet.

However, the above vanilla feature selection approach ig-
nores the correlations among different dimensions of features.
In this paper, we propose FedPick, an approach that can adap-
tively select a subset of task-relevant features for each client.
FedPick evaluates the overall quality of the feature subset
rather than individually assessing its components, thereby alle-
viating the drawback of the vanilla feature selection approach.
In FedPick, the global encoder and classifier are retained
to extract universal features from raw data. It incorporates
a personalized feature selection module (PFSM) for each
client, enabling the selection of task-relevant features from
the universal features. Since feature selection is a discretized
operation that cannot be directly optimized by commonly used
gradient-based algorithms. PFSM leverages Gumbel-Sigmoid
[33] reparameterization to make feature selection differen-

tiable. Consequently, PFSM can be optimized simultaneously
with the backbone model in an end-to-end manner by local
data on individual client. Once training is completed, the
PFSM can directly output the subset of task-relevant features
given the universal features produced by the global encoder.

We conduct comprehensive experiments on multiple com-
monly used cross domain datasets. The experimental results
demonstrate that FedPick can effectively select task-relevant
features for each client and subsequently enhance the perfor-
mance of the FL model. Our contributions of this paper are
summarized as follows:
• We unveil a critical limitation in cross-domain FL,

wherein the features generated by the global encoder
are frequently redundant and cannot be directly adapted
to the local task due to the domain gaps across clients.

• We propose FedPick, a cross-domain FL method that
empowers individual clients to adaptively select task-
relevant features based on their local data distribution,
thereby enhancing the performance of the FL model.

• We conduct comprehensive experiments to validate the
effectiveness of FedPick. The results demonstrate that
FedPick significantly improves the model’s performance
in cross-domain FL scenarios.

II. RELATED WORK

Statistical Heterogeneity in Federated Learning. In recent
years, FL [19], [10], [11] has emerged as a promising machine
learning paradigm that enables model training without sharing
the raw data on local clients. In a conventional setting of FL,
there is a central server coordinates multiple distributed clients
for model training. The training procedure involves iterative
local training on the clients and model aggregation on the
server. Nonetheless, practical applications often exhibit sig-
nificant statistical heterogeneity across clients [10], [11]. Such
statistical heterogeneity leads to divergence among locally
trained models and subsequently hampers the performance
of the aggregated FL model [34]. Statistical heterogeneity
can manifest in various forms, with cross-domain FL [18]
being one of the most common scenarios. Cross-domain FL
refers to the situation where the distribution of raw input data
varies across different clients, which is commonly observed
in practical applications such as autonomous driving [16],
[17], video surveillance [35], [36], [37], and medical imaging
[13], [14], [15]. Nowadays, several methods are proposed to
address the performance degradation in cross-domain FL [18],
[28], [38], [39], [40]. Among the aforementioned studies, PFL
has effectively showcased its capability to facilitate model
adaptation to the local distribution. The subsequent paragraph
provides a comprehensive description of PFL methods.

Personalized Federated Learning. The primary objective
of PFL is to train personalized models for individual clients
by leveraging the collaborative efforts of other clients, en-
abling them to better align with their respective local data
distributions. FPE [41] directly utilizes local data to fine-tune
the global model, thereby enhancing its ability to adapt to
the local data distribution. Meta-learning is integrated into
PFL to explore an effective initial model capable of achieving
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high performance on local clients following a limited number
of updates [42], [43]. Parameter decoupling enables PFL by
separating personalized parameters from the global model.
FedPer [23] and FedRep [24] both share shallow parameters
(e.g., the encoder) while personalizing deep parameters (e.g.,
the classifier). Nevertheless, in these methods, the universal
features produced by the global encoder commonly exhibit
limited adaptability to local tasks. Therefore, recent studies
try to personalize specific parameters within the encoder to
extract features that align local data distribution. LG-FedAvg
[26] employs a contrasting approach to FedPer and FedRep,
which establishes local representations and a global head over
them. FedBN [18] and SiloBN [27] address the domain shift
in cross-domain FL by localizing BN layers while sharing
other parameters. PartialFed [28] adaptively loads partial rather
than entire global parameters at the initialization of local
training in cross-domain FL. However, the aforementioned
studies primarily concentrate on integrating global and local
knowledge within the parameter space, where determining an
appropriate personalization strategy becomes challenging due
to the complexities of high dimensionality and non-linearity. In
this paper, we realize PFL within the low-dimensional feature
space, which offers the benefits of simplified implementation
and enhanced interpretability compared with aforementioned
PFL methods that operate in the parameter space.

III. PROBLEM FORMULATION OF CROSS-DOMAIN FL
In this section, we outline the problem formulation of cross-

domain FL. The key notations utilized in this paper are listed
in Table I.

FL commonly involves a central server that coordinates 𝑁
distributed clients to perform model training without sharing
their private data. Suppose that each client consists of 𝑀𝑖

samples that are generated from D𝑖 , which are denoted as
(x 𝑗

𝑖
, y

𝑗

𝑖
), 𝑗 = 1, 2, . . . , 𝑀𝑖 . Specifically, x 𝑗

𝑖
∈ X𝑖 ⊆ R𝑛 denotes

the raw input, and y 𝑗

𝑖
∈ Y𝑖 denotes the corresponding label.

In cross-domain FL, the raw data on different clients come
from various domains, that is, X1 ≠ X2 ≠ · · · ≠ X𝑁 . However,
the labels on different clients are assumed to be uniformly
distributed in the same space, that is, Y1 = Y2 = · · · = Y𝑁 .
Moreover, we only consider the classification task in this
paper, so Y1 = Y2 = · · · = Y𝑁 = {1, 2, . . . , 𝐶}, where 𝐶

is the total number of classes.
We follow the training paradigm of PFL, whose core idea is

to train a personalized model θ𝑖 for each client that can adapt
to the client’s data distribution, as shown below:

argmin
θ1 ,θ2 ,...,θN

1
𝑁

𝑁∑︁
𝑖=1
L𝑖 (θi;D𝑖), (1)

where L𝑖 denotes the expected risk on client 𝑖. In practice, the
expected risk L𝑖 is often inaccessible due to the unavailability
of the underlying data distribution D𝑖 . Therefore, the empirical
risk L̂𝑖 (θ𝑖) on empirical data distribution D̂𝑖 is frequently
employed as an approximation for the expected risk L𝑖 , which
is formulated as follows:

L𝑖 (θ𝑖) ≈ L̂𝑖 (θ𝑖) =
1
𝑀𝑖

𝑀𝑖∑︁
𝑗=1
ℓ(y 𝑗

𝑖
, ŷ

𝑗

𝑖
), (2)

where ŷ 𝑗

𝑖
= 𝑓𝑖 (x 𝑗

𝑖
;θ𝑖) is the predicted label, and ℓ : Y×Y →

R denotes the loss function that measures the prediction error.
Generally, θ𝑖 can be decomposed into two parts: an encoder

ϕ𝑖 (typically composed of stacked convolutional layers) and
a classifier h𝑖 (typically composed of one or more fully
connected layers). The encoder ϕ𝑖 : R𝑛 → R𝑘 maps raw inputs
X𝑖 ⊆ R𝑛 to a lower-dimensional feature space Z𝑖 ⊆ R𝑘 , which
is denoted as z𝑖 = ϕ𝑖 (x𝑖) and typically 𝑘 ≪ 𝑛 in practice. The
classifier h𝑖 : R𝑘 → Y gives the final prediction ŷ𝑖 based on
the feature z𝑖 , which is denoted as ŷ𝑖 = h𝑖 (z𝑖). As discussed
in following subsections, we empirically observe that z𝑖 is
redundant for h𝑖 to accomplish the local task in cross-domain
FL. Specifically, some components in z𝑖 are irrelevant or even
harmful to the local task on each client. Therefore, we propose
FedPick, whose main purpose is to select a subset of task-
relevant features from z𝑖 to adapt to the local data distribution
of each client.

