RA-Sketch: A Unified Framework for Rapid and
Accurate Sketch Configurations

Kejun Guo', Fuliang Li"™, Yuting Liuf, Jiaxing Shen*, Xingwei Wang'™
TNortheastern University, Shenyang 110819, China, iLingnan University, Hong Kong

Email: kejunguo@163.com, lifuliang@cse.neu.edu.cn, 2301921 @stu.neu.edu.cn, jiaxingshen@LN.edu.hk, wangxw @mail.neu.edu.cn

Abstract—Network measurement sketches enable efficient traf-
fic monitoring but require careful parameter configuration to
balance accuracy and memory efficiency. We present RA-Sketch,
a framework for generating memory-optimal sketch configura-
tions that satisfy user-defined error constraints across diverse
network measurement tasks. Unlike existing approaches that rely
on computationally intensive experimental testing, RA-Sketch
introduces: 1) Poisson-distributed collision modeling to construct
error predictors for both frequency-independent tasks (mem-
bership query, heavy-hitter detection) and frequency-dependent
tasks (frequency/cardinality estimation), eliminating the need for
empirical validation; 2) A hierarchical search strategy combining
power-of-two scaling and binary search, reducing iterations
through optimized parameter initialization. RA-Sketch supports
10+ sketch architectures including Bloom Filter, Elastic Sketch,
HeavyGuardian, HeavyKeeper, CM/CO Sketch, gSkt, rSktl and
so on. Evaluations on real-world network traces demonstrate: 1)
6-7 orders of magnitude faster configuration than benchmark-
based methods; 2) Prediction errors <10% for heavy-hitter
detection, while prediction errors for membership query, and
frequency/cardinality estimation are close to zero; 3) Memory
utilization approaches theoretical minima. The framework’s gen-
erality and efficiency enable real-time reconfiguration of sketches
under dynamic network conditions.

Index Terms—sketch, error estimation, network measurement.

I. INTRODUCTION
A. Background and Motivation

Network measurement plays a critical role in network
management and optimization [1]-[10]. Typically, network
measurement system monitors application traffic to provide
insights into tasks such as membership query, heavy-hitter
detection, frequency/cardinality estimation and so on. Recent
advances leverage sketches, approximate measurement algo-
rithms, to achieve high accuracy and low resource overhead.

Most existing sketches are limited to approximate queries.
However, in many scenarios, users require sketch configura-
tions that meet user-defined error constraints while minimizing
memory overhead. These error constraints vary depending on
the specific task. For instance, in membership query, the error
constraint may be defined as false positive rate (FPR) < 1%,
where FPR represents the proportion of flows falsely reported
as present in the sketch. In heavy-hitter detection, the error
constraint may be defined as recall rate (RR) > 90%, where
RR denotes the proportion of true heavy hitters reported by the

979-8-3315-0376-5/25/$31.00 ©2025 IEEE

TABLE I: Comparison of existing solutions and ideal solution.

Solutions/Advantages | General | Rapid | Accurate
Theoretical X N X
Simulation-based X N N
Benchmark-based N X NV
RA-Sketch N4 v N

sketch to all true heavy hitters. For frequency estimation and
cardinality estimation, the error constraint may be defined as
average absolute error (AAE) < 10, where AAE is the mean
of the absolute differences between the sketch query values
and the true values across all flows.

Existing sketch configuration solutions can be classified
into three categories: theoretical solutions, simulation-based
solutions, and benchmark-based solutions. However, these ap-
proaches often fail to simultaneously meet the requirements of
generality, speed, and accuracy. Theoretical solutions calculate
sketch configurations using simple mathematical formulas. For
most sketches [11]-[15], theoretical configurations typically

{fi_fi‘ ZT? <p
where f; is the estimated frequency of the flow, f; is the actual
frequency of the flow, T is an integer, and p is a probability.
However, as noted in SketchConf [16], these bounds are often
much looser than the real error for most workloads, resulting
in inaccurate sketch configurations. Simulation-based solu-
tions, such as SketchConf, employ Monte Carlo simulations
to obtain accurate estimates of Pr { ‘ fl — fil > T} < p.
However, SketchConf is limited to frequency estimation and
does not address configurations for other tasks. Furthermore,
Pr {‘ fi — fi’ > T} < p cannot solve for the AAE constraint
in frequency estimation and cardinality estimation or the RR
constraint in heavy-hitter detection, restricting their applica-
bility. Benchmark-based solutions, like AutoSketch [17], use
Latin Hypercube Sampling to sample configuration parameters
and then conduct experimental testing to verify if they meet
user-defined error constraints. While experimental testing is
effective, it is quite time-consuming.

In summary, as presented in Table I, an ideal configuration
framework should fulfill the following three key requirements:

provide a bound in the form of Pr

o General. The framework should be applicable to a broad
range of tasks and sketches.

« Rapid. The configuration process should minimize time
overhead.

o Accurate. The generated configurations should closely
align with real-world performance and meet user-defined
error constraints.

This paper aims to address the aforementioned challenges
by developing a configuration framework that is suitable for
a wide range of tasks and most sketches. The proposed
framework should rapidly and accurately generate sketch
configurations that meet user-defined error constraints while
minimizing memory overhead.

B. Proposed Solution and Contributions

In this paper, we propose RA-Sketch, a general framework
that rapidly and accurately generates memory-optimal sketch
configurations under the user-defined error constraints. Given
multiple sketches performing different measurement tasks and
specified error constraints for each sketch, RA-Sketch sup-
ports one-click generation of parameter configurations that
meet user-defined error constraints while minimizing memory
overhead. Specifically, our contributions are as follows:

Contribution I: rapid and accurate error predictor.
The error predictor in RA-Sketch is based on two key lem-
mas to compute error metrics rapidly and accurately. For
frequency-independent tasks, such as membership query and
heavy-hitter detection, RA-Sketch utilizes Lemma-I to rapidly
compute accurate FPR or RR for given parameters without
requiring time-consuming experimental testing. For frequency-
dependent tasks, such as frequency estimation and cardinal-
ity estimation, RA-Sketch employs Lemma-II. Monte Carlo
simulations are used to estimate per-bucket collision effects,
enabling rapid and accurate computation of AAE.

Contribution II: rapid hierarchical search strategy. RA-
Sketch employs a three-step search strategy: an initial param-
eter initialization, a power-of-two scaling memory search, and
a final binary search to refine parameter configurations that
meet user-defined constraints. The well-designed initialization
allows RA-Sketch to begin the search from a memory size
close to meeting the constraints, eliminating the need to start
binary search from the maximum memory size. This approach
substantially reduces the number of search iterations, thereby
enhancing search efficiency.

Contribution III: extensive experimental verification.
To validate the effectiveness of RA-Sketch, we apply it to
two real-world network traces and multiple sketches across
four types of tasks. The experimental results demonstrate that
generated configurations closely match the error metrics ob-
served in real-world scenarios. Moreover, RA-Sketch achieves
configuration speeds that are several orders of magnitude faster
than baseline solution.

