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Abstract—Real-time network traffic classification plays a cru-
cial role in ensuring Quality of Service and network security, and
machine learning (ML) based methods achieve high classification
accuracy but induce significant computational overhead. While
SmartNIC solutions can offload classification tasks thus reducing
CPU burdens, they still suffer from various limitations, mani-
fested in limited computing capabilities, insufficiency in dynamic
load handling and high latency from heterogeneous computing
architectures.

To solve these problems, we propose SmartTC, with three key
designs: (1) SmartTC employs hardware-software co-design to op-
timize SmartNIC processing power, (2) SmartTC adopts a traffic-
aware dynamic batch submission strategy that adjusts submission
policies based on real-time network load, and (3) SmartTC
proposes parallel pipeline scheduling that ensures efficient task
execution while minimizing communication overhead. Finally,
we implement SmartTC on the BlueField-3 DPU and conduct
extensive experiments for evaluations, and comparison results
demonstrate that SmartTC significantly outperforms existing
solutions. For example, it reduces average traffic classification
time by up to 16.8% under low loads and 90.9% under high loads.
Besides, SmartTC does not affect Bluefield-3 network services,
and saves host CPU usage by at least two cores.

Index Terms—Traffic Classification, Machine Learning, Smart-
NIC

I. INTRODUCTION

In the cloud environment nowadays, real-time traffic clas-

sification plays a crucial role in ensuring Quality of Service

(QoS) [17] and identifying and isolating malicious traffic to

enhance network security [3]. Currently, the primary approach

to improving traffic classification accuracy is to employ ML-

based classification models. However, as model complexity

increases and data center scales expand, the computational

resource demands for traffic classification tasks are growing

exponentially, posing a critical bottleneck to the real-time

performance of traffic classification systems. Therefore, it is

essential to develop an efficient ML-based traffic classification

system.

To address the aforementioned issue, existing solutions can

be categorized into two types based on the deployment location

of the traffic classification model. The first approach deploys

the classification task on the network data plane [24] such

as programmable switche or FPGA-based SmartNIC, includ-

ing systems like Leo [8], NetBeacon [26], and N3IC [19].

�Both authors contributed equally to this paper.

These methods perform real-time traffic classification in the

data plane, avoiding the high overhead associated with data

transmission [22], thereby reducing latency and alleviating the

computational burden on the host’s CPU and GPU. However,

due to the limited computational resources of programmable

network devices, this approach can only deploy lightweight

models and incurs high costs when updating ML models.

The second approach executes traffic classification on the host

CPU and GPU, as seen in systems like FENXI [5] [4], which

typically follow a modular architecture comprising analysis,

pre-processing, and traffic classification. This modular design

allows for performance improvements by scaling host-side

resources. However, such methods often require significant

host resources, potentially impacting regular operations, and

lack optimizations tailored to real-world deployment scenarios.

System-on-Chip (SoC) SmartNIC offers a novel solution

for deploying ML-based traffic classification models, serv-

ing as a compromise among existing solutions. Compared

to programmable switches and other programmable network

devices, SoC SmartNICs provide greater computational power,

alleviating the resource constraints of existing programmable

network devices. Additionally, as an extension of host-side

computing resources, SmartNIC can offload computational

tasks, effectively reducing the CPU burden and improving

traffic classification efficiency.

However, directly migrating and deploying traffic classifi-

cation tasks onto SoC SmartNICs presents several challenges

in real-world cloud environments, and the key limitations are

manifested in the following areas:

Limitation 1: Difficulty in offloading entire traffic clas-
sification system to SmartNICs. Existing host-based traffic

classification systems (e.g., FENXI [5]) usually require bind-

ing several CPU cores and inference devices such as GPUs.

Although SoC SmartNICs have stronger computing capabil-

ities than programmable network devices, their performance

is still far inferior to that of the host’s CPU [23] and GPU.

Offloading the entire ML-based classification system to a

SmartNIC may not only reduce the classification efficiency

but also introduce additional processing overhead (refer to

Challenge 1 in Section II.B for more details).

Limitation 2: Lack of mechanisms to handle dynamic
network loads. Existing traffic classifiers such as FENXI op-

timize for static workloads through fixed-batch processing. In
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this approach, input data is aggregated into pre-set batch sizes

(e.g., 2 to 128 tasks) to reduce the number of kernel launches,

maximize the utilization of the GPU, and thus improve the

overall computational efficiency. However, network traffic in

cloud environments fluctuates greatly: microsecond-level burst

traffic coexists with sustained high-throughput traffic. This

presents a fundamental trade-off problem for the fixed-batch

processing strategy. On one hand, large batch processing can

increase GPU utilization, but it will introduce waiting latency

during periods of low network load. On the other hand,

although small batch processing can reduce waiting latency,

it will lead to frequent inferences during high network load

periods, causing the GPU to start and switch tasks frequently.