TABLE I
LIST OF KEY NOTATIONS.

Symbol Description

Federated Learning System
𝑁 number of clients participating the FL training

𝑀𝑖 number of samples on client 𝑖

𝐶 total number of classes of samples

(x 𝑗

𝑖
, y

𝑗

𝑖
) the 𝑗𝑡ℎ training sample on client 𝑖

Model Architecture
θ𝑖 personalized model on client 𝑖

ϕ𝑔 global encoder

h𝑔/h𝑝

𝑖
/h𝑢

𝑖
classifier for global / task-relevant / irrelevant features

Feature Selection
𝑆𝑏/𝑆𝑤 inter-class / intra-class variance of features

𝐺′ , 𝐺′′ noise for Gumbel sampling

z𝑙
𝑖

unbounded logits

z
𝑔

𝑖
/z𝑝

𝑖
/z𝑢

𝑖
global / task-relevant / irrelevant features

m𝑠
𝑖
/m𝑖 soft / hard feature mask

ŷ
𝑔

𝑖
/ŷ𝑝

𝑖
/ŷ𝑢

𝑖
predictions of global / task-relevant / irrelevant features

Loss Function
L𝑒𝑛𝑡 entropy of predictions from task irrelevant features

L𝑙𝑐𝑒 cross entropy of predictions from personalized features

L𝑑𝑖𝑠 distillation between personalized and global predictions

L𝑔𝑐𝑒 cross entropy of predictions from global features

IV. MOTIVATION OF FEATURE SELECTION IN
CROSS-DOMAIN FL

In this section, we discuss the motivation of personalized
feature selection in cross-domain FL. At first, we illustrate
the observation that the universal features generated by the
global encoder in FL often exhibit a higher degree of redun-
dancy compared to the features generated from models trained
through centralized learning (CL). Then we demonstrate that
the performance of the model can be improved by selecting
an appropriate subset of features tailored to the local task.

1) Feature Redundancy: We employ the sparsity ratio as
quantitative metric to assess the feature redundancy. The
sparsity ratio is defined as the percentage of components that
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are closed to zero in the features. We apply a threshold value
𝜀 to each individual component of 𝐿2-normalized features to
determine whether it is closed to zero. The formulation for
computing the sparsity ratio 𝑆(z, 𝜀) is as follows:

𝑆(z, 𝜀) = | |𝑀 (z, 𝜀) | |1|z | , (3)

𝑀 (z, 𝜀) [𝑖] =
{

1, 𝑖 𝑓 z𝑖 ≤ 𝜀
0, 𝑖 𝑓 z𝑖 > 𝜀,

(4)

where 𝜀 is the threshold value, z is the 𝐿2-normalized features,
| | · | |1 is the 𝐿1 norm of vector, |z | is the dimension of z.

We conduct experiments to measure the sparsity ratio of
features generated by different methods on Digits-Five (a
commonly used cross-domain dataset), including FedAvg [19],
FedBN [18] and SingleSet (training an individual model
for each domain). To mitigate mutual interference between
multiple domains, we train a separate model for each domain
(i.e., SingleSet) for CL training paradigm, instead of training
a model using the data from all domains. The threshold value
𝜀 in Eq. (3) and Eq. (4) is set to 10−5.

Fig. 2 (a) presents the average sparsity ratio of features
generated by different methods on various domains in Digits-
Five. As expected, the features exhibit increased sparsity as the
training progresses. This observation can be attributed to the
fact that the ground truth is represented by an one-hot vector,
which inherently possesses extreme sparsity. Consequently, the
features near the classifier should strive for maximum sparsity
to minimize the training loss. Moreover, it can be observed
that the sparsity ratio of FL methods is notably lower than
that of SingleSet. These findings suggest that the features
generated by FL methods exhibit greater redundancy compared
to those produced by the CL method, which deviates from the
training objective. One plausible explanation for this disparity
is that FL methods aim to generate universal features that are
versatile enough to be shared across various domains, whereas
SingleSet models only need to meet the requirements of the
local data distribution within that specific domain.
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Fig. 2. Analysis of feature redundancy, (a) sparsity ratio of different methods,
(b) sparsity ratio before and after model aggregation.

Additionally, we demonstrate that the increase in feature
redundancy is a consequence of model aggregation. Fig. 2 (b)
presents a comparative analysis of the sparsity ratios of fea-
tures both before and after the model aggregation. The results
clearly indicate a substantial rise in redundancy among the
features generated by the model after aggregation, in contrast
to those originating from the models prior to aggregation.

2) Model Performance with Different Feature Subsets:
Inspired by the above observation, we posit that improving
feature redundancy can enhancing the generalization ability of
the learned model to all clients. Nonetheless, this enhancement
comes at the cost of diminishing the model’s generalization
ability when confronted with the local distribution of indi-
vidual clients, i.e., the personalization ability. Therefore, we
pose the following question: Can model performance be
improved by selecting an approximated feature subset from
the universal features? To answer the above question, we
utilize Fisher Score [44] to assess the feature importance and
perform a vanilla feature selection approach, as shown in Fig.
3. Fisher Score is a widely known metric that can evaluate the
importance of an individual component in features, which is
defined as follows:

𝐹𝑖 =
𝑆𝑏

𝑆𝑤
, (5)

where 𝑆𝑏 is the inter-class variance, 𝑆𝑤 is intra-class variance.
The inter-class variance 𝑆𝑏 is defined as:

𝑆𝑏 =

𝐶∑︁
𝑗=1
𝑚 𝑗 (𝜇𝑖 𝑗 − 𝜇𝑖)2, (6)

where 𝑚 𝑗 is the number of samples in class 𝑗 , 𝜇𝑖 is the mean
of feature 𝑧𝑖 , 𝜇𝑖 𝑗 is the mean of feature 𝑧𝑖 for samples in class
𝑗 . The intra-class variance 𝑆𝑤 is defined as:

𝑆𝑤 =

𝐶∑︁
𝑗=1
𝑚 𝑗𝜎

2
𝑖 𝑗 , (7)

where 𝑚 𝑗 is the number of samples in class 𝑗 , 𝜎𝑖 𝑗 is the vari-
ance of feature 𝑧𝑖 for samples in class 𝑗 . A higher Fisher Score
is achieved when the component exhibits greater similarity
within the same class and dissimilarity across different classes,
which implies that this components is more discriminative and
is more relevant to the local task.

 g

z m
Fisher
Score

KNN

Frozen



Fig. 3. Procedure of vanilla feature selection.