II. RELATED WORK

A. Different Kinds of Sketches

1) Sketches for Membership Query: Membership query
checks whether a flow is present. Due to its memory effi-
ciency and fast query/update speed, the Bloom Filter [18]

has been widely adopted. Recently, variants of Bloom Filter
have been proposed to meet the requirements of different
applications [19]-[22].

2) Sketches for Heavy-Hitter Detection: Heavy-hitter de-
tection identifies flows that exceed a given frequency
threshold. Existing approaches typically fall into two cat-
egories: min-heap-based approaches and preservation-based
approaches. Min-heap-based solutions, such as the CM
Sketch combined with a min-heap, use frequency-estimation
sketches to maintain the top-k flows. Despite their simplicity,
these solutions exhibit low processing speeds. Conversely,
preservation-based solutions employ specialized algorithms to
retain elephant flows and subsequently traverse the bucket
array to detect flows surpassing the threshold. These solutions
achieve superior processing speeds and recall rates, exem-
plified by Elastic Sketch [13], HeavyGuardian [14], Heavy-
Keeper [15], MV Sketch [23] and so on [24], [25].

3) Sketches for Frequency Estimation: Frequency estima-
tion calculates the number of packets in a flow. Typical
frequency estimation sketches include CM Sketch [11], CU
Sketch [26] and CO Sketch [12]. Recent advancements exploit
the skewed distribution of network traffic by differentiating
between elephant flows and mouse flows, assigning counters
with varying bit-lengths to enhance memory efficiency and
accuracy. Representative examples include Tower Sketch [27],
and BitSense [28].

4) Sketches for Cardinality Estimation: Each flow can be
viewed as a pair (f,e). The cardinality of a flow is defined
as the number of distinct e corresponding to f. gSkt [29]
achieves memory-efficient multi-flow cardinality estimation
by replacing the counters in CM Sketch with single-flow
cardinality estimators. Building on the idea of CO Sketch,
rSkt [30] effectively mitigates noise caused by hash collisions
by additionally maintaining secondary cardinality estimators.

B. Prior Work on Sketch Configuration

Sketch configuration solutions are generally classified into
three categories: theoretical solutions, simulation-based solu-
tions, and benchmark-based solutions.

In some sketches supporting membership query, theoretical
solutions can provide relatively accurate configurations, such
as in Bloom Filter [18]. However, for most sketches [11]—[15]
supporting frequency estimation, cardinality estimation and
heavy-hitter detection, theoretical configurations only provide
a bound in the form of Pr { ﬁ — fi} > T} < p, where f, is
the estimated frequency of the flow, f; is the actual frequency
of the flow, T" is an integer, and p is a probability. This
is often much looser than the real error. More importantly,
Pr {’ fi —fil>T } < p cannot solve for the AAE constraint
in frequency estimation and cardinality estimation or the RR
constraint in heavy-hitter detection.

The most representative simulation-based solution is
SketchConf [16], which has been detailed in Section I-A and
will not be reiterated here.

Benchmark-based solutions rely on experimental testing to
determine whether user-defined error constraints are met. The

most advanced of these, AutoSketch [17], utilizes Latin Hyper-
cube Sampling to efficiently sample configuration parameters
and subsequently validates error constraints through exper-
imental testing. While Latin Hypercube Sampling reduces
the parameter search space, the experimental testing process
requires inserting all packets and executing queries, making
it computationally expensive. As a result, benchmark-based
solutions remain substantially time-consuming.

In contrast to the aforementioned solutions, RA-Sketch does
not apply a uniform configuration strategy to all sketches
indiscriminately. Instead, it leverages the common hash dis-
tribution characteristics shared by all sketches and classifies
them into frequency-dependent and frequency-independent
sketches, adopting targeted strategies accordingly. Specifi-
cally, for frequency-dependent sketches, RA-Sketch resembles
simulation-based solutions, using Monte Carlo simulation to
quickly obtain the optimal configuration. However, unlike
those solutions, it does not compute Pr {’ ﬁ — fi’ > T} <np.
For frequency-independent sketches, RA-Sketch is similar
to theoretical solutions, but instead of assuming completely
uniform hashing, it utilizes hash distribution characteristics to
obtain the optimal configuration.

III. THE DESIGN OF RA-SKETCH
A. Baseline and Our Observations

Most sketches have configurable parameters, including the
number of hash functions h, the number of rows d, and the
number of columns w. In most sketches, A and d are set to
be equal [11], [12], [15], [29].

Baseline: The baseline solution performs a binary search
on memory and then conducts experimental testing to verify
whether the user-defined error constraints are met. For each
memory size, it iterates over possible sketch row numbers
d and their corresponding column numbers w. As previous
practice has shown that setting d to 1-3 is generally sufficient
for most sketches, we only need to iterate over lower values
of d, such as d = 1-3.

Analysis: The baseline can find the memory-optimal config-
urations, but its time efficiency is poor due to binary search and
experimental testing. This is because the experimental testing
requires inserting all packets and performing queries to verify
whether the user-defined error constraints are met, which is
quite time-consuming. Additionally, the binary search start-
ing from the maximum memory leads to many unnecessary
search iterations. Therefore, we aim to replace experimental
testing and restructure the search strategy to enhance the time
efficiency of the configuration process.

Discussion: Why are theoretical or simulation-based solu-
tion not used as the baseline? The primary reason is that these
solutions cannot address error constraints across diverse tasks
and are often tailored to specific tasks or sketches.

B. Error Predictor of RA-Sketch

The error predictor is based on two key lemmas:
Lemma-I: When N flows are randomly mapped into w
buckets, let Z be the number of flows in any given bucket.

Then Z follows a binomial distribution with parameters N
and i If N is large, Z can be approximated by a Poisson
distribution with A = %

Lemma-II: When N flows are randomly mapped into w
buckets, for any flow f, the probability that any of the other
N — 1 different flows collides with f is i Let Z be the
number of distinct collision items, then Z follows a binomial
distribution with parameters N —1 and % If N—1islarge, Z
can be approximated by a Poisson distribution with A = %

The probability mass function (PMF) of a Poisson distribu-
tion is defined as P(Z = k) = ’\klj!_A, where k is the number
of occurrences of the event,) is the average rate of occurrence,
e is the base of the natural logarithm.

These two lemmas have been formally proven in previous
works, such as SeqHash [31] and SketchConf [16]. It is worth
noting that these two lemmas capture different aspects of
the sketch behavior. Lemma-I reflects the number of flows
contained in a bucket, while Lemma-II captures the number
of collisions each flow has with other flows.