The lack of a mechanism to dynamically adjust the batch

size to adapt to dynamic network loads reduces the real-

time performance of traffic classification. A system that can

sense network loads and perform scheduling is crucial for

maintaining real-time performance under dynamic network

loads (refer to Challenge 2 in Section II.B for more details).

Limitation 3: Additional latency from heterogeneous
computing architectures. SmartNICs can offload computa-

tional tasks, reducing the computational pressure on the host’s

CPU and GPU and freeing up resources. However, in a het-

erogeneous computing architecture with the host’s CPUs and

GPUs that supports task offloading, transferring memory data

from SmartNICs to the host requires transmission through the

PCIe. This approach also introduces additional communication

overhead (refer to Challenge 3 in Section II.B for more

details). In addition, to ensure the collaboration between the

SmartNIC and the host, it is necessary to synchronize the

traffic classification model categories. Therefore, designing an

efficient pipeline and communication mechanism is crucial

to reduce latency and ensure synchronization of the model

categories.

To address the aforementioned limitations, this study pro-

poses SmartTC, a real-time ML-based traffic classification

system leveraging SmartNIC offloading. SmartTC introduces

three key optimization strategies: (1) Hardware-software co-
design: To address the limitation of SmartNIC computing

resources, SmartTC adopts a partial offloading approach,

where the analysis and pre-processing modules of the traffic

classification system are offloaded to the SmartNIC. Mean-

while, hardware accelerators on the SmartNIC enable efficient

network traffic processing, while software components execute

traffic analysis in parallel. By implementing hardware-software

co-design on the SmartNIC, the system ensures efficient

execution of analysis and pre-processing. (2) Traffic-aware
dynamic batch submission strategy: To handle dynamic

changes in network load, SmartTC introduces a traffic-aware

dynamic batch submission strategy. This strategy utilizes

long-term and short-term windows to monitor both instan-

taneous and overall network traffic, dynamically adjusting

batch submission policies to accommodate different load con-

ditions, thereby improving real-time performance. (3) Parallel
pipeline scheduling: To mitigate additional communication

latency introduced by the heterogeneous computing architec-

ture, SmartTC employs a parallel pipeline scheduling method.

This approach organizes the execution of tasks into a pipeline

between the SmartNIC and the host CPU and GPU, ensur-

ing efficient parallel execution across these components. By

overlapping computation with communication, this approach

effectively minimizes overall system latency and improves

traffic classification efficiency.
The main contributions of this study are as follows:

• We first analyze the limitations of existing work and

evaluate the applicability of SmartNIC-based offloading

for traffic classification.

• We develop SmartTC on the BlueField-3 DPU. First,

hardware-software co-design is adopted to improve the

efficiency of analysis and pre-processing. Second, a

traffic-aware dynamic batch submission strategy is intro-

duced to enhance the system’s adaptability to dynamic

network loads. Finally, a parallel pipeline scheduling

method is designed to optimize system throughput and

improve traffic classification efficiency.

• Finally, we conduct extensive experiments to evaluate the

performance of SmartTC, and comparison results show

that SmartTC significantly improves traffic classification

efficiency and effectively reduces host resource con-

sumption. For example, SmartTC outperforms the fixed

batch strategy under different network loads, reducing the

average flow classification time by up to 16.8% under

low loads and 90.9% under high loads. In the meanwhile,

SmartTC ensures that network services remain unaffected

and reduces CPU usage by at least two cores.

II. BACKGROUND AND MOTIVATION

A. Background
ML for traffic classification: Typically, network traffic

characteristics are matched against a known feature library of

applications to identify the various applications running on a

network. Traditional port-based classification methods rely on

predefined mappings between port numbers and application

types [16], such as port 80 typically corresponds to web

browsing applications, or analysis based on network payloads.

However, with the increasing prevalence of encrypted traf-

fic, these methods are gradually becoming ineffective. ML-

based approaches can identify and classify traffic from more

dimensions, as discussed in [11], [13], [12], and [1]. These

models can automatically learn effective features from com-

plex network data, thereby improving classification accuracy

and robustness. For example, the DF model [20] utilizes

convolutional neural networks (CNNs) to process raw packet

information, enabling efficient classification of encrypted traf-

fic. Additionally, the SAM [25] model uses a self-attention

mechanism to model traffic, further enhancing classification

performance. Although the increasing complexity of the mod-

els has led to significant improvements in the accuracy of ML-

based traffic classification, this complexity has also resulted in

the neglect of real-time requirements. Therefore, an efficient

traffic classification system must be designed in practical de-

ployments to address the challenges of real-time performance.
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Fig. 1. In a multi-tenant cloud environment, the traffic classification system
is responsible for classifying network traffic. The system is deployed on the
same host as other tasks, sharing the host’s resources.