In the vanilla feature selection, we first pre-train a model
using existed FL methods until it converges. Then we calculate
the Fisher Score of features on the training dataset and
constitute the feature mask m based on the Fisher Score. m
is a binary vector, wherein positions exceeding a specified
threshold based on the Fisher Score are assigned a value of
1, while the remaining positions are assigned a value of 0.
In the experiments, the threshold is defined as the percentile
obtained from the sorted Fisher Score vector based on the
selected ratio. At last, we freeze the encoder and implements
a probe [30], [31], [32] on the masked features, denoted as
z ⊙m, to quantitatively assess their quality. Specifically, we
discard the previously trained classifier and employ the masked
features to retrain a new classifier.
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1ŷ
g

hg hg
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Fig. 4. Framework of FedPick. It mainly consists of the following steps: (1) The raw data are passed through a global encoder to generate universal features.
(2) The universal features are subsequently fed into a PFSM to select personalized task-relevant features. (3) Both the universal features and the personalized
features are then utilized as inputs for a global classifier and a personalized classifier, respectively, to generate the prediction.

We employ FedAvg and FedBN to pre-train the FL models.
During the feature selection, the component indexes in features
are sorted in descending order based on the Fisher Score. The
selection ratio ranges from 10% − 100%. We employ a K
Nearest Neighbor (KNN) classifier (with 𝐾 = 10) to probe
the feature subsets. Fig. 1 presents the test accuracy achieved
with different feature subsets. It can be observed that by adap-
tively choosing task-relevant features (those with high Fisher
Scores) for the downstream task, the model can outperform
the performance achieved using all available features.

However, the aforementioned vanilla feature selection
method encounters several challenges. Firstly, although the
Fisher Score has been proved to be effective for the clas-
sification task, designing a practical and applicable feature
evaluation metric remains a challenge in real-world scenar-
ios. Secondly, the above approach evaluates features inde-
pendently, thereby overlooking the interrelationships among
different dimensions in the feature. Lastly, determining the
optimal proportion of selected components poses a challenging
problem. To address these issues, we further propose a novel
approach called FedPick. FedPick facilitates the automatic
selection of task-relevant features based on the local data
distribution of each client. By leveraging this method, we aim
to overcome the limitations of vanilla feature selection method
and enhance the performance of FL models.

V. FRAMEWORK OF FEDPICK

In this section, we first provide an overview of FedPick.
Second, we introduce personalized feature selection module
(PFSM), the core part of FedPick. Then, we discuss the knowl-
edge transfer mechanism between global and personalized
features. At last, we provide the training procedure of FedPick.

A. Framework Overview

The framework of FedPick is depicted in Fig. 4, which
mainly consists of three steps. First, the raw data are passed

through a global encoder to generate universal features. Then,
the universal features are fed into a PFSM for feature selection,
separating the features to a task-relevant feature subset and a
task-irrelevant feature subset. At last, the universal features and
personalized task-relevant features (for brevity, we sometimes
refer to these features as ‘personalized features’ or ‘task-
relevant features’ in the subsequent sections) are passed into a
global and a personalized classifier for prediction, respectively.
During inference, the global and personalized predictions are
integrated to derive the final prediction. For simplification, we
omit the index of clients and samples in this section.

B. Personalized Feature Selection Module

In FedPick, the encoder ϕ𝑔 is shared across multiple clients
to extract universal features. As previously mentioned, the
universal features generated by the global encoder exhibit
a higher level of generalization for a wider distribution,
offering potential advantages in subsequent feature selection
processes. To preserve the universality of global features, a
global classifier h𝑔 (also shared across clients) is maintained
within FedPick. The features generated by the global encoder
are denoted as z𝑔, and the corresponding predictions are
represented as ŷ𝑔 = h𝑔 (z𝑔). The features generated by the
global encoder are required to possess sufficient discriminative
power to successfully carry out the classification task. This
objective is achieved by cross entropy loss, as demonstrated
in Eq. (8).

𝐿𝑔𝑐𝑒 =

𝐶∑︁
𝑐=1

𝑦𝑐 log( �̂�𝑔𝑐 ) (8)

After generating universal features from the global encoder,
FedPick introduces a PFSM for each client to adaptively select
each client’s task-relevant features based on its local data
distribution. In PFSM, the global features z𝑔 are first fed into
a FC network, denoted as φ, to generate the unbounded log-
its z𝑙 . Subsequently, the Gumbel-Sigmoid reparameterization
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technique, as described in [29], is employed to generate a soft
mask denoted as m𝑠 . Specifically, the calculation of the 𝑖𝑡ℎ
component’s corresponding mask z𝑙 is as follows:

𝑚𝑠
𝑖 = 𝜎((𝑧𝑙𝑖 + 𝐺′ − 𝐺′′)/𝜏) =

𝑒 (𝑧
𝑙
𝑖
+𝐺′ )/𝜏

𝑒 (𝑧
𝑙
𝑖
+𝐺′ )/𝜏 + 𝑒𝐺′′/𝜏

, (9)

where 𝐺′ and 𝐺′′ are two independent Gumbel noises sam-
pled from uniform distribution 𝑈 [0, 1], 𝜏 ∈ [0, +∞] is the
temperature scale that controls the distribution tendency of
sampling, 𝜎(·) is the sigmoid function. It should note that the
noises 𝐺′ and 𝐺′′ are activated during training to facilitate
the exploration of various feature masks. However, during
inference, these noises are deactivated to ensure consistent and
reliable results. Similar to vanilla feature selection approach,
the soft mask m𝑠 is then discretized into a binary vector m
by a threshold 𝜀, that is, 𝑚𝑖 is set to 1 if 𝑚𝑠

𝑖
≥ 𝜀 else 0, as

depicted in Eq. (4). In FedPick, unless otherwise specified, the
value of 𝜀 is set to 0.5.

However, the previously mentioned hard masking operation
is discrete, which cannot be directly optimized by commonly
used gradient-based algorithms. To make the hard masking
differentiable, FedPick adopts sigmoid during the backward
process and hard masking during the forward process [45].
This design enables simultaneous optimization of PFSM with
the backbone model using the training data and can be easily
implemented within popular deep learning frameworks such
as PyTorch [46].

PFSM outputs task-relevant features z𝑝 and task-irrelevant
features z𝑢 by Hadamard product between the z𝑔 and m,
1 −m, respectively, as shown in Eq. (10).

z𝑝 = z𝑔 ⊙m, z𝑢 = z𝑔 ⊙ (1 −m). (10)

Similar to z𝑔, the task-relevant features z𝑝 also shall be
discriminative enough to accomplish the local task. Therefore,
PFSM implements a personalized classifier h𝑝 for z𝑝 and
enforces it to accomplish the classification task by minimizing
the cross entropy loss, as shown in Eq. (11).