Insight: We classify existing sketches into two categories:
frequency-dependent sketches and frequency-independent
sketches. Frequency-dependent sketches are those whose error
constraints are influenced by flow frequencies. For example, in
the CM Sketch, the error of each flow is related to the frequen-
cies of the other flows that hash to the same bucket. In contrast,
frequency-independent sketches are those whose error con-
straints are independent of the flow frequencies. For example,
in the Bloom Filter, the FPR depends only on the number
of distinct flows, regardless of their individual frequencies.
For frequency-independent tasks, such as membership query
and heavy-hitter detection, RA-Sketch leverages Lemma-I to
rapidly compute accurate FPR or RR for given parameters
without relying on time-consuming experimental testing. For
frequency-dependent tasks, such as frequency estimation and
cardinality estimation, RA-Sketch employs Lemma-II and uses
Monte Carlo simulation to estimate the per-bucket collision ef-
fects, enabling rapid and accurate computation of AAE. In car-
dinality estimation, frequency-dependent refers to cardinality-
dependent and will not be further elaborated hereafter.

Discussion: Why should heavy-hitter detection be classified
as a frequency-independent task? Although it lies between
frequency-dependent and frequency-independent tasks, it is
closer to the latter. This is because heavy-hitter detection
algorithms are specifically designed to make elephant flows
resistant to the influence of colliding flows that hash into
the same bucket, thereby shielding elephant flows from in-
terference. The more effective the algorithm is, the better it
suppresses the influence of colliding flows, regardless of their
frequencies. Therefore, we classify heavy-hitter detection as
a frequency-independent task. This claim is further supported
by the experimental results presented in Section V. Moreover,
despite the presence of some estimation errors, the error
remains within 10%, as shown in Section V.

We now consider how to determine whether the error con-
straints can be met given the frequency/cardinality distribution
D, the number of distinct flows N, and the sketch configu-

Algorithm 1 Error Predictor for Frequency-Independent Task

Input: the number of distinct flows /N; the number of hash
functions h; the number of rows d; the number of
columns/buckets per row w; the number of elephant flows
H; frequency/cardinality distribution D.

Qutput: error.

1: function ERROR
FILTER(N,h,w)
2: /I Z: the number of flows mapped to any given bit

3 A Nxh

4: Z ~ Pzisson(/\)

5: P(Z=0)¢e?

6

7

8

PREDICTOR FOR BLooM

: return [l — P(Z =0)]"
: end function

: function = ERROR PREDICTOR FOR ELASTIC
SKETCH(H ,w)
9: /I Z: the number of elephant flows in any given bucket
10: A+ g
11: Z ~ Poisson(A)
12: rr 0, temp_pro < 1 —e
13: for k=1—T7do
14: P(Z =k) + ’\k,jl_x
15: rr<rr+kxP(Z=k)
16: temp_pro < temp_pro — P(Z = k)
17: end for
18: rr < rr+ 7 X temp_pro
19: = 5
20: return r7

21: end function

rations (h,d,w). Below, we illustrate how to construct the
error predictor based on the two lemmas, using a representative
sketch from the four types of tasks.

1) Bloom Filter [18] for Membership Query

Structure: The Bloom Filter consists of h hash functions
and a bit array of length w (d = 1). When a flow is inserted,
the Bloom Filter maps it to h bits using the h hash functions
and sets those bits to 1. When querying a flow, it checks the
h mapped bits, and returns true only if all A bits are 1. Bloom
Filter has one-sided errors, leading to false positives.

Error Predictor (line 1-7): Bloom Filter falls under
frequency-independent sketch. Therefore, we use Lemma-I to
derive its error constraint. As shown in Alg. 1, based on
Lemma-I, let Z be the number of flows mapped to any given
bit. Since the Bloom Filter maps each flow to h bits, Z
follows a Poisson distribution with A = N“X}h, where NN is the
number of distinct flows. According to the PMF of Poisson
distribution, the proportion of bit still set to O after inserting
N flows is P(Z = 0) = e~*. Therefore, the proportion of
bit set to 1 in the Bloom Filter is 1 — P(Z = 0), and FPR
is [I — P(Z = 0)]". Excitingly, this matches the theoretical
error formula of the Bloom Filter. It is well-known that when
w is large, the theoretical error formula of the Bloom Filter
closely matches its actual FPR.

2) Elastic Sketch [13] for Heavy-Hitter Detection

Structure: The Elastic Sketch consists of two parts: a heavy
part for recording elephant flows and a light part for recording
mouse flows. In the software version of the Elastic Sketch, the
heavy part consists of a single bucket array (d = h = 1), with
each bucket storing up to 7 flows and 1 vote™ counter. And
bucket array has a length of w. When a flow is inserted, if it
maps to a cell in the heavy part that already contains the flow
or if there is an empty cell, the Elastic sketch inserts it into
the heavy part. Otherwise, the Elastic Sketch uses a voting
mechanism to determine whether to insert the flow into the
heavy or light part.

Error Predictor (line 8-21): When addressing heavy-hitter
detection, Elastic Sketch falls under frequency-independent
sketch. Therefore, we use Lemma-I to derive its error con-
straint. As shown in Alg. 1, based on Lemma-I, let Z be
the number of elephant flows in any given bucket. Assuming
there are H elephant flows, Z follows a Poisson distribution
with parameter A = % According to the PMF of Poisson
distribution, we calculate the proportion of each possible value
of Z and multiply it by the corresponding value to represent
the number of identified elephant flows. Since each bucket in
the heavy part of the Elastic Sketch can store up to 7 elephant
flows, when Z > 7, we multiply its proportion by 7. Finally,
we divide by A to obtain the RR of the Elastic Sketch.

3) CM Sketch [11] for Frequency Estimation

Structure: The CM Sketch consists of d equal-length
counter arrays and h hash functions (d = h). Each counter
array has a length of w. When a flow is inserted, the CM
Sketch maps it to d counters using the d hash functions,
incrementing each counter by 1. When querying a flow, it
checks the d mapped counters and reports the minimum value.

Error Predictor (line 1-16): CM Sketch falls under
frequency-dependent sketch. Therefore, we use Lemma-II to
derive its error constraint. As shown in Alg. 2, based on
Lemma-II, let Z be the number of distinct colliding flows,
which follows a Poisson distribution with A = % where
N is the number of distinct flows. We use a Monte Carlo
simulation to calculate the AAE of the CM Sketch. For each
counter, we repeatedly generate the number of collisions n
according to the Poisson distribution. We then randomly sam-
ple n flows from the frequency distribution D to compute the
total frequency. Since the CM Sketch inserts into all d arrays,
we repeat this process d times. Since the CM Sketch reports
the minimum value among the d mapped counters, we take
the minimum value of the total frequencies as the estimation
error. We repeat this process until the AAE converges.

