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Abstract—Per-Flow cardinality measurement in high-speed
networks is essential for network security and traffic analysis
applications. Flow cardinality refers to the number of distinct
elements within a flow, such as the number of unique desti-
nation IPs associated with a given source IP. While extensive
research has been conducted on single-flow cardinality esti-
mation, achieving accurate per-flow cardinality measurement
with real-time performance and low memory overhead remains
challenging in large-scale network environments, particularly
given the highly skewed distribution of flow cardinalities where
mouse flows with smaller cardinalities dominate, and elephant
flows with larger cardinalities are fewer. This paper introduces
MEC-Sketch, a memory-efficient cardinality estimation data
structure that leverages the inherently skewed distribution of
flow cardinalities in network trafficc MEC-Sketch employs a
dual-component architecture: a heavy part utilizing a majority
vote algorithm for precise super-spreader detection, and a light
part implementing compact cardinality estimators for memory-
efficient measurement of mouse flows. We address two fun-
damental technical challenges: (1) adapting the majority vote
algorithms to operate with cardinality estimators that lack native
support for real-time queries, and (2) implementing an effective
mapping strategy between large estimators in the heavy part and
small estimators in the light part during elephant-mouse flow
separation. Comprehensive evaluations on real-world network
traces demonstrate that MEC-Sketch significantly outperforms
state-of-the-art solutions in terms of estimation accuracy, memory
efficiency, and computational performance for both cardinality
estimation and super-spreader detection tasks.

Index Terms—sketch, cardinality estimation, super-spreader
detection, network measurement.

I. INTRODUCTION
A. Background and Motivation

Per-flow cardinality measurement is critical for various
network applications in high-speed networks, including detec-
tion of DDoS attacks [1]-[5], P2P hot-spot localization [6],
port scanning measurement [7], and worm propagation detec-
tion [8], [9]. Each flow can be viewed as a pair (f, ¢), where
f is the flow key and e denotes the element of interest. The
cardinality of a flow is defined as the number of distinct e
corresponding to f. For example, we can treat the source IP
as the flow key and the destination IP as the element. The
cardinality is defined as the number of unique destination IPs
associated with each source IP.

Due to their memory efficiency and constant-time updates,
sketch-based per-flow cardinality measurement solutions have
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been widely adopted. Sketch-based solutions map flows to
buckets, each of which contains a cardinality estimator (Lin-
ear Counting [10], HyperLoglog [11], or Multiresolution
Bitmap [12]). Due to hash collisions, multiple flows may be
mapped to the same bucket, introducing estimation errors.
Nevertheless, sketch-based solutions achieve high memory
efficiency and constant-time updates.

Although existing sketch-based solutions partially allevi-
ate the challenges in this domain, their accuracy, memory
efficiency, and real-time performance still fall short of ex-
pectations. Per-flow cardinality measurement involves two
fundamental tasks: cardinality estimation and super-spreader
detection. Cardinality estimation aims to measure the cardinal-
ity of all flows, whereas super-spreader detection focuses on
identifying flows whose cardinalities exceed a given threshold.
Sketches designed for cardinality estimation can often be
extended to support super-spreader detection—typically by
maintaining a min-heap or similar structure—but they gener-
ally exhibit lower memory efficiency and throughput compared
to sketches specifically designed for super-spreader detection,
which avoid tracking all flows. Therefore, in the following,
we use state-of-the-art solutions for cardinality estimation and
super-spreader detection to illustrate the limitations of existing
sketch-based per-flow cardinality measurement solutions, and
introduce our solution accordingly.

Couper [13] is the state-of-the-art solution for cardinality
estimation. Given the skewed distribution of flow cardinalities
in network traffic, Couper employs a two-layer sketch design,
where mouse flows are confined to the first layer and elephant
flows overflow into the second layer. It is worth noting
that, in frequency-related tasks, elephant flows refer to flows
containing a large number of packets. In cardinality-related
tasks, elephant flows refer to flows with high cardinality.
However, this design faces two key limitations: (1) each
insertion requires scanning dozens of bits in the first-layer
estimator to determine whether the flow should be promoted,
compromising real-time performance; and (2) since elephant
flows must also pass through the first layer, hash collisions
between elephant and mouse flows are highly likely, resulting
in overestimation of mouse flows. Although Couper can be
extended to support super-spreader detection by maintaining
an additional bucket table, its accuracy, memory efficiency,
and throughput are inferior to NDS [14], a solution specifically
designed for super-spreader detection.



NDS [14] is the state-of-the-art solution for super-spreader
detection. NDS modifies HLL into a non-duplicate sampler,
which outputs elements with a varying probability p when
they first appear. This allows it to maintain a simple counter
to measure flow cardinality, incrementing the counter by 1/p
every time a successful sample is taken. Additionally, it uses
exponential decay strategy to handle hash collisions. However,
NDS suffers from two main limitations: (1) due to its sampling
nature, it requires processing a large number of elements to
achieve convergence; and (2) its low throughput makes it
unsuitable for high-speed networks.

An ideal per-flow cardinality measurement solution should
support both cardinality estimation and super-spreader detec-
tion without compromising the performance of either task.
Specifically, compared to state-of-the-art cardinality estimation
solutions, it should offer higher throughput, memory effi-
ciency, and estimation accuracy; and compared to state-of-the-
art super-spreader detection solutions, it should achieve higher
throughput and detection accuracy.