𝐿𝑙𝑐𝑒 =

𝐶∑︁
𝑐=1

𝑦𝑐 log( �̂�𝑝𝑐 ) (11)

In contrast, the task-irrelevant features z𝑢 are expected to
exhibit lower levels of discriminative capability towards the
local task. As a result, the PFSM employs a personalized clas-
sifier h𝑢 to z𝑢 and encourages its prediction to be uncertain
by maximizing its prediction, as illustrated in Eq. (12).

𝐿𝑒𝑛𝑡 =

𝐶∑︁
𝑐=1

�̂�𝑢𝑐 log( �̂�𝑢𝑐) (12)

C. Transferring Global and Personalized Knowledge

In FedPick, the global features and personalized features
offer distinct benefits. Global features possess a higher level of
generalization on different data distribution, allowing for their
transferability across various distributions. However, this high
transferability may result in performance degradation when
dealing with local data distributions on individual clients. Con-
versely, personalized features are tailored to local distributions,

thereby enhancing performance for specific distributions on
local clients (personalization). Nonetheless, these features may
lack generalization capabilities when confronted with unseen
data distributions, such as test datasets. Hence, it is preferable
to combine the advantages of both global and personalized
features to enhance the overall model performance. Motivated
by knowledge distillation [47], FedPick incorporates cyclic
distillation between the predictions from global and person-
alized features to facilitate mutual knowledge transfer. The
cyclic distillation of global and personalized features ensures
the balance between the model’s generalization and personal-
ization abilities across different data distributions. This cyclic
distillation is achieved by minimizing the loss function pre-
sented in Eq. (13), where 𝐾𝐿 () denotes the Kullback-Leibler
(KL) divergence, which quantifies the dissimilarity between
two distributions.

𝐿𝑑𝑖𝑠 = 𝐾𝐿 (ŷ𝑝 | |ŷ𝑔) + 𝐾𝐿 (ŷ𝑔 | |ŷ𝑝) (13)

To leverage the comprehensive knowledge provided by
both global and personalized features, FedPick combines the
predictions of the global and personalized classifiers through
an ensemble approach, resulting in a more robust prediction.
This ensemble process is illustrated in Eq. (14).

ŷ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(ŷ𝑔 + ŷ𝑝) (14)

D. Training Procedure of FedPick

The total loss adopted by FedPick is shown in Eq. (15),
where 𝜆𝑙𝑐𝑒, 𝜆𝑒𝑛𝑡 , and 𝜆𝑑𝑖𝑠 are hyper-parameters to adjust
the effect of different loss terms. During the training, all
parameters in the model are optimized by the loss in Eq. (15)
simultaneously.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑔𝑐𝑒 + 𝜆𝑙𝑐𝑒𝐿𝑙𝑐𝑒 + 𝜆𝑒𝑛𝑡𝐿𝑒𝑛𝑡 + 𝜆𝑑𝑖𝑠𝐿𝑑𝑖𝑠 (15)

After training, the global encoder and classifier are uploaded
to the server for aggregation, as shown in Eq. (16), where
ϕ
𝑔

𝑖
and h𝑔

𝑖
denote the global encoder and classifier updated

on client 𝑖, ϕ̃𝑔 and h̃𝑔 the aggregated global encoder and
classifier, respectively. ϕ̃𝑔 and h̃𝑔 are then broadcast to each
client for next round of local updates. The parameters in PFSM
are localized on each client to select its own task-relevant
features. Moreover, motivated by previous studies in [18], [27],
FedPick also keeps BN layers personalized on each client
to avoid the performance degradation caused by aggregating
them.

h̃𝑔 =

𝑁∑︁
𝑖=1

𝑀𝑖∑𝑁
𝑗=1 𝑀 𝑗

h
𝑔

𝑖
, ϕ̃𝑔 =

𝑁∑︁
𝑖=1

𝑀𝑖∑𝑁
𝑗=1 𝑀 𝑗

ϕ
𝑔

𝑖
. (16)

The entire process of FedPick is summarized in Algorithm
1. For brevity, we denote the parameters in PFSM as ψ𝑖 , that
is, ψ𝑖 ≡ {h𝑝

𝑖
,h𝑢

𝑖
,φ𝑖}.

VI. THEORETICAL FOUNDATION OF FEDPICK

FedPick selects appropriate feature subset relevant to the
local task from the global features, thereby enhancing their
compatibility with the local distribution on each client. Such
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Algorithm 1 FedPick
Notations: 𝑇 : global update rounds, 𝐸 : local update
epochs, 𝐵: local minibatch size, 𝜂: learning rate, 𝜆𝑙𝑐𝑒,
𝜆𝑒𝑛𝑡 , and 𝜆𝑑𝑖𝑠: hyperparameters used to balance loss
terms.
Sever Executes:

1: initialize and broadcast ϕ𝑔,1,h𝑔,1,ψ1
1 , ...,ψ

1
𝑁

to clients
2: for 𝑡 = 1, 2, 3, . . . , 𝑇 do
3: for each client 𝑖 in parallel do
4: ϕ

𝑔,𝑡+1
𝑖

,h
𝑔,𝑡+1
𝑖

← ClientUpdate(𝑖, 𝑡, ϕ̃𝑔,𝑡 , h̃𝑔,𝑡 ,ψ𝑡
𝑖
)

5: end for
6: h̃𝑔,𝑡+1 =

∑𝑁
𝑖=1

𝑀𝑖∑𝑁
𝑗=1 𝑀 𝑗

h
𝑔,𝑡

𝑖

7: ϕ̃𝑔,𝑡+1 =
∑𝑁

𝑖=1
𝑀𝑖∑𝑁
𝑗=1 𝑀 𝑗

ϕ
𝑔,𝑡

𝑖

8: broadcast ϕ̃𝑔,𝑡+1, h̃𝑔,𝑡+1 to clients
9: end for

ClientUpdate(𝑖, 𝑡,ϕ,h,ψ):
10: B ← (split local dataset into batches of size B)
11: for 𝑗 = 1, 2, 3, . . . , 𝐸 do
12: for batch 𝑏 ∈ B do
13: z𝑔 = ϕ(𝑏), {z𝑝 , z𝑢} = ψ(z𝑔)
14: ŷ𝑔 = h𝑔 (z𝑔), ŷ𝑝 = h𝑝 (z𝑝), ŷ𝑢 = h𝑢 (z𝑢)
15: 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑔𝑐𝑒 (ŷ𝑔) + 𝜆𝑙𝑐𝑒𝐿𝑙𝑐𝑒 (ŷ𝑝)

+𝜆𝑒𝑛𝑡𝐿𝑒𝑛𝑡 (ŷ𝑢) + 𝜆𝑑𝑖𝑠𝐿𝑑𝑖𝑠 (ŷ𝑝 , ŷ𝑢)
16: {ϕ,h,ψ} ← {ϕ,h,ψ} − 𝜂 ▽{ϕ,h,ψ} 𝐿𝑡𝑜𝑡𝑎𝑙
17: end for
18: end for
19: ψ𝑡+1

𝑖
← ψ

20: return ϕ, h to server

a feature selection operation can be theoretically supported by
Vapnik-Chervonenkis (VC) theory [48]. The VC dimension
serves as a quantifiable measure of the capacity of a hypothesis
class, which represents the set of possible functions that a
learning algorithm can learn. Specifically, it establishes an
upper bound on the number of training samples that can be
perfectly classified by the hypothesis class. When a hypothesis
class exhibits a high VC dimension, it indicates a larger
capacity, enabling the class to potentially capture a wide range
of complex patterns present in the training data.