4) rSkt1 [30] for Cardinality Estimation

Structure: The rSktl consists of d equal-length bucket
arrays and h hash functions (d = h). Additionally, each array
is associated with an independent auxiliary hash function g;()
(I < i < d). Each bucket array has a length of w, and
each bucket contains a primary cardinality estimator and a
secondary estimator. When inserting a flow, the rSktl maps it
to d buckets using the d hash functions, and the corresponding
gi() determines whether the flow updates the primary or
secondary estimator in each bucket. When querying a flow,

Algorithm 2 Error Predictor for Frequency-Dependent Task

1: function ERROR PREDICTOR FOR CM SKETCH(N,d,w)

2 /I Z: the number of distinct colliding flows

3 A A=

4: Z ~ Poisson(A)

5: aae < 0, aae_tot < 0, num < 0

6 while aae has not converged do

7 min_sum < (1 < 30)

8 for k=1—ddo

9 draw n from Z

10: min_sum < min(min_sum, sum of n fre-
quencies sampled from D)

11: end for

12: aae_tot < aae_tot+min_sum, num < num-+1

13: aae %—ff

14: end while

15: return aae

16: end function
17: function ERROR PREDICTOR FOR RSKT1(NV,d,w)

18: /I Z: the number of distinct colliding flows

19: A« &=L

20: Z ~ Poisson(\)

21: aae < 0, aae_tot < 0, num < 0

22: while aae has not converged do

23: min_sum < (1 < 30), aae_temp < 0

24: for k=1—ddo

25: primary < 0, secondary < 0

26: draw n from Z

27: for j=1—ndo

28: card <flow cardinality sampled from D
29: if rand()%2 then

30: primary < primary + card

31: else

32: secondary + secondary + card

33: end if

34: end for

35: if min_sum > primary + secondary then
36: man_sum <— primary + secondary

37: aae_temp + abs(primary — secondary)
38: end if

39: end for

40: aae_tot < aae_tot+aae_temp, num < num-+1
41: aae — %—ﬁft

42: end while

43: return aae

44: end function

the rSktl selects the bucket with the smallest total cardinality
among the d mapped buckets and uses g;() to decide whether
to compute the final estimate as the difference between the
primary and secondary estimators or vice versa.

Error Predictor: (line 17-44): rSktl falls under frequency-
dependent sketch. Therefore, we use Lemma-II to derive its
error constraint. As shown in Alg. 2, based on Lemma-
I, let Z be the number of distinct colliding flows, which

follows a Poisson distribution with A = %, where N is the
number of distinct flows. We use a Monte Carlo simulation
to calculate the AAE of the rSktl. For each bucket, we
repeatedly generate the number of collisions n according to
the Poisson distribution. We then randomly sample n flows
from the cardinality distribution D and assign them to the
primary and secondary estimators. The total cardinality of
each estimator is then computed independently. Since the rSktl
inserts into all d arrays, we repeat this process d times. Finally,
rSktl selects the bucket with the minimum total cardinality
among the d mapped buckets and computes the difference
between the primary and secondary estimates as the final
cardinality estimate. Therefore, we take the absolute difference
between the two estimates as the estimation error. We repeat
this process until the AAE converges.

Analysis: We demonstrate the construction of error pre-
dictors based on Lemma-I and II using four representative
sketches. As shown in Section IV, a significant number of
sketch error predictors can be constructed based on these
two lemmas, which demonstrates the generality of RA-Sketch.
Compared to theoretical solutions, RA-Sketch is not only more
general, but also more accurate in predicting the actual sketch
errors. Compared to simulation-based solutions, RA-Sketch is
more general. Compared to benchmark-based solutions, RA-
Sketch achieves faster configuration search by eliminating the
need for time-consuming experimental testing.

C. Hierarchical Search Strategy of RA-Sketch

After preparing the error predictor, we need to design a
search strategy to find the memory-optimal configurations. The
reason why binary search is time-consuming is that it starts
from the maximum memory and gradually bisects, resulting
in many unnecessary searches. For example, suppose the
maximum memory limit allocated to the sketch is 10 MB. In a
Bloom Filter with 10,000 flows, it is assumed that each flow
is hashed only once. Now we need to determine the bit array
length w to allocate to the Bloom Filter to meet FPR< 10%. If
using binary search, we would start from 10 MB, i.e., w = 84
million. However, even if each flow occupies a unique bit,
the number of bits needed to meet FPR< 10% would not
exceed 100,000. Therefore, we propose starting the search
from a reasonable initial length. Compared to start from the
maximum memory, starting the search from w = 100,000
reduces 10 unnecessary searches.

Insight: RA-Sketch employs a three-step search strategy: an
initial parameter initialization, a power-of-two scaling memory
search, and a final binary search to refine parameter configu-
rations that meet user defined constraints. The initialization of
RA-Sketch is primarily based on a key insight: determining
the number of buckets required by a sketch under the ideal
scenario in which flows are uniformly hashed. Although
perfect uniform hashing is unattainable in practice, this es-
timation typically serves as a lower bound on the required
number of buckets. Due to the non-uniformity of practical hash
functions [32], [33], more buckets are often needed. Moreover,
this lower bound is closer to the actual requirement under real

Algorithm 3 Configuration Search for Bloom Filter

Input: the number of distinct flows N; error constraints
FPR.
Output: the memory-optimal configurations.
1: function CONFIGURATION SEARCH FOR BLOOM FIL-

TER(N,FPR)
2 for h=1— 3 do
3 w év%
4 pre_fpr < Error Predictor(V,h,w)
5: if pre_fpr is close to F'PR then res_w < w
6 else if pre_fpr < FPR then
7 while 3 do
8 w4 g
9: pre_fpr < Error Predictor(N,h,w)
10: if pre_fpr is close to FPR then
11: res_w — w
12: break
13: else pre_fpr > FPR
14: low < w, high <+ w x 2
15: binary search to obtain res_w
16: break
17: end if
18: end while
19: else if pre_fpr > FPR then
20: while w x 2 do
21: w—w X 2
22: pre_fpr < Error Predictor(N,h,w)
23: if pre_fpr is close to FPR then
24: res_w < w
25: break
26: else pre_fpr < FPR
27: low %, high < w
28: binary search to obtain res_w
29: break
30: end if
31: end while
32: end if
33: result.push(h, res_w)
34: end for
35: return memory-optimal configurations from result

36: end function

hash functions than the upper bound implied by the maximum
memory size. Therefore, this initialization approach is more
reasonable than performing a binary search starting from
the maximum memory size. We use the four representative
sketches from the previous section to illustrate how to perform
reasonable initialization and describe our search strategy.

1) Bloom Filter for Membership Query

As shown in Alg. 3, for a given F'PR and number of flows
N, we initialize w as hN Xh_ for different numbers of hash
functions h, which corresponds to the case where flows are
evenly hashed. We then use the error predictor to estimate the

current false positive rate pre_fpr. When pre_fpr > FPR,

the memory is doubled iteratively until pre_fpr < FPR;
when pre_fpr < FPR, the memory is halved iteratively until
pre_fpr > F PR. Subsequently, we perform binary search to
obtain the memory-optimal configurations for the current h.
We repeat this process for each k. Finally, we select memory-
optimal configurations of h and w.

Discussion: Although the formulas from previous Bloom
Filter-related studies [18], [34] can generate optimal config-
urations, their direct application is not always feasible. For
example, for 250,000 flows with a 0.1% FPR, the optimal
configuration requires 449 KB of memory and A = 10.
However, allocating 10 hash functions for Bloom Filter in
programmable switches is unacceptable, and even in servers,
larger values of i cannot be used due to throughput limitations.
In RA-Sketch, h is a user-defined upper bound, and RA-Sketch
determines the optimal configuration under this constraint.