Systems for real-time ML-based traffic classification:

With the increase in model complexity and the expansion of

data center scale, the computational requirements have sig-

nificantly increased. Offline traffic classification methods lead

to high response latency. For classification tasks that require

quick responses, this latency is unacceptable. Therefore, one

current approach is to perform traffic analysis tasks on the net-

work data plane. N3IC [19], Leo [8], and Switchtree [10] em-

bed ML models into the data plane. By executing on the data

plane, low latency is achieved, and host resources are freed up.

However, the SRAM of programmable network devices used

in the above studies typically only has tens of MBs [15] [14],

which limits the deployment of models with parameters at the

k-level [8] [19], preventing the deployment of models with

parameters at the m-level (as shown in Table II). Another

common solution is to deploy traffic classification on host

CPUs and GPUs. To effectively deploy these ML models, [4]

and [5] typically adopt a modular architecture, as shown

in Figure 1. The modular design makes it easy to expand

and can meet the resource requirements of different ML-

based traffic classification tasks. This system ensures the real-

time performance of traffic classification but causes significant

consumption of host resources. This situation creates a demand

for a system that can not only guarantee real-time performance

but also minimize resource utilization.

SmartNIC: The emergence of SmartNIC* has provided

additional computing resources and task offloading platforms.

SoC SmartNIC architectures have been widely adopted, with

the BlueField series of chips [2] serving as a prominent

example. As shown in Figure 2, their architecture integrates

ARM processor cores. The eSwitch is equipped with a variety

of hardware accelerators and can also forward traffic to the

ARM subsystem for more flexible software processing. As

a result, this processing pipeline offers significant flexibil-

ity for network packet handling. Existing research leverages

*In this paper, the terms DPU (Data Processing Unit) and SmartNIC will
be used interchangeably, both referring to SoC SmartNIC.
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Fig. 2. Bluefield-3 DPU architectures.The figure illustrates that the DPU is
equipped with multiple ARM cores and associated acceleration hardware.

SoC SmartNIC for offloading and acceleration. For instance,

SKV [21] offloads data copy operations to SmartNIC to opti-

mize distributed key-value storage, thereby improving backend

processing efficiency, increasing throughput, and reducing

latency. LineFS [9] introduces a SmartNIC-based distributed

file system that reduces CPU load by offloading computa-

tional tasks. SmartEmb [18] utilizes SmartNIC to acceler-

ate inference, employing techniques such as task reordering,

prefetching, and cache management to optimize embedding

table lookups, thereby reducing CPU contention. Additionally,

Magician [6] mitigates intra-host network congestion through

hot data offloading, dynamic update strategies, and server-side

consistency mechanisms, thereby enhancing the performance

of network applications. SmartNIC has achieved remarkable

results in offloading host resources. Integrating SmartNIC with

the traffic classification system can effectively relieve host

resource pressure. However, to meet real-time requirements,

in scenarios with constantly changing network loads, how

to make full use of SmartNIC resources and explore more

efficient collaborative cooperation methods between SmartNIC

and host has brought a series of challenges that urgently need

to be overcome.

B. Motivation

While SmartNIC can offload computing tasks from CPUs,

its application to traffic classification still faces various chal-

lenges as follows.

Challenge 1: Resource constraints. Although SoC Smart-

NICs can run more complex models than programmable net-

work devices (with k-level parameters), their inference speed

remains significantly slower than that of GPUs—up to 10

times slower, as shown in Table I and Table II. Therefore,

offloading the entire ML-based classification system to a

SmartNIC still remains a suboptimal solution.

Although the cost of a SmartNIC (e.g., Nvidia BlueField-3)

may exceed that of several CPU cores, its capacity to inte-

grate multiple offload tasks—including storage, security, and

networking—has driven its widespread adoption in modern

cloud infrastructures. The associated cost can be effectively

amortized across different tasks.