To simultaneously support both cardinality estimation and
super-spreader detection without compromising the perfor-
mance of either task, we propose a dual-component archi-
tecture: a heavy part utilizing a majority vote algorithm
for precise super-spreader detection, and a light part imple-
menting compact cardinality estimators for memory-efficient
measurement of mouse flows. In contrast to Couper, which
restricts mouse flows to the first layer and gradually promotes
elephant flows to the second layer, our design prioritizes
the identification of elephant flows in the heavy part and
evicting mouse flows to the light part. This design offers two
key advantages: (1) prioritizing elephant flows ensures high
throughput for both cardinality estimation and super-spreader
detection, avoiding the throughput degradation seen in Couper
due to its mouse-first design; and (2) separating elephant and
mouse flows minimizes hash collisions between them, thereby
reducing the overestimation of mouse flows and improving the
accuracy of cardinality estimation. In addition, compared to
NDS: (1) our majority voting-based super-spreader detection
avoids the need for a large number of traffic to achieve
convergence, thereby ensuring high detection accuracy; and
(2) we introduce a novel approximate cardinality estimation
technique to further enhance the throughput of super-spreader
detection. In summary, our solution employs a single sketch to
support both cardinality estimation and super-spreader detec-
tion without compromising the performance of either task. It
achieves higher throughput, memory efficiency, and estimation
accuracy than state-of-the-art cardinality estimation solutions,
as well as higher throughput and detection accuracy than state-
of-the-art super-spreader detection solutions.

B. Proposed Solution and Contributions

Contribution I: We design MEC-Sketch, a novel memory-
efficient cardinality estimation sketch. MEC-Sketch comprises
two components: a heavy part and a light part. The heavy
part employs the majority vote algorithm to enable efficient
super-spreader detection, while the light part utilizes compact

cardinality estimators (e.g., Linear Counting with a few dozen
bits) to achieve memory-efficient cardinality estimation. MEC-
Sketch also separates elephant flows from mouse flows to
prevent the overestimation of mouse flows.

Contribution II: We address key challenges in transi-
tioning from counter-based to estimator-based designs. First,
we observe that the cardinality estimate of the cardinality
estimator is proportional to the sum of its register values.
Since cardinality estimators do not inherently support real-
time queries, we approximate their estimates by dynamically
accumulating register values, ensuring compatibility with the
majority vote algorithm. Second, during the separation of
elephant and mouse flows, we effectively map the large
cardinality estimators in the heavy part to smaller ones in
the light part by using a shared set of hash functions and
configuring the array length of each estimator in the heavy part
as an integer multiple of those in the light part. Finally, during
the query phase, we enhance estimation accuracy through an
AND-based noise elimination strategy.

Contribution III: We conduct extensive experiments on
two real-world network traces to evaluate MEC-Sketch. Ex-
perimental results demonstrate that MEC-Sketch surpasses
state-of-the-art sketches in both cardinality estimation and
super-spreader detection accuracy. Additionally, MEC-Sketch
achieves higher throughput and faster query times compared
to most existing solutions.

II. RELATED WORK
A. Sketch

Sketch is a probabilistic data structure that employs hash
functions to map flows into buckets. To prevent reaching its ca-
pacity limit, sketch is reset at the end of each period. Existing
sketches support various network measurement tasks and can
be broadly classified into two categories: frequency-related and
cardinality-related. The two primary frequency-related tasks
are frequency estimation and heavy-hitter detection. Frequency
estimation determines the number of packets in a flow, with
representative sketches including CM Sketch [15], Count
Sketch [16], and so on. To enhance memory efficiency and
accuracy,some frequency estimation sketches separate elephant
and mouse flows, such as Cold Filter [17], Elastic Sketch [18],
and so on [19], [20]. Heavy-hitter detection identifies flows ex-
ceeding a predefined threshold. Notable sketches for this task
include MV Sketch [21], Elastic Sketch, HeavyKeeper [22]
and so on [23], [24]. MV Sketch and Elastic Sketch employ
the majority vote algorithm to improve detection accuracy.
Cardinality-related sketches are discussed in Section II-B.

B. Cardinality Estimation and Super-Spreader Detection

Sketch-based cardinality estimation solutions [13], [25]-
[29] are mostly variants of frequency-related sketch. gSkt [27]
is a cardinality estimation variant of CM Sketch, performing
k independent estimations and returning the minimum value.
rerSkt [29] follows the strategy similar to Count Sketch [16],
dividing background traffic into primary and secondary esti-
mators, with the secondary estimator used to subtract errors
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Fig. 1: Overview of MEC-Sketch. The heavy part employs the majority vote algorithm to separate elephant flows from mouse
flows, enabling efficient super-spreader detection. The light part utilizes compact cardinality estimators (e.g., Linear Counting
with a few dozen bits) to achieve memory-efficient cardinality estimation.

from the primary one. Couper [13] is the state-of-the-art
solution for cardinality estimation and can be viewed as a
variant of Cold Filter [17]. Given the skewed distribution of
flow cardinalities in network traffic, Couper employs a two-
layer sketch design, where mouse flows are confined to the
first layer and elephant flows overflow into the second layer.
This approach effectively separates elephant and mouse flows,
enhancing memory efficiency.

Similarly, sketch-based super-spreader detection solu-
tions [14], [30]-[38] are mostly variants of frequency-related
sketch. SpreadSketch [38] adapts CM Sketch and uses a
probabilistic approach to record super-spreaders. Similar to the
overestimation in CM Sketch, SpreadSketch also suffers from
significant estimation errors. The state-of-the-art solution,
NDS [14] modifies HLL into a non-duplicate sampler, which
filters out duplicate elements and outputs them with a varying
probability p when they first appear. This allows it to maintain
a simple counter to measure flow cardinality, incrementing
the counter by 1/p every time a successful sample is taken.
Additionally, it uses exponential decay strategy to handle hash
collisions. However, NDS requires processing a large number
of elements to achieve convergence. There are other super-
spreader detection sketches [30]-[37], but as described in the
NDS, their performance is inferior to NDS.

C. Single-Flow Cardinality Estimator

HyperLogLog (HLL) [11] maintains an array A of m
registers and is associated with two hash functions hq()
and ho(). When inserting an element e, HLL uses hj(e)
to determine the target register A[h(e)]. Then, HLL uses
ha(e) to generate a bit string and calculates the number of
leading zeros plus one, denoted as z. Subsequently, HLL
updates A[h;(e)] = max(A[hi(e)], z). During querying, HLL
estimates the cardinality using the following formula: ¢ =
QX M2 gz:’;ol 2’AM) , where «,,, is a constant defined
as ay, = 171% If ¢ is found to be less than %m, HLL treats
register array as a bitmap and employs LC to estimate result.

Due to space constraints, we will not provide a detailed
introduction of other single-flow cardinality estimators [10],
[12]. Further details can be found in their respective papers.