Due to space limitations, we do not provide the pseudocode
of the following sketches, but they are similar to Alg. 3.

2) Elastic Sketch for Heavy-Hitter Detection

For a given RR and number of heavy hitters H, we initialize
was & X7RR, which corresponds to the case where elephant
flows are evenly hashed and flow sizes remain unchanged. We
then use the error predictor to estimate the recall rate pre_rr.
When pre_rr > RR, the memory is halved iteratively until
pre_rr < RR; when pre_rr < RR, the memory is doubled
iteratively until pre_rr > RR. Finally, we perform binary
search to obtain the memory-optimal configurations of w.

3) CM Sketch for Frequency Estimation

For a given AAF, total number of packets P, and number
of flows N, we initialize w as %, where % represents

N
the average flow size and 44E 4 1 denotes how many flows

share a bucket, thus determiﬁing the ideal number of buckets
required under the assumption of equal flow sizes and uniform
hashing. We then use the error predictor to estimate the current
AAE pre_aae. When pre_aae > AAE, memory is iteratively
doubled until pre_aae < AAE; when pre_aae < AAE,
memory is iteratively halved until pre_aae > AAE. We
perform binary search to obtain the memory-optimal config-
urations for the current d. We repeat this process for each d.
Finally, we select memory-optimal configurations of d and w.

4) rSktl for Cardinality Estimation

It’s similar to the search algorithm in the CM Sketch, but
with the total number of packets P replaced by the total
number of cardinality C.

Analysis: Our initialization strategy provides a closer es-
timate of the actual number of buckets required under real
hash functions than the upper bound implied by the maximum
memory size, thereby avoiding many unnecessary searches and
significantly enhancing time efficiency. Furthermore, based on
this initialization, we subsequently adopt a strategy of power-
of-two scaling followed by binary search.

D. Parameter Configurations for Multiple Sketches

Problem: Given a fixed memory budget, multiple sketches
performing different measurement tasks, and specified error

constraints for each sketch, how can the parameters of all
sketches be configured to satisfy these error constraints?

Solution: RA-Sketch independently determines the
memory-optimal parameter configurations for each sketch to
meet its respective error constraints. It then aggregates these
configurations to verify compliance with the overall memory
budget. This approach is feasible because RA-Sketch ensures
that the parameter configurations for each sketch is optimal
with respect to its memory usage. If the combined memory
usage of all sketches exceeds the budget, it implies that
fulfilling all error constraints within the specified memory
limit is not achievable.

E. Comparison with SketchConf [16] and AutoSketch [17]

SketchConf is limited to frequency estimation and
does not address configurations for other tasks. Further-
more, SketchConf is designed to compute the accurate
Pr{ fl — fl’ > T} < p, but this formula cannot solve for
the AAE in frequency estimation and cardinality estimation
or the RR in heavy-hitter detection. As a result, it cannot be
compared with our solution in the experiments.

The key difference between AutoSketch and baseline lies
in the search strategy. However, AutoSketch also relies on ex-
perimental testing for configuration. As shown in Section V-C,
the time efficiency of experimental testing is extremely low.

In contrast, our proposed RA-Sketch not only adapts to error
constraints across various tasks, but also achieves superior
time efficiency through Poisson-distributed collision modeling.
Even when traffic experiences significant variations over time,
RA-Sketch provides the most accurate configuration and the
shortest reconfiguration time compared to other solutions.

F. Summary

In summary, RA-Sketch addresses two limitations of the
baseline. Firstly, by incorporating Lemma-I and II into the
sketch configuration, we construct accurate and efficient error
predictors for various sketches through Poisson-distributed
collision modeling, thereby eliminating the time overhead
from experimental testing. Secondly, by initializing memory
appropriately and subsequently employing a strategy of power-
of-two scaling followed by binary search, we circumvent
numerous futile searches, substantially enhancing the time
efficiency of the configuration process.

IV. GENERALIZE TO OTHER SKETCHES
A. Applying RA-Sketch to CO Sketch [12]

Structure: The CO Sketch shares a similar structure to the
CM Sketch, with the key difference being the update process.
When inserting a flow, the CO Sketch randomly increments
or decrements the d counters mapped by the hash functions,
rather than always incrementing them. When querying a flow,
the median value of the d mapped counters is reported.

Error Predictor: The error predictor for the CO Sketch
differs from the CM Sketch in two ways. First, the size of
each colliding flow has a 50% probability of being negative.

Second, the absolute value of the median, rather than the
minimum, of the d mapped counters is used as the AAE.

Search Strategy: The search strategy for the CO Sketch is
consistent with that of the CM Sketch.

B. Applying RA-Sketch to gSkt [29]

Structure: The difference from the CM Sketch is the re-
placement of counters with single-flow cardinality estimators.

Error Predictor: It’s similar to the error predictor in the
CM Sketch, but with the frequency distribution replaced by
the cardinality distribution.

Search Strategy: The search strategy for the gSkt is
consistent with that of the rSktl.

C. Applying RA-Sketch to HeavyGuardian [14]

Structure: When handling heavy-hitter detection, the
HeavyGuardian consists of a single bucket array (d = h = 1),
with each bucket storing up to 8 flows. When inserting a flow,
if it is already present in the bucket or there is an empty slot,
the flow is inserted. Otherwise, the HeavyGuardian applies an
exponential decay to the smallest flow in the bucket, replacing
it with the new flow once the decayed value reaches 0.

Error Predictor: Based on Lemma-I, let Z be the number
of elephant flows in any given bucket, which follows a Poisson
distribution with parameter A\ = %, where H is the total
number of elephant flows, and w is the number of buckets.
According to the PMF of Poisson distribution, we calculate
the proportion of each possible value of Z and multiply it by
the corresponding value to represent the number of identified
elephant flows. Since each bucket in the heavy part can store
up to 8 elephant flows, when Z > 8, we assume that collisions
among elephant flows result in none being identified, and thus
multiply the proportion by 7 instead of 8. Finally, we divide
the result by A to obtain the RR.

Search Strategy: For a given RR and number of heavy
hitters H, we initialize w as %, which corresponds to the
case where elephant flows are evenly hashed and flow sizes
remain unchanged. The search strategy is consistent with that
of the Elastic Sketch.

D. Applying RA-Sketch to HeavyKeeper [15]

Structure: HeavyKeeper consists of d equal-length bucket
arrays and h hash functions (d = h). When inserting a flow,
HeavyKeeper maintains the keys of the most frequent flows in
d mapped buckets. For a new flow, HeavyKeeper decays the
count values of the existing flows in the buckets with a certain
probability. When the count value reaches 0, the new flow is
recorded in the bucket. When querying a flow, it checks the d
mapped buckets and reports the maximum value among them.