TABLE I
COMPARISON OF DIFFERENT MODELS (TSRNN, SAM, MATEC)

Parameter TSRNN SAM MATEC

Parameters 2.9M 0.8M 2.6M
Input Size 22.5KB 0.1KB 23.58KB
Inference Time (GPU) 2.98ms 0.59ms 1.34ms
Inference Time (DPU) 26.70ms 4.91ms 10.56ms

TABLE II
COMPARISON OF DIFFERENT MODELS (ET-BERT, LEO, N3IC)

Parameter ET-BERT Leo N3IC

Parameters 132M 1K 8.8k-41.5k
Input Size 393KB X X
Inference Time (GPU) 13.47ms X X
Inference Time (DPU) 109.54ms X X

Challenge 2: Dynamic network loads. Existing methods

lack effective mechanisms to adapt to dynamically changing

network loads. FENXI [5] relies on fixed batch sizes for

inference. While this approach can improve overall hardware

utilization and increase inference throughput, it presents a dual

challenge of balancing real-time performance and resource

utilization under dynamic network loads. As illustrated in

Figure 3, using small batch processing enables real-time

inference for each batch; however, under high network load,

it triggers frequent inference requests, causing continuous

context switching on the GPU and increasing computational

overhead. Conversely, using large batch processing can fully

utilize computational resources but leads to an increase in

average classification time under low network load due to

network packet waiting, thereby compromising the real-time

performance of traffic classification. In addition, the FENXI

approach requires allocating at least 2–4 CPU cores to main-

tain network performance, resulting in high resource consump-

tion.

Challenge 3: High latency in heterogeneous architec-
tures. Although leveraging SmartNICs for computation of-

floading can effectively free up host resources, it faces critical

challenges when building heterogeneous computing systems.

Experiments shown in Figure 4 reveal that when the data

transmission between the SmartNIC and the host reaches 256

KB, the combined communication latency caused by PCIe

bus transmission and protocol stack processing rises to the

millisecond level. This increasing communication overhead

with data scale growth fails to meet the real-time requirements

of traffic classification, resulting in overall system efficiency

degradation.

III. DESIGN

In this section, we introduce our proposed traffic classifica-

tion system, SmartTC, which combines SmartNICs with host.

SmartTC employs hardware-software co-design and proposes

Fig. 3. As can be seen from the diagram, the batch processing method
can indeed enhance the inference performance. However, in the scenario of
network traffic classification, due to the extremely high requirements for real-
time response in this scenario, increasing the batch size cannot continuously
reduce the average classification time. In addition, the network load is in a
state of dynamic change, which makes it an extremely challenging task to
quickly determine the optimal batch size under dynamic network loads.

Fig. 4. As illustrated in the diagram, the latency of transferring data of varying
sizes from the SmartNIC to the host increases as the data size grows.

two strategies: traffic-aware dynamic batch submission strat-

egy and parallel pipeline scheduling.

A. Overview

As shown in Figure 5, the architecture of SmartTC primarily

consists of an analysis module and a pre-processing module

running on the SmartNIC, as well as a traffic classification

module running on the host’s CPU and GPU. When pack-

ets arrive at the SmartNIC, they are processed sequentially

through the aforementioned modules. The functions of each

module are summarized as follows:

• Analysis Module is responsible for polling and process-

ing network traffic. The SmartNIC forwards packets to

the analysis module running on the ARM subsystem to

process the incoming packets

• Pre-processing Module handles the collected raw pack-

ets and submits the results to the subsequent module. The

system processes the raw packets according to the model

requirements and passes the processed data to the traffic

classification module.

• Traffic Classification Module performs the model in-

ference task, receiving the data from the pre-processing

module and conducting classification on the host GPU.
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Fig. 5. This diagram illustrates the SmartTC architecture, which includes
analysis and pre-processing modules executed on the SmartNIC, as well as a
traffic classification module executed on the host.

B. Analysis Module

The analysis module is designed to continuously monitor

network traffic in real time through a polling mechanism and

collect packets as required by the classification model. To

achieve this, SmartTC offloads the module onto the SmartNIC.

Its core mechanisms include:

• Flow tracking: Maintains the state of network connec-

tions, determining whether a packet belongs to an existing

flow or a new flow.

• Packet forwarding and storage: Decides whether to store

or forward a packet based on the requirements of the

classification model.

As shown in Figure 6, when a network packet arrives at the

module, it uses a hash bucket to track the state of the flow

to which the packet belongs and identifies whether it is part

of an existing flow or a new one. If it is a new flow, a new

record is created in the hash bucket to store the flow state,

and the packet is marked as the first packet of that flow. If

it is part of an existing flow, the corresponding state in the

hash bucket is updated, marking the current packet as the n-th

packet of the flow, and its processing is determined based on

the model requirements. Specifically, if the model requires the

first θ packets of the flow and the current packet is within this

range, it is first stored and then forwarded. Otherwise, if the

packet arrives after the θ-th packet, it is forwarded directly

without being stored.

We implement this mechanism on the SmartNIC through

the following hardware-software co-design strategies:

• Hardware-accelerated flow distribution: Leveraging the

Receive Side Scaling (RSS) [7] hardware feature of the

SmartNIC, hash calculations are performed to automati-

cally identify the flow to which each packet belongs and

distribute them across different processing queues.
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Fig. 6. The diagram illustrates the workflow of the analysis and pre-processing
modules executed by the SmartNIC.