III. MEC-SKETCH

A. Overview of MEC-Sketch

As shown in Fig. 1, MEC-Sketch consists of two com-
ponents: a heavy part and a light part. To demonstrate its
operation, we consider the insertion and query process of the
flow (f,e), where f is the flow key and e denotes the element
of interest, such as (srcIP,dstIP).

When inserting (f,e), MEC-Sketch first attempts to insert
the flow in the heavy part. If the flow key matches or an
empty slot is available, MEC-Sketch directly inserts (f, e) and
increments the positive votes Vote' based on the positive
cardinality estimator ET. Otherwise, MEC-Sketch increments
the negative votes Vote™ based on the negative cardinality
estimator £/~ and checks whether the ratio of Vote™ to the
minimum Vote® exceeds the eviction threshold \. If \ is
not reached, MEC-Sketch inserts (f,e) into the light part.
Otherwise, MEC-Sketch replaces the flow with the minimum
Vote™ with (f,e), sets the replacement flag Flag to True,
and moves the evicted flow to the light part.

When querying a flow with flow key f, MEC-Sketch first
searches in the heavy part. If a matching flow key is found
and the replacement flag Flag is False, it indicates that
MEC-Sketch records the accurate cardinality. If Flag is True,
MEC-Sketch performs queries in both the heavy and light
parts and mitigates overestimation errors using the algorithm
described in Section III-D. If no match is found in the heavy
part, MEC-Sketch performs the query in the light part and
returns its cardinality.

In the following sections, we will elaborate on the design of
MEC-sketch progressively and in detail from three versions:
the parallel version, the minimal version, and the cardinal-
ity estimation version. The parallel version supports only
super-spreader detection and utilizes parallel processing; the
minimal version also supports only super-spreader detection
but sacrifices parallelism to improve accuracy; the cardinality
estimation version supports both cardinality estimation and
super-spreader detection. We will begin with the simplest
parallel version, followed by the minimal version, and finally,
the cardinality estimation version as shown in Fig. 1.
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Fig. 2: The data structure of MEC-Sketch (Parallel Version).
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B. MEC-Sketch for Super-Spreader Detection: Parallel Ver-
sion

One of the design goals of MEC-Sketch is to identify super-
spreaders, which are elephant flows with large cardinalities.
Due to hash collisions, multiple flows may be mapped to
the same bucket, necessitating an approach that selectively
retains only elephant flows. To achieve this, MEC-Sketch
employs the majority vote algorithm [18], [21]. Specifically,
when the incoming flow is not found in the bucket, MEC-
Sketch increments the negative vote Vote™ . If the threshold
A is reached, the existing flow is replaced with the new flow.
This mechanism ensures that mouse flows are quickly evicted,
while elephant flows remain stable in the buckets.

Insight: The majority vote algorithm is effective in
frequency-related sketches due to real-time counter reading.
However, it is not directly applicable to cardinality estimators.
For instance, in a typical HLL configuration with 128 registers,
each 5 bits in size, estimating cardinality requires scanning all
128 registers, significantly impacting real-time performance.
Upon analyzing the classical cardinality estimators in Sec-
tion II-C, we observe that the sum of register values in
their arrays is proportional to the estimated cardinality. This
sum can be accumulated in real time, enabling an efficient
alternative. To leverage this property, we introduce an ad-
ditional counter to track the sum of register values, using
it as a proxy for cardinality in the majority vote algorithm.
The storage overhead of a single 16-bit counter is negligible
compared to that of a full cardinality estimator (e.g., an HLL
with 128 registers of 5 bits each) while ensuring real-time
efficiency. Specifically, in LC and MRB, a higher proportion
of ones indicates a larger cardinality. Thus, we maintain an
additional counter Vote, incrementing it whenever a mapped
bit is zero, i.e., Vote = Vote 4+ 1. Although the cardinality
of MRB depends on its highest occupied level, in practice,
we found that counting the number of ones often yields a
good approximation to the cardinality and produces favorable
experimental results. In HLL, a larger sum of register values
corresponds to a greater cardinality. Therefore, we maintain
an additional counter Vote as well. If the value stored in a
register is less than the inserted value by N, we update the
counter as Vote = Vote + N.

Data Structure: As shown in Fig. 2, MEC-Sketch com-
prises d arrays, each containing w buckets. Each bucket
consists of five fields: flow key, positive cardinality es-

timator, positive votes, negative cardinality estimator, and
negative votes. Each array is associated with two hash
functions, h;() and g(). Given a flow (f,e), MEC-Sketch
maps f to a bucket using h;(f) and maps e to the cor-
responding register or bit in the cardinality estimator us-
ing g(f,e). For convenience, we denote the j-th bucket in
the i-th array as A[i][j], with its respective fields repre-
sented as A[i][j].Key, Afi][§].ET, Ali][j].Vote™, Ali][j].E~,
Ali][j].Vote™ 1<i<d,0<j<w-—1).

Insertion: Initially, all fields are empty. Given a flow (f,e),
MEC-Sketch computes d hash functions to map it to d buckets
A[i][h:(f)] @ < ¢ < d). As shown in Fig. 3, taking HLL
as an example, in addition to the aforementioned two sets
of hash functions (h() and ¢()), HLL also requires a set of
hash functions to compute the number of leading zeros. For
convenience, we assume that the number of leading zeros
of the flow (f,e), plus one, is denoted as [z. MEC-Sketch
then processes each mapped bucket according to three distinct
cases, as described below.

Case 1: If A[i][hi(f)].Key = Null, the bucket
is empty. MEC-Sketch assigns f to the flow key
field, sets A[i|[h;(f)]-ET[g(f,e)] = lz, and increments
Alil[hi(f)]-Vote™ by lz.