Error Predictor: Based on Lemma-I, let Z be the number
of elephant flows in any given bucket, which follows a Poisson
distribution with parameter A\ = %, where H is the total num-
ber of elephant flows, and w is the number of buckets. Since
each bucket can store at most one elephant flow, we continue
to assume that collisions among elephant flows result in none
being identified. We calculate the proportion of P(Z = 1) to

represent the number of identified elephant flows. Then, we
divide by A to obtain the RR for each layer. Assuming the
identification of elephant flows in each layer is independent,
we calculate the RR for d layers using 1 — (1 — P(Z = 1))d.

Search Strategy: For a given RR and number of heavy
hitters H, we initialize w as H X (1 — V1 - RR) for different
values of d, which corresponds to the case where elephant
flows are uniformly hashed and are treated equally. The search
strategy is consistent with the Elastic Sketch, except that it
iterates over different numbers of hash functions.

E. Discussion

1) RA-Sketch is also applicable to other sketches, such as
OneSketch [24], WavingSketch [35], Tower Sketch [27], UA
Sketch [36], rSkt2 [30], and so on [37]. However, due to space
limitations, these sketches are not discussed further.

2) The error predictor can be adjusted using prior knowledge
to better align with real-world error constraints. The configu-
rations presented in this work represent one possible approach.
For example, in the case of HeavyGuardian, the assumption
that collisions between elephant flows result in none being
identified can be reconsidered. Collisions may still allow the
identification of an elephant flow, particularly if one flow’s
frequency substantially exceeds the combined frequencies of
the colliding flows. While both scenarios are plausible, we
adopt the former assumption for simplicity.

V. EXPERIMENTAL RESULTS
A. Test Setup

Datasets: Our evaluation utilizes two real-world datasets.

o CAIDA Dataset: The first is the CAIDA dataset [38],
comprising real Internet traffic traces sourced from
CAIDA. We extract 25 million consecutive packets, re-
sulting in approximately 260, 000 flows when aggregated
by source IP and about 920,000 flows when aggregated
by source—destination IP pairs. Under source IP aggrega-
tion, there are approximately 11, 000 elephant flows using
a heavy-hitter threshold of 250.

« MAWI Dataset: The second is the MAWI dataset [39],
comprising real Internet traffic traces collected by the
MAWI Working Group of the WIDE Project. We ex-
tract 25 million consecutive packets, resulting in ap-
proximately 90,000 flows when aggregated by source
IP and about 2.3 million flows when aggregated by
source—destination IP pairs. Under source IP aggregation,
there are approximately 3,000 elephant flows using a
heavy-hitter threshold of 250.

Implementation: All code is implemented in C++. We
adopt the Bob hash as recommended in [32], and observe
similar results with other hash functions, such as Mur-
murHash3 [33] and CityHash [40]. All the programs run on
a machine with an Intel Core i9-13900H processor, 2.6 GHz,
14 cores, 20 threads, and 64GB DDR4 memory. The source
code is available at Github [41].

Abbreviations: We introduce some abbreviations used in
the experiment, using the CM Sketch as an example:

« BS_CM: This solution uses the baseline to predict errors
and search for the configurations.

e RA_CM: This solution uses the RA-Sketch to predict
errors and search for the configurations.

« BS_CM_1 and RA_CM_1: The final digit represents the
number of hash functions used.

B. Experiments on Configuration Accuracy

We evaluate the error predictor across four types of tasks
and multiple sketches, demonstrating that the error predictor
based on Lemma-I and II can accurately predict errors.

Settings: For the Monte Carlo simulations involved in
frequency-dependent tasks, we conduct the simulations in
batches, with each batch comprising 1000 iterations. The sim-
ulation stops and outputs the predicted error if the fluctuation
in prediction error between the current and previous batches
is less than 0.0001.

Membership Query: As shown in Fig. 1a and 2a, for the
Bloom Filter, the error between our predicted FPR and the
actual FPR is nearly always negligible as the number of hash
functions and bits varies.

Heavy-Hitter Detection: As shown in Fig. 1b, lc, 2b,
and 2c, for Elastic Sketch and HeavyGuardian, the error
between our predicted RR and actual RR is within 10% in
most cases as the number of buckets changes. Similarly, as
shown in Fig. 1d and 2d, for HeavyKeeper, as the number
of hash functions and buckets varies, the error between our
predicted RR and actual RR is also within 10% in most cases.

Frequency Estimation: As shown in Fig. le, 1f, 2e, and 2f,
for the CM Sketch and CO Sketch, the error between our
predicted AAE and the actual AAE is nearly always negligible
as the number of hash functions and counters varies.

Cardinality Estimation: As shown in Fig. 1g, 1h, 2g,
and 2h, for the gSkt and rSktl, the error between our predicted
AAE and the actual AAE is nearly always negligible as the
number of hash functions and counters varies.

Analysis: The experimental results indicate that the error
predictor of RA-Sketch can accurately predict error. For
membership query, frequency estimation, and cardinality es-
timation, the predicted values are almost identical to the
actual values. For heavy-hitter detection, the error between
the predicted and actual values is within 10%.

Discussion: It is worth noting that applying RA-Sketch
to low-performance heavy-hitter detection sketches results
in a higher error. However, we think that the rationale for
using low-performance sketches is insufficient when high-
performance sketches, such as Elastic Sketch, are available.

C. Experiments on Configuration Search Time

We demonstrate the effectiveness of our search strategy
using the number of iterations and evaluate the overall con-
figuration speed of RA-Sketch through time cost.

Settings: In the following experiments, the maximum mem-
ory allocation for the sketch is set to 10 MB, and the maximum
number of hash functions A is limited to 3. The allowable error
range in the algorithm is set to 5%, meaning the search stops

A s x BSBF2 - BSBF3 A bs Elsic -8 RA Elasic A 5sHG 4 RANG A sk x BSHK2 e BS K3
84 RABE RALBF 2 RABF 3 1.00 1.00 4 RA K RALHK 2 RAHK 3
1.00 : : 1.00 P
075 2075 2075 2075 ./\.;//
o 4 &)
£0.50 5 0.50 3050 =050
& & E
0.25 \E 0.25 0.25 0.25
0.00 > 0.00 3 0.00 7 0.00
o1 o o e 27 > > P on o > > o0 on o o BS PG 17 Pt
Number of Buckets Number of Buckets Number of Buckets Number of Buckets

(a) Bloom Filter.
A s o 3: iiiiﬁ A Bs.OM3

W RA M RACM 3

(b) Elastic Sketch.
4 ss.cot 3: w02 A BS.CO3

- RaCOl RACOS

(c) HeavyGuardian.

A 55 s BSgsk2
NIty RA_gski 2

BS gSki 3
RA_gSki 3

(d) HeavyKeeper.

A ss s
- A sk

A BS k3

RA_sSkil_3

BS_rskil 2
RA_rSkil 2

10 P o7 P o Pl 10 PG o1 P P 7 o7 o o o PG 10 o or o o PG
Number of Buckets Number of Buckets Number of Buckets Number of Buckets
(e) CM Sketch. (f) CO Sketch. (g) gSkt. (h) rSktl.

Fig. 1: Experiments on Configuration Accuracy of RA-Sketch using the CAIDA Dataset.