• Multi-core parallel architecture: Utilizing the SmartNIC’s

integrated multi-core ARM processors, a multi-queue

mechanism is employed to achieve parallel processing

of network traffic.

Although packet processing has significantly lower compu-

tational intensity compared to model inference, its continuous

polling nature inevitably consumes a substantial amount of the

host CPU’s computational resources. To address this, SmartTC

offloads such low-complexity but continuously running tasks

to the SmartNIC, effectively reducing the host’s resource

burden and enhancing overall system efficiency.

C. Pre-processing Module

The pre-processing module is designed to efficiently process

collected network packets and submit standardized inputs to

the traffic classification module. SmartTC offloads the pre-

processing module to the SmartNIC to reduce computation

overhead on the host. This module consists of two core

functions:

• Packet processing component: Standardizes collected net-

work packets to meet the input requirements of traffic

classification models.

• Traffic-aware dynamic batch submission strategy: Adjusts

batch sizes dynamically based on real-time network traffic

to adapt to varying network loads.

Packet Processing Component: After the analysis module

accumulates a sufficient number of packets, the pre-processing

module converts them into a format recognizable by the

model. SmartTC summarizes the common packet processing

requirements of existing traffic classification models into the

following three standardization steps:

• Truncation: Removes redundant header information to

ensure input format consistency.

• Padding: Adjusts packet lengths to a fixed size required

by the model input.

• Normalization: Scales values to optimize model stability

and inference performance.
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Traffic-Aware Dynamic Batch Submission Strategy: Af-

ter packet processing is completed, the system needs to submit

batches of data conforming to the model’s input format.

However, fixed batch processing strategies struggle to adapt

to dynamic network load. To address this issue, SmartTC
proposes a traffic-aware dynamic batch submission strategy

that dynamically adjusts batch submission size by sensing real-

time network load, thereby meeting the real-time requirements

of traffic classification.

This strategy introduces a Short-Term Window and a

Long-Term Window mechanism:

• The short-term window monitors real-time network load

and determines whether to submit the batch immediately.

If the load is high, submission is triggered immediately

to minimize latency.

• The long-term window analyzes network traffic over an

extended period to prevent excessive delays under low

load conditions. If the short-term window repeatedly fails

to trigger a submission, the long-term window forces the

batch submission.

As illustrated in Figure 7, this strategy covers two typical

scenarios:

1) High network load: If the short-term window detects

high network load, submission is triggered immediately.

2) Sustained low load: If multiple consecutive short-term

windows do not trigger submission, the long-term win-

dow enforces submission to prevent excessive delays.

Algorithm 1 details the workflow of the traffic-aware dy-

namic batch submission strategy. Lines 1-3 initialize the

parameters, obtaining the short-term waiting time tθ and the

batch size bθ determined by the model. In practice, bθ is

empirically initialized within the range of 8 to 32 based on de-

ployment conditions, while tθ is set to the estimated inference

time of a single batch to ensure timely responsiveness. Lines

5-12 form a loop that continuously monitors the traffic and

adjusts dynamically. A batch submission is triggered when the

current batch size Anew exceeds the predefined batch threshold

bθ (meeting the short-term window condition) or when window
equals 1 (meeting the long-term window condition), after

which window is reset to 0. If no submission is triggered,

the system waits for tθ to receive more packets and sets the

long-term window flag window to 1. This strategy adaptively

Algorithm 1 Traffic-Aware Dynamic Batch Submission

1: Initialize window ← 0
2: tθ ← T (model)
3: bθ ← B(model)
4: while True do
5: Anew ← COUNT(ring)
6: if Anew > bθ or window = 1 then
7: window ← 0
8: SUBMIT(bθ)

9: else
10: WAIT(tθ)

11: window ← 1
12: end if
13: end while

adjusts the batch submission timing based on the current load,

ensuring real-time response under low load and improved

throughput under high load.

D. Traffic Classification Module

The traffic classification module is responsible for clas-

sifying preprocessed input data. In the SmartTC system ar-

chitecture, the SmartNIC primarily handles analysis and pre-

processing, while the traffic classification module, due to its

higher computational requirements, is executed on the host us-

ing CPUs and GPUs. This heterogeneous computing architec-

ture effectively offloads computation from the host. However,

to ensure the efficient operation of the traffic classification

module, SmartTC designs a SmartNIC-host communication

protocol and a parallel pipeline scheduling mechanism to max-

imize system resource utilization and minimize computational

and data transmission latency.