As described in Section III, each client’s model consists of
an encoder and a classifier. The encoder ϕ𝑖 : R𝑛 → R𝑘 is
responsible for mapping the raw inputs X𝑖 ⊆ R𝑛 to a lower-
dimensional feature space Z𝑖 ⊆ R𝑘 , denoted as z𝑖 = ϕ𝑖 (x𝑖).
The classifier h𝑖 : R𝑘 → Y generates the final prediction ŷ𝑖
based on the extracted feature z𝑖 , expressed as ŷ𝑖 = h𝑖 (z𝑖).
The classifier h𝑖 is sampled from the hypothesis space H .
When considering only the stage after feature extraction, the
optimization objective of the FL system can be reformulated
as follows:

argmin
h1 ,h2 ,...,hN

1
𝑁

𝑁∑︁
𝑖=1
L𝑖 (hi;ϕ𝑖 (D𝑖)), (17)

For client 𝑖, it is proved by VC dimension theory that with a
probability of at least 1− 𝛿, the expected risk L𝑖 (h𝑖) is upper

bounded by:

L𝑖 (h𝑖) ≤ L̂𝑖 (h𝑖) +

√︄
8𝛾 ln(2𝑀𝑖) + 8 ln 4

𝛿

𝑀𝑖

, (18)

where L̂𝑖 (h𝑖) is the empirical risk, 𝑀𝑖 is the number of
training samples on client 𝑖, h𝑖 is the classification model
distributed in hypothesis space H , 𝛾 is the VC dimension
of H .

Denoting the global data distribution as D𝑔 =
∑𝑁

𝑖=1 𝜆𝑖D𝑖 ,
where 𝜆𝑖 =

𝑀𝑖

𝑀
and 𝑀 =

∑𝑁
𝑖=1 𝑀𝑖 . We use the notation

𝑑H (D1,D2) to represent the divergence between two distri-
butions. Based on the global model generalization proposed
by previous studies [49], [50], with a probability of at least
1 − 𝛿, the risk of client 𝑖 in the FL system is bounded by:

L𝑖 (h𝑖) ≤ L̂𝑖 (h𝑔)+

√︄
8𝛾 ln(2𝑀) + 8 ln 4

𝛿

𝑀
+𝑑H (D𝑖 ,D𝑔), (19)

where h𝑔 denotes the global classier obtained from D𝑔.
Combining the global optimization objective in Eq. (17)

with Eq. (19) yields the generalization bound of FL system
as:

1
𝑁

𝑁∑︁
𝑖=1

argmin
hi∈H

L𝑖 (h𝑖) ≤
1
𝑁

𝑁∑︁
𝑖=1
L̂𝑖 (h𝑔) +

1
𝑁

𝑁∑︁
𝑖=1

𝑑H (D𝑖 ,D𝑔)

+

√︄
8𝛾 ln(2𝑀) + 8 ln 4

𝛿

𝑀
.

(20)

To enhance the generalization of the model, the primary
objective is to reduce the upper bound, which can be achieved
by increasing the number of training samples. By comparing
Eq. (18) and Eq. (20), it can be observed that clients can
augment the quantity of training samples by FL, thereby
bolstering the generalization capability of the local model in
contrast to local training. Another approach to tightening the
generalization bound is to reduce the VC dimension 𝛾. For a
linear classifier, 𝛾 is upper bounded by the dimension of the
features [51]. Consequently, it is viable to further enhance the
generalization capability of the FL model to local distributions
(i.e., personalization) by selecting task-relevant features from
z𝑖 to construct sparse features.

VII. EXPERIMENT

To demonstrate the effectiveness of FedPick, we conduct
experiments on several cross-domain datasets and compare
its results with those of several benchmark methods. The
experimental details are discussed as follows.

A. Dataset Description

Experiments are conducted on three commonly used cross-
domain datasets: Digits-Five, Office-Caltech-10 and Domain-
Net. These datasets are all used for classification tasks. Fig. 5
presents some example images in these datasets. The specific
details of each dataset are provided below.
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Digits-Five. The Digits-Five dataset contains five datasets
for handwritten character recognition with different back-
ground, namely MNIST-M (MM) [52], MNIST (MT) [53],
USPS (UP) [54], SynthDigits (SY) [52], and SVHN (SV)
[55]. Each dataset consists of images from a single domain,
categorized into 10 classes. To construct the training dataset
for each client, we sample 1000 images from each dataset,
resulting in a total of five clients participating in the training
process. All images from the test datasets are utilized for
evaluating the model. Prior to being fed into the model, all
images are converted into RGB images of size 32 × 32.

Office-Caltech-10. The Office-Caltech-10 [56] dataset is
composed of images captured by cameras with diverse imaging
parameters. It is categorized into four domains: Amazon (A),
Caltech (C), DSLR (D), and Webcam (W). Each domain
encompasses 10 classes of images. For our experiments, we
select 125 training images from each domain and assign them
to a single client. The test dataset is exclusively reserved for
evaluation purposes. To standardize the input, the images are
transformed into RGB format with dimensions of 256 × 256
pixels. Additionally, random flipping and rotation techniques
are applied to augment the dataset.

DomainNet. The DomainNet [57] dataset contains six do-
mains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q),
Real (R), and Sketch (S). These domains consist of images
with various artistic styles, such as painting and sketching.
Originally, each domain contains 345 classes. But for our
experiments, we select 10 commonly used classes to construct
our dataset. For each domain, we sample 500 training images
to create the training dataset for a single client. Similar to
the Office-Caltech-10 dataset, all testing images are reserved
exclusively for evaluation. The images are converted into
256 × 256 RGB images and augmented by randomly flipping
and rotating before being fed into the model.

(a)

C I P Q R SC I P Q R S

A C D WA C D W

MM MT UP SY SVMM MT UP SY SV

(b)

(c)

Fig. 5. Example images in different cross-domain datasets, (a) Digits-Five,
(b) Office-Caltech-10, (c) DomainNet.

B. Compared Methods

To evaluate the effectiveness of FedPick, we perform a
comparative analysis against the following methods:

SingleSet: This method trains and tests independent models
for each client, utilizing only its own data. Despite not

involving collaboration with other clients, it serves as a robust
benchmark, especially as the quantity of local data increases.

FedAvg: FedAvg is a classical FL method that aggregates
all local model parameters after several rounds of local updates
on clients [19].

FedProx: FedProx introduces a regularization term between
the local and global models, which constrains the direction of
local updates [58].

FedPer: This method utilizes a personalized classifier for
each client, allowing adaptation of client-specific features
extracted from the shared encoder [23].