Case 2: If A[i][h;(f)].Key = f, the bucket already records
the cardinality of flow f. If iz > A[i|[h:(f)].ET[g(f,e€)],
MEC-Sketch updates A[i][h;(f)].E*[g(f, )] to Iz and adjusts
Ali][hi(f)]-Vote™ by adding 1z — A[i][hi(f)].E* [g(f, e)]-

Case 3: 1f A[i][hi(f)].Key # f and A[i][h;(f)].Vote™ >
0, the bucket does not store the cardinality of flow
fo It lz > Ald|[hi(f)].E~[g(f,e)], MEC-Sketch
updates  Ali][h;(f)].-E~[g9(f,e)] to lz and increments
Alil[hi(f)].Vote™ by Iz — Alil[h:(f)].E"[g(f,e)]. If the
ratio  A[i][h;(f)].Vote™ JA[i][h;(f)].Votet > )\, MEC-
Sketch resets the bucket and inserts (f,e) following Case 1.
In other words, when the negative votes exceeds A times the
positive votes corresponding to the flow key stored in the
bucket, MEC-Sketch replaces the flow with a new one.

Query: To estimate the cardinality of flow f, MEC-
Sketch first computes d hash functions to locate d buckets
Ali]lhi(f)] A < i < d). Among these, it selects the
buckets where A[i][h;(f)]. Key = [ and estimates their
cardinality based on A[i][h;(f)].ET. The final cardinality
estimate is the maximum value across the selected buckets:
maxi<;<a{ Est(A[i][hi(f)].ET)}, where Est() represents the
cardinality estimation function of the corresponding estimator.

Analysis: By maintaining a counter (Vote™ or Vote™) for
each cardinality estimator, MEC-Sketch enables real-time car-
dinality estimation. Additionally, the majority vote algorithm
facilitates effective super-spreader detection.

Discussion: It is worth noting that this differs from replac-
ing counters with cardinality estimators in MV-Sketch [21].
Lines 6-9 of Alg. 1 in MV-Sketch cannot be implemented with
a cardinality estimator. Additionally, we do not emphasize the
novelty of majority vote algorithm. The key challenge lies in
the fact that cardinality estimators do not support real-time
updates like counters.
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Fig. 3: The main insertion cases of MEC-Sketch (Parallel Version). MEC-Sketch employs the majority vote algorithm to
enable efficient super-spreader detection, and approximates their cardinality by dynamically accumulating register values of
the cardinality estimator, thereby ensuring the real-time performance of the majority vote algorithm.

C. MEC-Sketch for Super-Spreader Detection: Minimal Ver-
sion

Insight: We observe that it is unnecessary to maintain
a negative cardinality estimator for each positive cardinality
estimator. By sacrificing parallelism, accuracy and memory
efficiency can be further improved.

Data Structure: As shown in Fig. 4, MEC-Sketch consists
of an array of buckets, each containing w slots. Unlike the
parallel version, this structure maintains only a negative car-
dinality estimator and negative votes. This array is associated
with two sets of hash functions:h() and ¢(). Given a flow
(f,e), MEC-Sketch maps f to a bucket using i(f) and maps e
to the corresponding register or bit in the cardinality estimator
using g(f, e). For convenience, we use A[i][j] to represent the
j-th slot in the -th bucket. The first w—1 slots store flow keys,
positive cardinality estimators, and positive votes, denoted as
Ali][§]. Key, Ali][j].E*, and A[i][j].Vote™ (1 <i<d,1<
7 < w — 1). The last slot of each bucket maintains the
negative cardinality estimator and negative votes, represented
by Ali][w — 1].E~ and A[i][w — 1].Vote™, respectively.

Insertion: Initially, all fields are empty. Given a flow
(f,e), MEC-Sketch uses h(f) to locate the corresponding
bucket A[h(f)]. Taking HLL as an example, we assume that
the number of leading zeros of the flow (f,e), plus one,
is denoted as [z. MEC-Sketch then processes each mapped
bucket according to three distinct cases, as described below.

Case 1: If any of the first w — 1 slots in A[h(f)] contain
the flow key f, MEC-Sketch directly inserts the flow (f,e).

Case 2: If none of the first w — 1 slots contain f, but an
empty slot is available, MEC-Sketch inserts (f,e) into that
slot.

The insertion procedures in Case I and Case 2 are identical
to those in the parallel version. The key difference lies in Case
3. In Case 3, where MEC-Sketch always attempts to evict the
slot with the minimum positive vote.

Case 3: If all w — 1 slots are occupied and none contain
f» MEC-Sketch updates the negative cardinality estimator
if Iz > Ah(fH)]w — 1).E"[g(f,e)], setting A[h(f)][w —
1].E~[g(f,e)] = lz and incrementing the negative votes as
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Fig. 4: The data structure and main insertion cases of MEC-
Sketch (Minimal Version). MEC-Sketch enhances accuracy
and memory efficiency by sacrificing parallelism, specifically
by maintaining only a negative cardinality estimator.

Alh(f))lw — 1)-Vote™+ = Lz — AR()]fw — 11.E[g(f. o).
Let 5 denote the slot with the minimum positive votes. If the
eviction condition A[h(f)][w—1].Vote™ JA[h(f)][j].Votet >
A is met, MEC-Sketch replaces the flow in A[h(f)][j] with
(f, e) and resets A[h(f)][w — 1].

Example: We present an example of Case 3. As shown in
Fig. 4, the bucket mapped by flow (f,e) does not contain
the flow key f. If the number of leading zeros of (f, e)
plus one, denoted as [z, exceeds the value stored in the HLL
register A[h(f)][w—1].E~[g(f,e)] of the negative cardinality
estimator, MEC-Sketch updates this register to [z and sets the
negative vote A[h(f)][w—1].Vote™ = 47+1z— A[h(f)]w—
1].E~[g(f,e)]. If the ratio of this updated negative vote
A7+1z—A[R(f)][w—1].E~ [g(f, e)]) to the minimum positive
vote (6) in the bucket exceeds the threshold (A = 8), MEC-
Sketch replaces the slot containing the flow with the minimum
positive vote with (f, e).

Query: To estimate the cardinality of flow f, MEC-Sketch
computes h(f) to locate the bucket A[h(f)]. If any of the
w — 1 slots contain the same flow key f, the cardinality is
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estimated based on the corresponding cardinality estimator.