A s x BSBE2 ok BSBES B 5s Eusic Y RA_Elsic o516 - RAHG B ss t BSHK2 =k BS K3
W raBr RA_BF 2 RA_BF3 4 R RA_HK 2 RAHK3
0 1.00 1.00
10 1.00 . -
H\{L !%‘
.] 0.75 2 0.75 20.75
10 - ~ & 5 or
= 0.50 = 0.50 =
& 2 g g 3050 /
¥ 3
10 =025 =025 £ 0.25
3
1 0.00 0.00—5 0.00
0 27 P Pl el 7 5 57 > > o P 57 > > o o o o o PG
Number of Buckets Number of Buckets Number of Buckets Number of Buckets
(a) Bloom Filter. (b) Elastic Sketch. (c) HeavyGuardian. (d) HeavyKeeper.
s v - Bs.oMs 4 sco A s s A b5 sk A b5 sk

BS_CM_2
RA_CM 2

% RaOMI

RA_CM_3

BS.C02 ke BS.CO3
% RACOI RA_CO_2 RACOS

BS_gSki 2
RA_gSki 2

- RAsskLl

RA_gSki3

Bsrski 2 ke BS Skl
- RAsl RAski 2 RA skl 3

Number of Buckets

(e) CM Sketch.

Number of Buckets

() CO Sketch.

Number of Buckets

(8) gSkt.

Number of Buckets

(h) rSktl.

Fig. 2: Experiments on Configuration Accuracy of RA-Sketch using the MAWI Dataset.

when the predicted value deviates by 5% from the user-defined
constraint. Except for the Bloom Filter, other sketches use the
baseline mentioned in Section III-A for error prediction.

Membership Query: As shown in Fig. 3a and 4a, for
the Bloom Filter, RA-Sketch reduces the average number of
unnecessary searches by 20-30. Since the computational time
overhead of the error prediction formula is negligible, RA-
Sketch does not substantially enhance time efficiency.

Heavy-Hitter Detection: As shown in Fig. 3b and 4b, for
Elastic Sketch, HeavyGuardian, and HeavyKeeper, RA-Sketch
reduces the average number of unnecessary searches by 5, 5
and 12, respectively, on the CAIDA dataset, and by 8, 7 and 16,
respectively, on the MAWI dataset, compared to the baseline.
Due to the time efficiency of the error predictor, the search
time for Elastic Sketch, HeavyGuardian, and HeavyKeeper is
reduced by 6-7 orders of magnitude.

Frequency Estimation: As shown in Fig. 3c and 4c,

compared with the baseline, RA-Sketch reduces the average
number of unnecessary searches for CM Sketch and CO
Sketch by 8 and 4, respectively, on the CAIDA dataset, and
reduces that of CM Sketch by 6 on the MAWI dataset. Due to
time efficiency of the error predictor, the search time for CM
Sketch and CO Sketch is reduced by 1-2 orders of magnitude.

Cardinality Estimation: As shown in Fig. 3d and 4d, for
gSkt and rSktl, RA-Sketch reduces the average number of
unnecessary searches by 11 and 6, respectively, on the CAIDA
dataset, and by 7 and 4, respectively, on the MAWTI dataset,
compared to the baseline. Due to the time efficiency of the
error predictor, the search time for gSkt and rSktl is reduced
by 1-2 orders of magnitude.

Analysis: The results indicate that RA-Sketch substantially
enhances configuration speed. This improvement is primarily
due to two factors: the efficiency of RA-Sketch’s search
strategy, which minimizes unnecessary searches, and the time

W sse W A M ssee W RAF

N
S
<

2
S |m—a— _ = u 3
£30 £
= g
15} Q
5 -2 | f——_ffp——————=u
520 210
£ e
“10 s
05 04 03 02 o1 05 02 03 o2 o1
FPR FPR

(a) Membership Query.
s W racv 4 Bsco @ RACO s M sscv - racm 4 Bsco 4@ RACO

" ::%ﬂ
10° :>.>\4:

100 100 10 100 100 100 100 10 100 10
AAE AAE

w B
S O
<

"
Time Cost (ms)

Number of Iterations

=]
=)

(c) Frequency Estimation.

BSHG - BSHK
e X
30 ‘\‘\A\‘\A

0.5 0.6 0.7 0.8 0.9

G A BS K
RAHG RAHK

Number of Iterations
3
Time Cost (ms)

————————Wu
0.5 0.6 0.7 0.8 0.9

=]
S

Recall Rate Recall Rate
(b) Heavy-Hitter Detection.

A ssesk W RAssk @) Bsask 4 RASK W ossosk W Rassk @ sk - RAsk
. 40 1 05
: -
E 30 £
2 <
= %
52 g1
2 E
E 10 =R
2 10

0= T 3 7 T

10 10 10 10 10 10
AAE AAE

(d) Cardinality Estimation.

Fig. 3: Experiments on Configuration Search Time of RA-Sketch using the CAIDA Dataset.

oo 9 RA B o A ovsue 4 RA B

40 10
w
P .\.\./.\-
=} —_
5 e
£30 i
= g
S &}
2 :
2 20 é 102 { F————
E S
“10 5

05 04 03 02 o1 905 04 03 02 o1
FPR FPR

(a) Membership Query.

M sscovn W racv 4 Bsco @ RACO 5 Mo e racn @ 50 @ raco

45 10

2

£ -

b S0t

5is i

E =)

“ 3

0 10° ;
100 100 10 10 10 100 100 100 100 10
AAE AAE

(c) Frequency Estimation.

4 Bs Blastic x BS HG A BS HK 4 BS Blastic :t BS HG A BS HK
W RA Blusiic RAHG RA HK s M RA Elasiic RA HG RAHK
40 10
Z
£ 5 ‘E‘E‘E‘E‘
g A/‘\A_‘\ % 10
= Z
520 8
b5 o 100
210 u% £
E] =
z :::::7"’\0 | ——f—b—
0 10°
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Recall Rate Recall Rate

(b) Heavy-Hitter Detection.

s sk - RAsk @ BSsk - RASKI s M RAsSk
40 10

@ sk @ Raska

w
=]

Time Cost (ms)
S

w/

Number of Iterations
[55]
S

10° 10 10' 10 10° 10'
AAE

(d) Cardinality Estimation.

Fig. 4: Experiments on Configuration Search Time of RA-Sketch using the MAWI Dataset.

efficiency of its error predictor, which eliminates the need for
time-consuming experimental testing.

Discussion: It is worth noting that the configuration time of
the baseline depends on data volume. For example, process-
ing 25 million packets requires several tens of seconds for
configuration, whereas processing 250 million packets takes
several hundred seconds, and so on. In contrast, due to the
Poisson-distributed collision modeling, the configuration time
of RA-Sketch depends solely on the characteristics of the data
distribution and is almost unaffected by the data volume.