FedRep: Similar to FedPer, FedRep employs personalized
classifiers for each client to adapt their features from a shared
encoder [24]. However, it distinguishes itself by performing
multiple local updates with respect to the personalized classi-
fier for every update of the global encoder.

LG-FedAvg: In contrast to FedPer and FedRep, LG-FedAvg
maintains personalized encoders on each client while sharing
a global classifier across all clients [26].

FedBN: This method localizes BN layer parameters on each
client while sharing the remaining parameters [18].

C. Implementation Details

For Digits-Five, we employ a CNN consisting of multiple
convolutional and FC layers. For Office-Caltech-10 and Do-
mainNet, we make use of a modified version of AlexNet [59].
This modification involves integrating a BN layer after each
convolutional and FC layer.

The PFSM is plugged on the features generated by the
global encoder. The feature dimension of Digits-Five is 8192,
while the feature dimensions of Office-Caltech-10 and Do-
mainNet are both 4096. Gumabel sampling is carried out
using a compact FC network with the following architecture:
[Linear(𝑑, 𝑑

2 )] -ReLU - Linear(𝑑, 𝑑
2 ) - Gumbel Sigmoid],

where 𝑑 represents the feature dimension.
All experiments are implemented using the PyTorch [46]

framework and executed on a four-card Nvidia V100 cluster.
We use SGD with momentum to update the model. The learn-
ing rate and momentum are set to 0.01 and 0.5, respectively,
in all experiments. Across all methods, a batch size of 64 is
employed during the local updating process. The local epoch
is set to 1 for all methods except for FedRep. In the case
of FedRep, the local update consists of 5 epochs, where the
first 4 epochs are dedicated to optimizing the classifier, and
the final epoch focuses on optimizing the encoder. The total
number of global communication rounds is set to 300. To
mitigate the randomness of the experimental results, we repeat
all experiments five times. The mean and standard deviation
values of the best test accuracy during the FL training are
presented in the following sections.

The hyperparameter 𝜇 adopted to balance the loss terms in
FedProx is set to 0.01 in the experiments. For LG-FedAvg, a
pre-training phase comprising 20 global rounds is performed
by aggregating all parameters on Office-Caltech-10 and Do-
mainNet. The hyperparameter combinations of FedPick are
detailed in Table III.
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TABLE II
TEST ACCURACY ON DIGITS-FIVE, OFFICE-CALTECH-10 AND DOMAINNET.

Method MM MT UP SY SV A C D W C I P Q R S

SingleSet 82.45
(0.42)

95.89
(0.17)

97.94
(0.13)

84.21
(0.17)

70.63
(0.85)

71.35
(1.14)

47.91
(0.44)

98.75
(1.53)

93.22
(1.07)

64.83
(0.21)

35.28
(0.56)

53.86
(0.36)

82.44
(0.33)

69.20
(0.45)

56.39
(1.01)

FedAvg 80.93
(0.49)

96.88
(0.15)

97.37
(0.22)

83.98
(0.45)

73.19
(0.61)

62.92
(1.21)

53.69
(0.99)

82.50
(2.50)

94.58
(1.27)

71.06
(0.72)

33.24
(0.98)

56.16
(0.74)

68.24
(1.18)

63.78
(0.56)

60.76
(1.24)

FedProx 81.71
(0.20)

96.92
(0.24)

97.29
(0.33)

83.79
(0.22)

71.78
(0.79)

61.35
(1.79)

53.78
(0.74)

82.50
(3.19)

95.59
(1.34)

70.61
(0.80)

32.88
(0.10)

55.22
(1.25)

67.02
(0.96)

63.47
(0.52)

58.16
(1.28)

FedPer 82.21
(0.35)

96.87
(0.25)

97.63
(0.44)

84.26
(0.40)

70.57
(0.61)

63.65
(0.83)

54.31
(0.52)

83.75
(3.64)

94.58
(1.27)

68.90
(0.26)

35.34
(0.85)

54.25
(0.62)

75.28
(0.89)

66.77
(0.77)

54.84
(0.52)

FedRep 80.89
(0.67)

96.30
(0.21)

97.65
(0.18)

83.08
(0.52)

66.07
(1.48)

63.44
(2.24)

49.96
(1.81)

80.63
(5.00)

92.20
(0.83)

65.86
(0.98)

34.31
(0.81)

50.92
(0.40)

69.66
(2.08)

63.04
(0.74)

52.24
(1.13)

LG-FedAvg 82.42
(0.23)

95.87
(0.05)

97.78
(0.09)

84.34
(0.42)

70.84
(0.49)

71.88
(0.57)

52.36
(1.10)

96.88
(1.98)

97.97
(0.68)

69.77
(0.67)

35.83
(0.80)

59.39
(1.15)

82.42
(0.45)

73.05
(0.68)

61.77
(0.21)

FedBN 83.53
(0.26)

97.24
(0.08)

98.45
(0.09)

85.58
(0.31)

78.22
(0.30)

72.40
(0.87)

54.22
(1.41)

97.50
(1.25)

98.64
(0.68)

71.22
(1.00)

34.82
(0.42)

59.55
(1.02)

80.80
(0.39)

70.29
(0.56)

63.03
(0.63)

FedPick 89.60
(0.34)

97.81
(0.02)

98.81
(0.04)

91.34
(0.25)

82.87
(0.19)

74.06
(1.06)

57.51
(0.36)

100.00
(0.00)

98.64
(0.68)

74.07
(0.49)

37.05
(0.92)

63.26
(0.82)

81.76
(0.42)

74.38
(0.50)

66.75
(1.00)
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Fig. 6. Variations in test accuracy throughout the training process: (a) Digits-Five, (b) Office-Caltech-10, (c) DomainNet.

TABLE III
HYPERPARAMETERS OF FEDPICK.

𝜏 𝜆𝑙𝑐𝑒 𝜆𝑒𝑛𝑡 𝜆𝑑𝑖𝑠

Digits-Five 10.0 10.0 0.001 10.0
Office-Caltech-10 1.0 1.0 0.001 1.0
DomainNet 1.0 1.0 0.001 1.0

D. Experimental Results

Tables II presents the basic experimental results on Digits-
Five, Office-Caltech-10, and DomainNet, respectively. These
findings highlight that SingleSet, despite being trained on
data from a single domain, performs remarkably well and
serves as a strong benchmark method. However, traditional
FL methods like FedAvg suffer from significant performance
degradation due to the domain gaps between different clients,
often failing to surpass the performance of SingleSet. On the
other hand, FedPer, FedRep, LG-FedAvg, and FedBN achieve
higher model accuracy by allowing the model to adapt to each
domain through personalized parameters such as classifiers
or BN layers in the encoder. Notably, our proposed method,
FedPick, outperforms the compared methods on all datasets
in most time, demonstrating its effectiveness in cross-domain
FL. Fig. 6 presents the variations in test accuracy during
the training. FedPick can converge to higher accuracy stably
compared with other FL methods.

VIII. ADDITIONAL ANALYSIS

In this section, we provide additional analysis of FedPick.
First, we conduct several ablation studies to demonstrate the
efficacy of the components employed in FedPick. Second, we
delve into the feature analysis for FedPick, highlighting the
effectiveness of feature selection operation. At last, we discuss
the experiments conducted on the hyper-parameters employed
in FedPick.