Analysis: By sharing a negative cardinality estimator and
negative votes among multiple flows, MEC-Sketch signifi-
cantly improves memory efficiency. Additionally, the presence
of multiple slots per bucket enables effective identification of
all super-spreaders, even when multiple super-spreaders are
mapped to the same bucket.

D. MEC-Sketch for Cardinality Estimation

As shown in Fig. 5, we analyze flow cardinality by consider-
ing the number of distinct destination IPs associated with each
source IP. The probability density function (PDF) is plotted
for 10 million consecutive packets from the MAWI [39] and
CAIDA [40] datasets. Mouse flows with smaller cardinalities
dominate, while elephant flows with larger cardinalities are
fewer. To enhance memory efficiency, a natural approach is
to separate elephant and mouse flows. Specifically, compact
cardinality estimators (e.g., LC with a few dozen bits) are
allocated to the numerous mouse flows, while more complex
estimators (e.g., HLL with 128 registers of 5 bits each) are
reserved for the relatively few elephant flows.

The primary challenge lies in separating elephant and mouse
flows. Existing frequency-related sketches employ two strate-
gies to achieve such separation: (1) restricting mouse flows
to the first layer and gradually promoting elephant flows to
the second layer; (2) prioritizing the identification of elephant
flows in the first layer and evicting mouse flows to the second
layer. These approaches also apply to cardinality estimation.

Insight: The state-of-the-art solution, Couper [13], adopts
the first strategy but suffers from two key limitations outlined
in Section I-A. Therefore, we adopt the second strategy:
prioritizing the identification of elephant flows in the first layer
and evicting mouse flows to the second layer. Since we have
already introduced an efficient method for identifying elephant
flows in the previous sections, we now focus on recording
mouse flows. However, this introduces an additional challenge:
evicting mouse flows to the second layer requires mapping a
large cardinality estimator (e.g., an HLL with 128 registers of
5 bits each) to a smaller one (e.g., an LC with a few dozen
bits). To address this, MEC-Sketch employs two key strategies.

First, the cardinality estimator in the light part utilizes the
hash values generated by the hash function g() of the heavy
part’s estimator. Second, the array length of each cardinality
estimator in the heavy part is configured as a factor p of the
light part’s length. For instance, if the heavy part uses an HLL
with 128 registers and the light part employs an LC with 16
bits, the ratio p is 128/16 = 8. The mapping follows the
rule: LC[i] = 1 if any non-zero register exists in the range
HLL[i x 8] to HLL[(i + 1) x 8 — 1], where 0 < i < 16.
This implies that every group of 8 consecutive HLL registers
is mapped to a single bit in the LC. For instance, HLL|0] to
HLL[7] correspond to LC[0]. An alternative strategy could
involve using disproportionate array lengths for the heavy and
light parts, applying modulo operations for mapping. However,
our solution is computationally simpler and more efficient for
real-time applications.

Data Structure: As shown in Fig. 1, MEC-Sketch consists
of a heavy part and a light part. It is worth noting that,
as discussed in the previous two sections, the light part
is unnecessary when MEC-Sketch is used exclusively for
super-spreader detection. The heavy part follows the design
in Section III-C, with an additional modification: each of
the w — 1 slots in every bucket includes a flag bit, Flag,
indicating whether eviction has occurred. The array length of
each cardinality estimator in the heavy part is set to be p times
that of the light part. The light part consists of k arrays, each
containing [ buckets, where each bucket is an LC with a few
dozen bits (e.g., 16 bits). Each array is associated with a hash
function ¢;() for 1 < i < k. Given a flow (f, e), MEC-Sketch
uses ¢;() to map f to an LC bucket, while the hash value
from the heavy part’s cardinality estimator determines the
corresponding bit in the LC. For convenience, BJi][j] denotes
the j-th LC bucket in the i-th array of the light part.

Insertion: Initially, all fields are empty. For illustration, we
assume that the heavy part employs an HLL with 128 registers
and the light part uses an LC with a 16-bit array. The insertion
process for the heavy part follows the method in Section III-C
and is not repeated here. MEC-Sketch processes each mapped
bucket according to three distinct cases, as described below.

Case 1: If at least one of the w — 1 slots in the mapped
bucket A[h(f)] of the heavy part is empty or matches the flow,
MEC-Sketch directly inserts (f,e) into that slot.

Case 2: If no matching or empty slots are found, MEC-
Sketch inserts (f,e) into the negative cardinality estimator
Alh(f)][w—1].E~[g(f, e)] in heavy part and checks whether
to increment the negative vote A[h(f)][w — 1].Vote™. If the
ratio of the negative vote to the minimum positive vote among
the w — 1 slots does not exceed the threshold A\, MEC-Sketch
inserts (f, e) into the light part. Specifically, MEC-Sketch uses
k hash functions ¢;() to locate the mapped bucket B[g;(f)]
in the light part and sets the bit B[q;(f)][g(f,e)/p] to 1. In
practice, p is often configured as a power of two, enabling
efficient implementation through bit shifting.

Case 3: Let j denote the slot with the minimum positive
vote. If the ratio A[h(f)][w — 1].Vote™ /A[h(f)][j].Vote™
exceeds A, MEC-Sketch replaces the flow in slot A[h(f)][4]
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Fig. 7: AND-based noise elimination.

with (f,e), sets the eviction flag A[h(f)][j].Flag to True,
and evicts the replaced flow to the light part. To insert the
evicted flow into the light part, MEC-Sketch first uses k& hash
functions ¢;() to locate the mapped bucket B[g;(f)]. Then,
MEC-Sketch sets Blg;(f)][¢] = 1 if at least one register among
A[R()Ilj]-Vote™[i x p] to A[A(f)][j].Vote™[(i + 1) x p] is
nonzero, where 0 < ¢ < len(LC).