SmartNIC-Host Communication Protocol: To optimize

the interaction between SmartNIC and the host, we design

an efficient communication protocol that supports different

traffic classification models deployment. Since different traffic

classification models may have different input formats, this

protocol introduces Metadata and Batch Content during data

transmission to enhance flexibility and efficiency in data

parsing and processing:

• Metadata: Contains batch size and traffic classification

model information, ensuring that the host can correctly

parse the model used for the current task and its corre-

sponding batch data.

• Batch content: Stores actual inference input data, which

is combined with metadata for parsing, supporting traffic

classification tasks with different batch conditions.

This communication protocol enables SmartNIC to dynam-

ically submit batch data while ensuring that the host can

accurately parse and execute inference tasks. Under varying

traffic classification tasks and batch conditions, the protocol

provides a high level of generality.

Parallel Pipeline Scheduling: Heterogeneous computing

architectures introduce additional communication latency. To
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reduce data transmission delays and improve system through-

put, we propose a parallel pipeline scheduling that allows the

pre-processing module and the traffic classification module

to operate concurrently. This strategy incorporates buffer and

pipeline execution to minimize synchronization blocking and

optimize resource utilization.

As shown in Figure 8, the buffer stores batch data from

the pre-processing module to prevent synchronization blocking

between data transmission and inference tasks. Batch data

transmitted by the SmartNIC is first buffered on the host,

allowing the host to retrieve the next batch immediately

after completing the current traffic classification task without

waiting for new data transmission. This mechanism effectively

reduces transmission bottlenecks and enhances the concur-

rency of classification tasks.

With the buffer in place, the traffic classification module on

the host and the pre-processing module on the SmartNIC can

execute concurrently, forming an efficient pipeline execution.

The SmartNIC transmits new batch data to the host buffer

while releasing completed batch tasks to free up storage

space for new tasks. Simultaneously, the host-side traffic

classification module directly extracts data from the buffer

and executes traffic classification tasks on the GPUs. The

SmartNIC continues to populate the buffer, ensuring seamless

transitions between traffic classification tasks.

This parallel pipeline mechanism eliminates the sequential

dependency between inference computation and data trans-

mission, significantly reducing the communication latency

introduced by the heterogeneous architecture.

IV. EVALUATION

A. Evaluation Setup

Testbed: The experimental testbed consists of two high-

performance servers including a worker node with SmartTC
and a packet generation node, interconnected via an Ether-

net switch. The worker node is equipped with an NVIDIA

BlueField-3 [2], featuring a 16-core ARM processor, 32GB of

onboard memory, and dual 200Gb/s network interfaces. It also

includes an NVIDIA V100 GPU with 16GB of HBM memory.

The packet generation node uses a Mellanox ConnectX-5

network card, providing network traffic through dual 100Gb/s

interfaces. Both nodes are physically connected via a Mellanox

SN2700 Ethernet switch, which supports 100Gb/s port speeds.

All nodes run the Ubuntu 22.04 operating system, with DPDK

version 22.03.0 deployed.

Implement: We implemented the SmartTC prototype sys-

tem based on the Nvidia BlueField-3 SmartNIC. To maximize

throughput and ensure real-time responsiveness, we allocated

10 ARM cores to run the analysis module, which processes in-

coming network traffic and stores packets addresses in a multi-

producer ring queue. This approach enhances data throughput

and reduces processing latency. Additionally, we allocated 1

ARM core to poll a single-consumer ring queue, which is

dedicated to handling pre-processing tasks and dynamic batch

submission, ensuring system stability and adaptive batch man-

agement. SmartTC executes the traffic classification module on

the host. The module utilizes CPUs to receive batch inputs

from the pre-processing module and subsequently perform

traffic classification on the GPU. Additionally, SmartTC im-

plements the smartNIC-host communication protocol at the

application layer, based on Linux sockets. SmartTC uses a

customized version of DPDK on the BlueField-3 subsystem

to leverage the SmartNIC’s multi-core ARM processors and

hardware accelerators, avoiding the need to invoke host CPU

resources as required by general-purpose NICs.

Metrics: Given that the impact of each component on traffic

classification efficiency is difficult to isolate, we define the

average time per flow after classification as the evaluation met-

ric, i.e., the average classification time. The experiments are

divided into two scenarios: low flow rate and high flow rate,

to assess the performance optimization effect of SmartTC’s

dynamic batch submission strategy.

Baselines: To the best of our knowledge, this is the first

system that utilizes SoC SmartNIC for ML-based traffic clas-

sification. First, we select FENXI [5] as the most comparable

system and use it as a baseline to evaluate our improvements in

average classification time and resource consumption. Second,

we compare SmartTC with BlueField-3 to assess its impact

on network latency, demonstrating that SmartTC does not

degrade existing network performance. SmartTC is a general-

purpose traffic analysis system that supports the deployment of

various traffic classification models. We deploy and evaluate

three representative models: TSCRNN [11], MATEC [1], and

SAM [25]. For the evaluation, we utilize Scapy to construct

packets and tcpreplay to retransmit them under varying net-

work loads. Although tcpreplay sends packets at a stable rate,

the flows are generated randomly, which may cause short-term

bursts in flow-level traffic. Network throughput is measured

using iperf, latency is evaluated with netperf, and pktgen-dpdk

is employed to assess packet forwarding capability.