A. Ablation Study

In this subsection, we conduct ablation studies to illustrate
the efficacy of the components introduced in FedPick. The
results of the ablation study are presented in Table IV. In the
majority of cases, when the components specifically designed
for FedPick are removed, there is a noticeable decline in model
performance, thereby substantiating the effectiveness of these
components. The detailed experimental results are discussed
as follows.

Without PFSM. FedPick leverages PFSM to select task-
relevant features from the universal features. When PFSM is
excluded from the FedPick framework, FedPick essentially
reduces to FedBN. From the results presented in Table IV, it is
evident that the removal of PFSM leads to a substantial decline
in the performance of FedPick. This observation underscores
the critical role of personalized feature selection in enhancing
the FL model performance.
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TABLE IV
ABLATION STUDY RESULTS ON DIGITS-FIVE, OFFICE-CALTECH-10 AND DOMAINNET.

Setting MM MT UP SY SV A C D W C I P Q R S

FedPick 89.60
(0.34)

97.81
(0.02)

98.81
(0.04)

91.34
(0.25)

82.87
(0.19)

74.06
(1.06)

57.51
(0.36)

100.00
(0.00)

98.64
(0.68)

74.07
(0.49)

37.05
(0.92)

63.26
(0.82)

81.76
(0.42)

74.38
(0.50)

66.75
(1.00)

w/o PFSM 83.53
(0.26)

97.24
(0.08)

98.45
(0.09)

85.58
(0.31)

78.22
(0.30)

72.40
(0.87)

54.22
(1.41)

97.50
(1.25)

98.64
(0.68)

71.22
(1.00)

34.82
(0.42)

59.55
(1.02)

80.80
(0.39)

70.29
(0.56)

63.03
(0.63)

w/o 𝐿𝑙𝑐𝑒
88.76
(0.14)

97.61
(0.05)

98.81
(0.09)

89.55
(0.05)

81.24
(0.25)

74.06
(1.29)

57.07
(1.37)

99.38
(1.25)

98.31
(0.00)

71.33
(1.14)

36.56
(0.38)

62.10
(0.63)

81.08
(0.30)

72.49
(0.90)

64.19
(1.25)

w/o 𝐿𝑒𝑛𝑡
89.55
(0.22)

97.79
(0.04)

98.70
(0.08)

91.18
(0.20)

82.77
(0.14)

72.19
(0.53)

57.33
(1.57)

98.75
(1.53)

98.31
(0.00)

73.16
(0.58)

37.02
(0.70)

62.78
(0.39)

81.62
(0.29)

74.38
(0.27)

66.43
(0.68)

w/o 𝐿𝑑𝑖𝑠
88.84
(0.17)

97.66
(0.10)

98.65
(0.02)

90.93
(0.16)

81.88
(0.23)

73.44
(1.23)

56.44
(0.63)

98.13
(1.53)

98.31
(0.00)

73.16
(1.01)

37.14
(0.62)

63.36
(0.60)

81.60
(0.32)

74.18
(1.04)

66.17
(0.69)

Soft Mask 88.62
(0.16)

97.78
(0.04)

98.84
(0.05)

90.26
(0.16)

82.16
(0.26)

71.77
(1.06)

56.36
(0.95)

100.00
(0.00)

98.31
(0.00)

73.73
(0.62)

37.29
(0.63)

61.78
(0.60)

81.48
(0.47)

73.54
(0.49)

65.45
(1.15)

Share BN 88.83
(0.10)

97.62
(0.09)

98.71
(0.13)

90.78
(0.18)

80.37
(0.28)

64.69
(1.21)

53.87
(0.65)

90.00
(2.34)

95.93
(0.83)

74.18
(0.99)

35.86
(0.83)

57.77
(0.45)

71.80
(0.30)

67.05
(0.84)

63.43
(0.71)

Share PFSM 90.04
(0.30)

97.93
(0.08)

98.67
(0.09)

90.92
(0.05)

84.28
(0.24)

73.85
(0.83)

56.18
(1.15)

98.75
(1.53)

98.31
(0.00)

73.38
(0.71)

35.59
(1.22)

61.23
(0.57)

81.32
(0.47)

72.56
(0.41)

65.99
(1.13)

w/o Ensemble 87.69
(0.19)

97.87
(0.05)

98.69
(0.09)

89.64
(0.17)

83.78
(0.21)

72.81
(1.52)

56.27
(0.45)

97.50
(1.25)

98.64
(0.68)

72.55
(1.12)

35.56
(1.27)

60.84
(0.88)

80.38
(0.37)

71.59
(0.48)

65.56
(0.49)

Without 𝐿𝑙𝑐𝑒, 𝐿𝑒𝑛𝑡 , and 𝐿𝑑𝑖𝑠 . In Eq. (15), the loss
terms 𝐿𝑙𝑐𝑒, 𝐿𝑒𝑛𝑡 , and 𝐿𝑑𝑖𝑠 are specifically designed to serve
different purposes within the FedPick. These terms aim to
minimize the classification loss of personalized features, max-
imize the entropy of predictions derived from task-irrelevant
features, and facilitate knowledge distillation between global
and personalized predictions, respectively. The purpose of this
experiment is to evaluate the impact of these loss terms on
the performance of FedPick. The results presented in Table
IV indicate that removing these loss terms leads to a drop in
model accuracy, suggesting that these loss terms play a crucial
role in enhancing the model performance of FedPick.

Using Soft Mask. In FedPick, we employ a hard binary
mask, denoted as m, to discretely select features (either
selecting or not). However, an alternative approach involves
employing a soft mask to re-weight the features in a con-
tinuous manner. In this experiment, we exclude the binary
operation during the sampling and directly employ a soft mask,
denoted as m𝑠 , to re-weight the features. The re-weighting
process is shown in Eq. (21), where z𝑔 represents the global
features, m𝑠 denotes the soft mask, z𝑝

𝑠 and z𝑢𝑠 represents
the task-relevant and task-irrelevant features, respectively. The
results depicted in Table IV indicate that although the soft
feature selection mechanism is effective in the context of
FedPick, it falls short of surpassing the performance achieved
by the hard feature selection mechanism adopted in this paper.

z𝑝
𝑠 = z𝑔 ⊙m𝑠 , z𝑢𝑠 = z𝑔 ⊙ (1 −m𝑠). (21)

Sharing BN layers. BN is commonly employed by default
in most state-of-the-art (SOTA) CNNs. Nevertheless, earlier
studies have demonstrated that aggregating BN layers can lead
to a notable performance degradation [18], [27]. Therefore, in
FedPick, we adopt a personalized BN layer strategy to mitigate
the mutual inference among multiple domains, following the
approach taken by numerous previous studies [18], [27], [28],
[20], [32]. In this experiment, we aim to demonstrate the
effectiveness of personalizing the BN layers. As shown in
Table IV, when the BN layers are shared across clients, there is
a noticeable decrease in accuracy, consistent with the findings

reported in prior research. Given the observed benefits of
personalizing BN layers in a cross-domain scenario and the
ease of integration into existing frameworks, we decide to
incorporate personalized BN layers into FedPick, aiming to
further enhance its performance.