Example: The operations in the heavy part remain largely
unchanged from the minimal version in Section III-C, except
for the insertion of evicted flows into the light part. As
shown in Fig. 1, MEC-Sketch inserts evicted flows into the
light part under two conditions. The first occurs in Case 2,
where the flow to be inserted is evicted without reaching the
eviction threshold. The second occurs in Case 3, where the
flow with the minimum positive vote is evicted upon reaching
the eviction threshold. For illustration, consider a cardinality
estimator in the heavy part with a register array length of 6
and a corresponding estimator in the light part with a bit array
length of 3. The insertion process in these cases is as follows:

(1) As shown in Fig. 6a, when the eviction threshold is not
reached, MEC-Sketch uses k£ hash functions to map the flow
to k buckets in light part. Then, MEC-Sketch divides the hash
index generated by the heavy part’s cardinality estimator by
p and uses the quotient as the index for the corresponding bit
in the light part’s cardinality estimator, setting that bit to 1.

(2) As shown in Fig. 6b, when the eviction threshold is
reached, MEC-Sketch maps the large cardinality estimator in
the heavy part to the small cardinality estimator in the light
part. MEC-Sketch uses k hash functions to map the flow to &k
buckets in the light part. Then, MEC-Sketch sequentially maps
every p consecutive registers in the heavy part’s cardinality
estimator to a corresponding bit in the light part’s estimator.
If any of these p registers contain a non-zero value, the
corresponding bit in the light part is set to 1.

Query: To estimate the cardinality of flow f, MEC-Sketch
first searches in heavy part, which yields three possible cases:

Case 1: If the flow key matches and its eviction flag is
False, MEC-Sketch directly returns the exact cardinality.

Case 2: If no matching flow key is found in the heavy
part, MEC-Sketch queries the light part. It is worth noting that

the query in the light part involves a bitwise AND operation
instead of computing the minimum value. As shown in the
Fig. 7, MEC-Sketch applies an AND operation across the k
LC buckets in the light part before calculating the cardinality.
Since all LC buckets across the k arrays of the light part use
the same hash function g(), the AND operation effectively
mitigates noise caused by hash collisions.

Case 3: If the flow key matches and its eviction flag is T'rue,
MEC-Sketch queries both the heavy and light parts. However,
their cardinalities cannot be directly summed, as this would
lead to overestimation. To illustrate, consider the example in
Fig. 8, where four elements of flow f (denoted as C;) are
stored in the heavy part, while three elements (denoted as
Cs) are evicted to the light part. A naive summation would
yield |Cy|+|Cxs|, whereas the correct estimate is |C; U Cq| =
|C1] + |Ca| — |Cy N Cy]. Therefore, the key challenge is to de-
termine |C N Cs|. Leveraging the approach used for mapping
a large cardinality estimator to a smaller one, MEC-Sketch
maps the heavy part’s cardinality estimator to a temporary
estimator equivalent to those in the light part. It then applies a
bitwise AND operation between this temporary estimator and
the light part’s estimator to approximate |Cy N Cy|. Finally,
MEC-Sketch computes |Cy U Cs| = |C1| + |Ce| — |C1 N Cs|,
ensuring an accurate estimation that accounts for flows marked
with an eviction flag in the heavy part.

Theoretical Bounds: Due to the small-scale cardinality
estimator (16-bit LC), the error bound in light part is minimal.
The error bound of heavy part is comparable to that of Elastic-
Sketch [18], with the difference being the substitution of flow
frequency with flow cardinality.

Analysis: MEC-Sketch enhances memory efficiency by
separating elephant and mouse flows. Compared to the state-
of-the-art cardinality estimation solution, Couper [13], MEC-
Sketch prioritizes the identification of elephant flows, miti-
gating the overestimation of mouse flows while maintaining
real-time performance. Additionally, MEC-Sketch introduces
an efficient strategy for mapping large cardinality estimators
to smaller ones. Furthermore, it reduces cardinality overesti-
mation during queries by effectively eliminating noise.

E. Comparison with Elastic Sketch

While some may perceive similarities between MEC-Sketch
and Elastic Sketch [18], they differ fundamentally in the
following aspects:

(1) Objective: MEC-Sketch is designed to address cardi-
nality estimation and super-spreader detection, whereas Elastic
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Sketch focuses on frequency-related tasks.

(2) Real-time Performance and Cardinality Mapping:
Even if Elastic Sketch’s counters are replaced with cardinality
estimators, it still suffers from poor real-time performance and
the inability to efficiently map large cardinality estimators in
the heavy part to smaller ones in the light part—challenges
that MEC-Sketch explicitly addresses. Even after replacing
the counters in Elastic Sketch with cardinality estimators and
adapting our mapping strategy, experimental results show that,
in super-spreader detection, MEC-Sketch achieves a through-
put improvement of 26.5 times. In cardinality estimation,
MEC-Sketch reduces the error by 2-3 times and improves
throughput by 17.5 times compared to Elastic-Sketch.

(3) Insertion and Query Mechanisms: MEC-Sketch em-
ploys distinct insertion and query algorithms. The distinction
in query algorithms is clearly observable. The key distinction
in insertion lies in MEC-Sketch’s avoidance of Elastic Sketch’s
replacement insertion operation, which would otherwise lead
to significant cardinality overestimation for mouse flows.

(4) Parallelism: Elastic Sketch lacks the parallelized im-
plementation proposed in Section III-B of this paper.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Dataset: We use two real-world network traces and conduct
experiments based on source-destination IP pairs. These two
network traces have been widely used in previous studies [41]-
[43]. Specifically, we treat the source IP as the flow key and the
destination IP as the element. Thus, the cardinality is defined
as the number of unique destination IPs associated with each
source IP. It is worth noting that, in addition to defining flow
keys and elements as source-destination IP pairs, MEC-Sketch
is also applicable to other use cases with different definitions,
as the underlying principles remain similar.

(1) MAWI [39]: This dataset, maintained by the MAWI
Working Group of the WIDE Project, contains traffic traces.
We extract 10 million consecutive packets, yielding approxi-
mately 56,000 flows when aggregated by source IP and about
898,000 flows when aggregated by source-destination IP pairs.

(2) CAIDA [40]: This dataset comprises anonymized IP
traces collected by CAIDA in 2018. We extract 10 million
consecutive packets, resulting in approximately 150,000 flows

TABLE I: Number of true super-spreaders in the CAIDA and
MAWTI datasets under different super-spreader threshold.