B. Average Classification Time

This section analyzes the performance of the traffic-aware

dynamic submission strategy under different network loads.

Figure 9 shows the performance comparison between

SmartTC and FENXI in terms of batch submission. FENXI

adopts a strategy of fixed batch sizes for submission, with the

batch sizes X fixed at 2, 8, 32, and 128 respectively (named

FENXI-X in Figure 9), which are used for comparison with
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Fig. 9. The comparison of average classification time between the SmartTC system and FENXI under both low and high flow rate scenarios.

SmartTC. This experiment compares the average classification

time to obtain the classification result, demonstrating the real-

time requirements.
In low traffic scenarios (less than 100 flows per second),

SmartTC and FENXI-2 outperform other batch strategies in

terms of average classification time. Specifically, compared

to other batch strategies using the TSCRNN model, SmartTC
reduces the average classification time by up to 16.4%; for

the MATEC model, the reduction is 16.8%; and for the

SAM model, it is 13.7%. As the flow rate increases, the

average classification time for FENXI-2 gradually converges

to that of larger batch sizes. Across different models, SmartTC
consistently achieves the shortest average classification time.

Under low network load, a small batch size can improve

traffic classification efficiency. This is because before submis-

sion, a certain number of packets must be accumulated. Large

batch strategies introduce processing delays, while small batch

strategies submit data more promptly, reducing waiting time.

SmartTC dynamically adjusts batch sizes based on network

load, achieving more efficient task scheduling. As shown in

Figure 9, this adaptation is particularly effective under low

traffic rates.
In high traffic scenarios (more than 500 flows per second),

SmartTC outperforms all fixed batch size strategies. Specifi-

cally, for the TSCRNN model, it reduces average classification

time by up to 90.9%; for the MATEC model, by 80.9%; and

for the SAM model, by 86.4%. As the flow rate continues to

increase, SmartTC’s average classification time stabilizes.
However, the performance of FENXI-2 deteriorates in high-

traffic scenarios due to increased communication overhead

from frequent submissions. In such cases, larger batch sizes

reduce the number of submissions, mitigating the impact of

communication delays on average classification time. Never-

theless, as shown in Figure 9, merely increasing the batch

size does not always yield lower average classification time.

For example, at a flow rate of 500, the optimal batch sizes

for TSCRNN, MATEC, and SAM models are 8, 2, and 8,

respectively. At a flow rate of 2000, the optimal batch sizes

shift to 128, 128, and 32, respectively. These variations arise

from differences in model parameters, which affect single-

instance classification time. Across different models, SmartTC
consistently achieves the shortest average classification time,

outperforming fixed batch submission strategies.

The results demonstrate that SmartTC dynamically adapts

to network load. Under low traffic, it accelerates task response

by rapidly submitting small batches. Under high traffic, it

optimizes throughput through efficient batch scheduling. This

enables SmartTC to maintain stable and efficient traffic pro-

cessing across varying load conditions.

Although the reduction in average classification time may

appear minor, in practical scenarios such as intrusion detection

or QoS-based routing, even second-level or millisecond-level

differences can determine whether a system responds within

the Service Level Agreement (SLA) window.

C. Host CPU Offloading

To quantitatively evaluate the resource-saving capability

of SmartTC, we designed a comparative experiment based

on the implementation mechanism of the FENXI system.

Since FENXI requires dedicated CPU cores for polling-based

packet processing (without the ability to share computational

resources), we measured its resource consumption using the

number of bound CPU cores. The experiment first deployed

the FENXI system on a single-core CPU architecture, which

was found unable to sustain full network interface throughput.

Subsequently, we replicated a dual-core CPU system that

achieved full network interface load while maintaining the



500 1000 1500 2000 2500
0.0
0.1
0.2
0.3
0.4
0.5
0.6

A
ve
ra
ge
C
la
ss
ifi
ca
tio
n
Ti
m
e
(s
)

Flows per Second (fps)
(a) High Rate of Flows

20 40 60 80 100
0
5
10
15
20
25
30

Dual-Core Processing Units SmartTC

Flows per Second (fps)
(b) Low Rate of Flows

Fig. 10. The comparison between the SmartTC system and FENXI shows
that even without the dedicated two CPU cores occupied by FENXI, SmartTC
can obtain comparable or even better performance in terms of average
classification time.