Sharing PFSM. In this paper, the PFSM is localized
on each client to specially select the personalized features
based on each client’s data distribution. This experiment aims
to showcase the efficacy of personalizing the PFSM. The
results presented in Table IV demonstrate that sharing the
PFSM parameters leads to improved model performance for
simpler datasets like Digits-Five. However, as the complexity
of the dataset increases, as observed in Office-Caltech-10 and
DomainNet, sharing the PFSM parameters negatively affects
the model performance.

Without Ensemble. In FedPick, the final predictions are
obtained by ensembling the predictions derived from both
global features and personalized features. The purpose of this
experiment is to showcase the effectiveness of this ensem-
ble strategy. As depicted in Table IV, when using only a
global classifier for prediction, there is a significant decrease
in accuracy. Nevertheless, the accuracy still remains higher
compared to FedBN. This higher accuracy can be attributed
to the knowledge transfer from the personalized classifier to
the global classifier through a process known as distillation.

B. Analysis of Features

Selection Ratios for Different Domains. Fig. 7 presents the
ratios of selected task-relevant features to the total number of
features for different domains. As the complexity of the dataset
increases, the local task becomes more challenging, leading
to a higher proportion of selected features to accomplish the
task. For instance, the average selection ratio of DomainNet
is significantly higher compared to the other two datasets.
Similarly, within the same dataset, a more intricate domain
tends to require a larger number of features. For instance,
SVHN necessitates more features compared to other domains
within the Digits-Five dataset. The complexity of the datasets
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can be discerned from the example images presented in Fig.
5. These findings demonstrate the adaptive feature selection
capability of FedPick, allowing it to tailor the feature selection
process based on the unique data distribution of each client.
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Fig. 7. Feature selection ratios for different domains.

Feature Discrimination. Fig. 8 presents the T-SNE visual-
ization [60] of task-relevant and task-irrelevant features on the
DomainNet dataset. The visualization demonstrates that task-
relevant features exhibit higher discriminative characteristics,
as they are more consistent within classes and scattered
between classes compared to task-irrelevant features. This
observation highlights the effective feature selection capability
of FedPick in selecting important features for the local task.
To provide a quantitative evaluation of feature discrimination,
we further utilize the Fisher Score, as depicted in Fig. 9.
The figure reveals that task-relevant features possess higher
Fisher Scores in comparison to task-irrelevant features, which
aligns with the findings from Fig. 8. Additionally, it is worth
noting that the disparity in Fisher Scores between task-relevant
and task-irrelevant features increases as the dataset complexity
rises. This finding underscores the greater usefulness of feature
selection for more complex datasets.
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Fig. 8. T-SNE [60] visualization of task-relevant and task-irrelevant features
on the DomainNet dataset.
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Fig. 9. Fisher Scores of task-relevant and task-irrelevant features on different
domains.

Overlapped Ratio of Important Features. In our analysis,
we consider the top 50% of the most frequently selected
features on a test dataset as important features for the entire
domain. To calculate the overlapped ratio of these important
features between different domains, we determine how many
of these features are common or shared across the domains
under study. The overlapped ratio between two domains is

defined as the ratio of the cardinal of the intersection to the
union of important features. The overlapped ratios of important
features between different domains are shown in Fig. 10. It
can be seen that there are a large proportion (about 20%
to 30%) of important features that do not overlap between
different domains, indicating that each domain possesses its
own set of significant features. This result further supports
the motivation behind FedPick. Additionally, within the same
dataset, domains with a higher degree of similarity exhibit
a greater overlapped ratio of important features. For example,
MNIST and MNIST-M in the Digits-Five domain demonstrate
a higher overlapped ratio, indicating that similar domains tend
to share important features.
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Fig. 10. Overlapped ratios of important features among different domains,
(a) Digits-Five, (b) Office-Caltech-10, (c) DomainNet.

C. Effect of Hyperparameters

Hyperparameters in Loss Function. The total loss func-
tion in Eq. (15) incorporates four hyperparameters, that is 𝜏,
𝜆𝑙𝑐𝑒, 𝜆𝑒𝑛𝑡 , and 𝜆𝑑𝑖𝑠 . The accuracy obtained with different
hyperparameter settings is depicted in Fig. 11. It can be
observed that the model’s performance remains stable with
respect to changes in 𝜏. However, the performance is more
sensitive to variations in 𝜆𝑙𝑐𝑒 and 𝜆𝑑𝑖𝑠 . Although the curve
representing 𝜆𝑒𝑛𝑡 in Figure 15 appears stable, we encountered
gradient explosion issues when increasing its value during
training. Consequently, in our experiments, we only report the
results for smaller values of 𝜆𝑒𝑛𝑡 ranging from 10−7 to 10−1.

Hyperparameters for FL System. We consider two hy-
perparameters that are important to FL, that are the local
update epoch and local batch size. Fig. 12 illustrates the model
accuracy with varying local epochs. It can be observed that in
cross-domain FL, the models of all FL methods exhibit a cer-
tain level of robustness to changes in local epochs. Particularly
for simpler datasets like Digits-Five, increasing local epochs
can even lead to a slight improvement in model accuracy. Fig.
13 displays the accuracy with different batch sizes. While the
model accuracy decreases as the local batch size increases for
all FL methods, FedPick demonstrates greater robustness to
batch size variations and outperforms other FL methods across
different batch sizes.

IX. CONCLUSION

In this paper, we propose FedPick, a novel PFL frame-
work for cross-domain scenario that works within the low-
dimensional feature space. We are motivated by the ob-
servation that existing FL methods often extract redundant
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Fig. 11. Test accuracy with different hyperparameters in Eq. (15): (a) 𝜏, (b)
𝜆𝑙𝑐𝑒 , (c) 𝜆𝑒𝑛𝑡 , (d) 𝜆𝑑𝑖𝑠 .
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Fig. 12. Test accuracy with different local epochs: (a) Digits-Five, (b) Office-
Caltech-10, (c) DomainNet.
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Fig. 13. Test accuracy with different batch sizes: (a) Digits-Five, (b) Office-
Caltech-10, (c) DomainNet.

features, which can limit model performance. To address this
issue, FedPick enhances model performance by adaptively
selecting task-relevant features for each domain, leveraging its
specific data distribution. To achieve feature selection, FedPick
introduces a PFSM for each client. The PFSM employs
reparameterization techniques to make the discretized feature
selection process differentiable. This enables easy integration
of the PFSM into the backbone model, allowing it to be trained
end-to-end using local data on each client. Our experimental
results demonstrate that FedPick successfully mitigates feature
redundancy by selecting task-relevant features based on the
data distribution of each client. Consequently, the proposed
framework significantly improves model performance. Fed-
Pick provides an effective approach to achieving PFL within

a low-dimensional feature space. This not only simplifies
implementation but also enhances interpretability, thereby
showcasing its potential for practical applications in cross-
domain FL.
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