VI. CONCLUSION

Providing parameter configurations that meet user-defined
error constraints is critical for sketch applications across
diverse scenarios. This paper presents RA-Sketch, a general
framework that rapidly and accurately generates memory-
optimal sketch configurations. RA-Sketch employs two key

lemmas to construct accurate and rapid error predictors for
various sketches, eliminating the need for time-consuming
experimental testing. Furthermore, RA-Sketch introduces a
hierarchical search technique with initialization, substantially
reducing unnecessary searches. Experimental results demon-
strate that RA-Sketch generates accurate configurations while
substantially reducing configuration search time compared to
benchmark-based solution.

ACKNOWLEDGMENTS

We would like to thank our shepherd and the anonymous
reviewers for their thoughtful feedback. This work is sup-
ported by the National Natural Science Foundation of China
under Grant Nos. 62432003, U22B2005 and 62032013; the
Liaoning Revitalization Talents Program under Grant No.
XLYC2403086; and the financial support of Lingnan Univer-
sity (LU) under Grant No. DB23A9.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

H. Zheng, C. Huang, X. Han, J. Zheng, X. Wang, C. Tian, W. Dou, and
G. Chen, “pmon: Empowering microsecond-level network monitoring
with wavelets,” in Proceedings of the ACM SIGCOMM 2024 Conference,
2024, pp. 274-290.

H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang, W. Dou, and
G. Chen, “Flymon: enabling on-the-fly task reconfiguration for network
measurement,” in Proceedings of the ACM SIGCOMM 2022 Conference,
2022, pp. 486-502.

K. Yang, Y. Wu, R. Miao, T. Yang, Z. Liu, Z. Xu, R. Qiu, Y. Zhao,
H. Lv, Z. Ji et al., “Chamelemon: Shifting measurement attention as
network state changes,” in Proceedings of the ACM SIGCOMM 2023
Conference, 2023, pp. 881-903.

Q. Huang, H. Sun, P. P. Lee, W. Bai, E. Zhu, and Y. Bao, “Omni-
mon: Re-architecting network telemetry with resource efficiency and
full accuracy,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 404-421.

L. Tang, Q. Huang, and P. P. Lee, “Spreadsketch: Toward invertible
and network-wide detection of superspreaders,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. 1EEE, 2020,
pp. 1608-1617.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM special interest group on data
communication, 2019, pp. 44-58.

Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 113-126.

Y. Liu, K. Guo, FE Li, J. Shen, and X. Wang, “La-sketch: An adap-
tive level-aware sketch for efficient network traffic measurement,” in
2025 IEEE/ACM 33nd International Symposium on Quality of Service
(IWQoS). 1EEE, 2025, pp. 1-10.

K. Guo, F. Li, J. Shen, X. Wang, and J. Cao, “Distributed sketch
deployment for software switches,” IEEE Transactions on Computers,
2024.

K. Guo, F. Li, J. Shen, and X. Wang, “Advancing sketch-based net-
work measurement: A general, fine-grained, bit-adaptive sliding window
framework,” in 2024 IEEE/ACM 32nd International Symposium on
Quality of Service (IWQoS). IEEE, 2024, pp. 1-10.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58-75, 2005.

M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693-703.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 561-575.
T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and guard hot items in data streams,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2584-2593.

T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: an accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845-1858,
2019.

R. Miao, F. Dong, Y. Zhao, Y. Zhao, Y. Wu, K. Yang, T. Yang, and
B. Cui, “Sketchconf: A framework for automatic sketch configuration,”
in 2023 IEEE 39th International Conference on Data Engineering
(ICDE). 1IEEE, 2023, pp. 2022-2035.

H. Sun, Q. Huang, J. Sun, W. Wang, J. Li, F. Li, Y. Bao, X. Yao,
and G. Zhang, “{AutoSketch}: Automatic {Sketch-Oriented} compiler
for query-driven network telemetry,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
1551-1572.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

[32]

[33]
[34]

(35]

[36]

[37]

[38]

(39]
[40]
[41]

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281-293, 2000.

Y. Wu, J. He, S. Yan, J. Wu, T. Yang, O. Ruas, G. Zhang, and
B. Cui, “Elastic bloom filter: deletable and expandable filter using elastic
fingerprints,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 984—
991, 2021.

H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu, J. Ma, L. Qi, and G. Chen,
“Bloom filter with noisy coding framework for multi-set membership
testing,” IEEE Transactions on Knowledge and Data Engineering, 2022.
M. Li, R. Xie, D. Chen, H. Dai, R. Gu, H. Huang, W. Dou, and G. Chen,
“A pareto optimal bloom filter family with hash adaptivity,” The VLDB
Journal, vol. 32, no. 3, pp. 525-548, 2023.

L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
IEEE INFOCOM 2019-1EEE Conference on Computer Communications.
IEEE, 2019, pp. 2026-2034.

Z. Fan, R. Wang, Y. Cai, R. Zhang, T. Yang, Y. Wu, B. Cui, and S. Uhlig,
“Onesketch: A generic and accurate sketch for data streams,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp.
12887-12901, 2023.

Y. Zhao, W. Zhou, W. Han, Z. Zhong, Y. Zhang, X. Zheng, T. Yang,
and B. Cui, “Achieving top-k-fairness for finding global top-k frequent
items,” IEEE Transactions on Knowledge and Data Engineering, 2024.
C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications,
2002, pp. 323-336.

Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang er al., “Lightguardian: A full-visibility, lightweight, in-
band telemetry system using sketchlets,” in /18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), 2021,
pp. 991-1010.

R. Ding, S. Yang, X. Chen, and Q. Huang, “Bitsense: Universal and
nearly zero-error optimization for sketch counters with compressive
sensing,” in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 220-238.

Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 3, no. 3,
pp. 1-34, 2019.

H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proceed-
ings of the VLDB Endowment, vol. 14, no. 6, 2021.

T. Bu, J. Cao, A. Chen, and P. P. Lee, “Sequential hashing: A flexible
approach for unveiling significant patterns in high speed networks,”
Computer Networks, vol. 54, no. 18, pp. 3309-3326, 2010.

C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for multipoint measurements,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 39-50, 2008.
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp.
M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the
twentieth annual ACM symposium on Principles of distributed comput-
ing, 2001, pp. 144-150.

J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 1574—
1584.

J. Ye, L. Li, W. Zhang, G. Chen, Y. Shan, Y. Li, W. Li, and J. Huang,
“Ua-sketch: an accurate approach to detect heavy flow based on unin-
terrupted arrival,” in Proceedings of the 51st International Conference
on Parallel Processing, 2022, pp. 1-11.

H. Wang, “Enhancing accuracy for super spreader identification in high-
speed data streams,” Proceedings of the VLDB Endowment, vol. 17,
no. 11, pp. 3124-3137, 2024.
https://catalog.caida.org/dataset/passive_2018_pcap, Anonymized Inter-
net Traces 2018.
https://mawi.wide.ad.jp/mawi/samplepoint-F/2021/202109011400.html.
https://github.com/aappleby/smhasher/blob/master/src/City.cpp.
https://github.com/Qing Yeyyds/RA-Sketch.