Threshold | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
MAWI 797 | 530 | 424 | 347 | 291 | 210 | 142 | 119
CAIDA 325 | 140 | 73 53 43 40 37 32

when aggregated by source IP and around 458,000 flows when
aggregated by source-destination IP pairs.
Experimental Settings: For elephant flows, HLL and MRB
provide more accurate estimates than LC, while for mouse
flows, LC is simple yet sufficiently accurate. Therefore, MEC-
Sketch employs HLL or MRB as its cardinality estimator in the
heavy part and LC as the cardinality estimator in the light part.
Each HLL in MEC-Sketch consists of 128 registers, which is
a classical setting. Each MRB comprises 8 levels, with each
level containing an LC of 64 bits. The eviction threshold is set
to A = 8. For super-spreader detection, MEC-Sketch excludes
the light part. In the parallel version of MEC-Sketch, the
number of arrays is set to d = 3. In the minimal version,
the number of slots per bucket is w = 8. For cardinality
estimation, 30% of memory is allocated to the heavy part,
while the light part contains k = 3 LC arrays, each 16 bits in
size. We conduct experiments on parameter settings, which
are omitted here due to space constraints. All experiments
are conducted on a machine with an Intel Core 19-13900H
processor (2.6 GHz, 14 cores, 20 threads) and 64GB of DDR4
memory. MEC-Sketch can be easily accommodated on any
existing machine, as its size is less than S00KB. The code is
implemented in C++, and is available at Github [44].
Abbreviations: The following abbreviations are used:
e MEC-P: The parallel version of MEC-Sketch for super-
spreader detection, as described in Section III-B.

e« MEC-M: The minimal version of MEC-Sketch for super-
spreader detection, as described in Section III-C.

e MEC-C: The version of MEC-Sketch for cardinality
estimation, as described in Section III-D.

B. Experiments on Super-Spreader Detection

We compare MEC-Sketch with the state-of-the-art super-
spreader detection sketches: SpreadSketch [38] and NDS [14].
(1) Accuracy under the MAWI dataset: The first set
of experiments evaluates performance by varying the super-
spreader threshold, with each sketch allocated 60 KB of



.- MEC_P_HLL

MEC_M_MRB

@ vic e

MEC_M_MRB

B spreadsketch P4 NDs
@ MECPMRB - MEC M HLL
1.00

B spreadsketch P NDs

@ MEC P MRB - MEC M HLL

e L S

200 400 600 800 T 200 400 600 800

- Spreadsketch NDS @ vecr I Spreadskerch Y@= NDS @ v r
@~ MEC P MRB i— MEC_M_HLL MEC_M_MRB -.- MEC_P_MRB i~ MEC_M_HLL MEC_M_MRB
1.00
e 10° I\.\.\-
n

AAE

20 40 60 80 100 20 40 60 80 100
Memory Usage (KB) Memory Usage (KB)

Fig. 9: Experimental Results on Super-Spreader Detection using the MAWI Dataset.

Threshold Threshold
B spreadsketch  -$§ NDs @ vicp i B spreadsketch  -$ NDs @ vic e
@ MEC P MRB - MEC M HLL MEC_M_MRB -.3 MEC_P_MRB  —f~ MEC_M_HLL MEC_M_MRB
1.00 == =T 10
4 | on o mm o am n o ou |
, 075 /
g 2
2 0.50 <10 e e s
[
0.25
1
000360 400 600 800 1077360 400 600 800

Threshold Threshold

@ vic P
MEC_M_MRB

MEC_P_HLL
MEC_M_MRB

Il Spreadskeich Y@= NDS
-@; MEC P MRS —A— MEC_M_HLL
10°

m .\l\.\.\.\-
<
<

Memory Uiage (KB)

B Spreadskeich NDS
-.- MEC_P_MRB i— MEC_M_HLL

A=

20 40 60 80 100
Memory Usage (KB)

Fig. 10: Experimental Results on Super-Spreader Detection using the CAIDA Dataset.

“ouper gSki rerS “ouper

oo Eow ®o T, Fo. ®
103 10°
, 10°

10

£ £ 10
< 1 < 0
10 10
10"

100 200 300 400 500 100 200 300 400 500

Memory Usage(KB) Memory Usage(KB)

(a) Experimental Results using the MAWI Dataset.

E e % -‘- Couper sk sk 4 Couper
@ MEC CHLL w—c C_MRB @ MEC_C HUL -‘- rm—( _C_MRB

10° 10°
102 10°
2 g
<10 <10
0
10

10°

100 200 300 400 500 200 300 400
Memory Usage(KB) Memory Usage(KB)

(b) Experimental Results using the CAIDA Dataset.

Fig. 11: Experimental Results on Cardinality Estimation.

memory. As shown in Table I, the threshold ranges from
100 to 800, resulting in the number of true super-spreaders
varying from 797 to 119. As shown in Fig. 9, compared to
NDS, MEC_M_HLL and MEC_M_MRB achieve maximum
F1 score improvements of 18.8% and 17.7%, with average
improvements of 10.9% and 11%, respectively. The F1 scores
of MEC_P_HLL and MEC_P_MRB are slightly lower than
that of NDS. Compared to SpreadSketch, MEC_M_HLL,
MEC_M_MRB, MEC_P_HLL, and MEC_P_MRB achieve
maximum F1 score improvements of 54.7%, 55.7%, 44.7%,
and 44%, with average improvements of 46.9%, 47%, 26.5%,
and 25.3%, respectively. In terms of AAE, compared to NDS,
MEC_M_HLL, MEC_M_MRB, and MEC_P_MRB achieve
maximum reductions of 2.09, 2.12, and 1.6 times, with av-
erage reductions of 1.61, 1.58, and 1.43 times, respectively.
Compared to SpreadSketch, MEC_M_HLL, MEC_M_MRB,
MEC_P_HLL, and MEC_P_MRB achieve maximum AAE
reductions of 12, 12.2, 5.79, and 8.55 times, with average
reductions of 8.81, 8.66, 5.31, and 7.81 times, respectively.