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

TSRNN SAM MATEC

0
20
40
60
80
100

Th
ro
ug
hp
ut
(G
bp
s) BlueField-3 SmartTC

Numbers of Parallel Flows

Fig. 11. The comparison of throughput between the SmartTC system and
Bluefield-3 under varying numbers of parallel flows.

same average classification time as SmartTC, as shown in

Figure 10.

The experimental results show that, compared to the FENXI

system, which relies on two dedicated CPU cores for polling,

SmartTC eliminates the need for host-side CPU resources

but obtains comparable or even better performance in terms

of average classification time. In a multi-tenant cloud envi-

ronment, the resulting resource savings can free up valuable

computational capacity for other critical tasks, without the side

effect on the classification performance.

D. Throughput

The experimental results (as shown in the Figure 11)

indicate that as the number of parallel flows increases, the

throughput of SmartTC continues to rise and is nearly identical

to the BlueField-3 system. When the number of parallel flows

reaches 8, systems deploying TSCRNN, MATEC, and SAM

can achieve 94.0 Gbps, 94.4 Gbps, and 93.7 Gbps, respec-

tively, reaching nearly the full network card load throughput.

The experiment results demonstrate that SmartTC can main-

tain throughput close to the full capacity of the network

interface, performing consistently with the BlueField-3 system

without SmartTC deployed. This ensures that the traffic classi-

fication system does not affect the existing network throughput

or degrade the QoS of other host tasks. Notably, when the

number of parallel flows exceeds eight, the throughput slightly

decreases for both BlueField-3 and SmartTC. This occurs

because, as the number of parallel flows increases, the TCP

congestion control mechanism limits the bandwidth of each

flow, causing the overall throughput to initially rise with
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Fig. 13. The comparison of latency between the SmartTC system with
Bluefield-3 under varying background traffic rates.

the increasing number of parallel flows and then decline to

some extent. SmartTC can maintain stable system throughput

in high-throughput environments, demonstrating that it has

no adverse impact on the existing system under high load

scenarios.

E. Packet Forwarding Capability

The experimental results (as shown in Figure 12) indi-

cate that, in terms of packet forwarding capability, SmartTC
performs similar or sometimes better than the BlueField-3

baseline system across different traffic classification models.

The results demonstrate that SmartTC does not become a

performance bottleneck during packet forwarding. This is due

to SmartTC employing an efficient pipeline parallel algorithm

and fully utilizing the hardware resources of the SmartNIC.

The forwarding efficiency of small packets depends on the

host CPU, while large packets rely on the bandwidth of the

PCIe channel. The introduction of SmartTC does not affect

this forwarding capability, thereby ensuring stable packet

forwarding throughput.

F. Latency

To evaluate the impact of SmartTC on latency under dif-

ferent traffic loads, we conducted latency tests under various

background traffic throughput rates (0, 20, 40, 60, 80, 100

Gbps) to analyze the performance of SmartTC relative to the

Bluefield-3 under different network loads.

The experimental results (as shown in the Figure 13) in-

dicate that, as the throughput increases, both SmartTC and

Bluefield-3 experience an increase in latency. Under no net-

work load, SmartTC’s latency is 61.65 μs, which is an increase



of 6.5 microseconds compared to the baseline system. When

the network load reaches full card utilization, SmartTC ’s

latency rises to 101.74 μs, resulting in an additional 14.6 μs

of delay compared to the baseline.

These results show that the introduction of SmartTC does

indeed lead to some additional latency. However, even un-

der full network load, the additional latency introduced by

SmartTC is kept within approximately 10 μs. Since traffic

analysis is an additional processing step, some increase in

latency is inevitable. Traffic classification typically operates

at the microsecond level, and the additional 10 μs delay does

not significantly impact the classification results. Therefore,

although SmartTC introduces some latency under high load,

its effect on overall system performance is minimal, and it

can maintain stable network performance without significantly

affecting QoS.

V. CONCLUSION

This study proposes SmartTC, a real-time ML-based traffic

classification system based on SmartNIC, which addresses

resource constraints and dynamic network loads through

hardware-software co-design, traffic-aware dynamic batch sub-

mission strategy, and parallel pipeline scheduling. By offload-

ing analysis and pre-processing tasks to the SmartNIC and

coordinating with host CPU and GPU resources, SmartTC
reduces the average classification time by up to 90.9% under

high loads and 16.8% under low loads compared to FENXI,

while also reducing host CPU usage by at least two cores.

In comparison to Bluefield-3, SmartTC maintains network

performance. Experimental results demonstrate the feasibility

of SmartNIC-based offloading, providing an efficient solution

for machine learning-based traffic classification in cloud envi-

ronments that reduces resource consumption and meets real-

time performance requirements.
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