The second set of experiments evaluates performance by
varying the memory allocation for each sketch, with the super-
spreader threshold set to 200. As shown in Fig. 9, compared to
NDS, MEC_M_HLL and MEC_M_MRB achieve maximum
F1 score improvements of 19% and 19%, with average im-
provements of 14.6% and 13.9%, respectively. The F1 scores

of MEC_P_HLL and MEC_P_MRB are slightly lower than
those of NDS. Compared to SpreadSketch, MEC_M_HLL,
MEC_M_MRB, MEC_P_HLL, and MEC_P_MRB achieve
maximum F1 score improvements of 48.3%, 48.3%, 26%,
and 27.5%, with average improvements of 38.3%, 37.6%,
11.2%, and 11.2%, respectively. In terms of AAE, compared
to NDS, MEC_M_HLL, MEC_M_MRB, MEC_P_HLL, and
MEC_P_MRB achieve maximum reductions of 2.61, 2.4,
1.21, and 2.13 times, with average reductions of 1.98, 1.94,
1.02, and 1.49 times, respectively. Compared to SpreadS-
ketch, MEC_M_HLL, MEC_M_MRB, MEC_P_HLL, and
MEC_P_MRB achieve maximum AAE reductions of 24.2, 21,
10.3, and 18.2 times, with average reductions of 13.5, 13, 6.66,
and 10.1 times, respectively.

(2) Accuracy under the CAIDA dataset: As shown in
Fig. 10, the results under the CAIDA dataset are consistent
with those under the MAWI dataset. Due to space limitations,
detailed discussion is omitted.

Analysis: In summary, the minimal version outperforms
previous state-of-the-art super-spreader detection sketches,
achieving the highest F1 score and the lowest error. The
parallel version yields F1 scores comparable to or slightly
lower than existing methods, but with reduced error. This is
because NDS is better suited for datasets with higher skew-
ness. Furthermore, we conduct experiments on datasets with
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Fig. 12: Experiments on Throughput and Detection Time using the MAWI Dataset.

lower skewness, where the parallel version outperforms NDS,
although these results are omitted due to space constraints.
Additionally, the non-monotonic behavior of SpreadSketch in
the figure is due to its low precision when memory is limited,
resulting from overestimation errors.

C. Experiments on Cardinality Estimation

We compare MEC-Sketch with state-of-the-art cardinality
estimation sketches: gSkt [27], rerSkt [29], and Couper [13].

(1) Accuracy under the MAWI dataset: We evaluate
the error under different memory allocations. As shown in
Fig. 11, compared to Couper, rerSkt, and gSkt, MEC_C_HLL
reduces AAE by up to 5.21, 4.92, and 148 times, with
average reductions of 2.98, 4.68, and 105 times, respectively.
MEC_C_MRB reduces AAE by up to 4.94, 5, and 140 times,
with average reductions of 2.99, 4.72, and 105 times, respec-
tively. Compared to Couper, rerSkt, and gSkt, MEC_C_HLL
reduces ARE by up to 3.82, 58.1, and 1093 times, with
average reductions of 2.78, 34.5, and 817 times, respectively.
MEC_C_MRB reduces ARE by up to 3.82, 57.5, and 1115
times, with average reductions of 2.8, 34.8, and 824 times,
respectively.

(2) Accuracy under the CAIDA dataset: As shown in
Fig. 11, the results under the CAIDA dataset are consistent
with those from the MAWTI dataset. Due to space constraints,
detailed discussion is omitted.

Analysis: In summary, compared to existing state-of-the-
art cardinality estimation sketches, MEC-Sketch achieves the
lowest error. This is primarily due to its consideration of net-
work traffic skew characteristics, which are addressed through
a dual-component design to achieve maximum memory effi-
ciency. Furthermore, compared to the state-of-the-art solution,
Couper, MEC-Sketch’s approach of prioritizing the identifi-
cation of elephant flows while evicting mouse flows to the
second layer is more efficient. We also conduct experiments
on datasets with lower skewness and even fully uniform
distributions, where MEC-Sketch still outperforms Couper,
though these results are omitted due to space constraints.

D. Experiments on Throughput and Detection Time

We evaluate the throughput and detection time on the MAWI
dataset. To maximize the font size on the horizontal axis, we
present only the results of MEC-Sketch integrated with HLL,
as the results with MRB integration are similar.

Throughput and detection time under the MAWI
dataset: In super-spreader detection, as shown in Fig. 12, with
a super-spreader threshold set to 200 and 60KB of memory
allocated to each sketch, MEC-Sketch achieves an update
throughput approximately twice that of NDS. Although its
update throughput is lower than that of SpreadSketch, MEC-
Sketch demonstrates higher accuracy. Both MEC-Sketch and
NDS detect all super-spreaders within lms in most cases,
while SpreadSketch requires approximately 2.5ms. In cardi-
nality estimation, as shown in Fig. 12, the update throughput
of MEC-Sketch is 2 to 3 times that of Couper, rerSkt, and gSkt.
MEC-Sketch and Couper exhibit the lowest query times.

Analysis: In terms of software platforms, MEC-Sketch’s
throughput surpasses almost all existing solutions. We will
explore its extension to hardware platforms in future work.

V. CONCLUSION

In this paper, we propose MEC-Sketch, a memory-efficient
cardinality estimation sketch. MEC-Sketch consists of two
components: a heavy part and a light part. The heavy part
employs the majority vote algorithm to enable efficient super-
spreader detection, while the light part utilizes compact car-
dinality estimators to achieve memory-efficient cardinality
estimation. Furthermore, we address key challenges in tran-
sitioning from counter-based to estimator-based designs. For
instance, MEC-Sketch represents its cardinality by dynam-
ically accumulating register values, thereby ensuring real-
time performance of the majority vote algorithm. Additionally,
MEC-Sketch effectively maps the large cardinality estimators
in the heavy part to smaller ones in the light part by using a
shared set of hash functions and configuring the array length
of each estimator in the heavy part as an integer multiple of
those in the light part. Extensive experiments demonstrate that
MEC-Sketch outperforms previous state-of-the-art solutions
for cardinality estimation and super-spreader detection in both
accuracy and performance.
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