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Fed-OGD: Mitigating Straggler Effects in Federated
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Abstract—Federated Learning (FL) faces challenges due to
straggler clients that impede timely parameter uploads, poten-
tially leading to suboptimal global model performance. Existing
approaches using synchronous and asynchronous communica-
tion suffer from long waiting times or convergence issues. We
propose Fed-OGD, a novel asynchronous FL method address-
ing the straggler problem through gradient orthogonalization.
Our approach innovatively frames the straggler issue using
catastrophic forgetting theory, viewing stragglers as instances
of the global model “forgetting” to aggregate their parameters.
Fed-OGD introduces an Orthogonal Gradient Descent (OGD)
technique that caches straggler gradients and orthogonalizes the
difference between these and current active client gradients. By
projecting active gradients onto straggler orthogonal bases and
subtracting the resulting components, we obtain orthogonalized
gradients guiding the model towards optimality. We provide
theoretical convergence guarantees and demonstrate Fed-OGD’s
effectiveness through extensive experiments. Our method achieves
state-of-the-art performance across multiple datasets among
SOTA FL baselines, with notable improvements in non-IID (non-
Independent and identically distributed) scenarios: there are few
main categories with many samples while other categories hold
few samples in a client. Fed-OGD achieves that 16.66% increase
in accuracy on CIFAR-10, and significant gains on CIFAR-100
(5.37%), Tiny-ImageNet (38.51%), and AG_NEWS (16.30%).

Index Terms—Federated learning, Straggler issue, Gradient
orthogonalization, Catastrophic forgetting

I. INTRODUCTION

EDERATED Learning (FL) has emerged as a power-

ful distributed machine learning paradigm that enables
collaborative model training across multiple clients while
preserving data privacy [!]. Despite its widespread adoption
in privacy-sensitive applications [2]-[5], FL faces significant
challenges due to straggler clients—those that fail to upload
their parameters to the server for global model aggregation in
a timely manner [6]—[8]. This phenomenon can impede global
model convergence and degrade overall system performance.

A. Problem Statement and Motivation

The straggler problem in FL arises from network limitations
or device heterogeneity, causing some clients to lag behind
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Fig. 1: Illustration of optimizing directions from both active
client (i.e., C7) and straggler (i.e., C5). G denotes the global
model, and its optimizing direction is affected by C4.

others in the training process. In this study, we name the
lagged clients as straggler clients, while others are named
active clients. The straggler problem is observed in study
[©], and it appears in many scenarios in FL. For example,
the devices from different participants often exhibit varying
computational speeds in IoT [10], and such a device, which
holds the slowest speed, usually encumbers the entire FL
training as the server must wait for all devices to complete their
uploads. Similarly, in wireless edge networks [ 1], the limited
heterogeneous network resources can easily lead to network
congestion, which might result in some clients to become the
straggler clients because they cannot complete their uploads in
a timely manner. These straggler clients significantly increase
the overall training time and reduce the efficiency of FL,
making them to be a critical issue in practice.

As illustrated in Figure 1, when a client (C5) becomes a
straggler, the global model (G) tends to optimize towards
the direction of the active client (C), potentially reaching
a sub-optimal state (G*,) instead of the true optimum (G*).
This occurs because Co uploads its parameters to the server
less frequently, causing the parameter aggregation of G to be
primarily influenced by C1.

Traditional approaches to mitigate the straggler issue, such
as increasing bandwidth or upgrading hardware, are limited by
diminishing returns [12]. An intuitive method is to abandon
the stragglers in FL. Obviously, this method might result in
convergence difficulty for the global model when suffering
from stragglers. Straggler clients might hold the unique data
that are crucial for the global model’s convergence, and
discarding them could cause the global model to deviate
from its optimal status. Recent FL research has explored
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synchronous and asynchronous communication strategies [1],
[13]-[15]. However, these methods have inherent limitations:
synchronous approaches are hard to avoid waiting for strag-
gler updates, while asynchronous methods may struggle with
convergence, especially in non-IID data scenarios [16].

B. Limitations of Prior Art

Synchronous communication methods ensure consistent
client participation in averaging aggregation for the global
model but at the cost of increased training time. Studies
have attempted to optimize this process by selecting specific
clients (e.g. FedProx [17], FedCS [18]) or dividing clients into
sets based on response time (e.g. TiFL [19], FedHiSyn [20]).
However, these approaches still incur additional training time.

Asynchronous approaches offer faster and more flexible
training strategies by uploading parameters (e.g. FedAsync
[13]) or gradients (e.g. MIFA [21]) from only the active
clients when stragglers arise. Yet, such approaches may bias
the global model towards the optimal status of active clients
[17], hindering convergence. Attempts to store straggler infor-
mation at the server [21], [22] have not fully addressed the
convergence issue, as they merely cache straggler parameters
or gradients without adequately addressing the global model’s
optimization direction.

C. Our Approach

We propose Fed-OGD, a novel asynchronous FL algo-
rithm that addresses the straggler problem through gradient
orthogonalization. Our approach is inspired by the observation
that the straggler issue shares similarities with Catastrophic
Forgetting (CF) [23], [24] in neural networks, where the global
model “forgets” to aggregate parameters from stragglers. We
innovatively utilize CF theory to explain and theoretically
prove the global model convergence difficulty.

Specifically, we view the latest cached gradients of strag-
glers as orthogonal bases for the active clients and vice
versa. We employ Orthogonal Gradient Descent (OGD) [25]
to reconcile the optimization direction of the global model
by reducing the difference between the orthogonal bases of
stragglers and the current gradients of active clients. By
caching straggler gradients on the server, we project the
current gradients of active clients onto the orthogonal bases
of stragglers to obtain projected components, which implicitly
indicate the difference between the optimizing directions of
active clients and stragglers.

We perform OGD when the values of the projected compo-
nents are negative, given that their direction opposes that of
the orthogonal bases. The orthogonalized gradients, obtained
by subtracting these projected components from the gradients
of active clients, are then used to update the parameters
of active clients through back-propagation. This process is
applied symmetrically to stragglers.

Unlike previous orthogonalization methods that can affect
the optimizing direction of the model using gradient rotation
[26], [27], Fed-OGD avoids the limitations of Householder
and Givens transformations, providing a more effective solu-
tion to the straggler problem in FL.
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D. Contributions and Advantages

Our key contributions are as follows:

« We propose a novel theoretical framework for explaining
global model convergence difficulties in FL using Catas-
trophic Forgetting theory.

« We introduce Fed-OGD, a new FL algorithm that em-
ploys gradient projection and orthogonalization to guide
the global model towards its optimal status and ensure
convergence.

« We present comprehensive experiments on three image
classification datasets, demonstrating the superiority of
Fed-OGD over state-of-the-art (SOTA) baseline models
and validating the significance of its components through
ablation studies.

The remainder of this paper is structured as follows: Section
II reviews FL and its straggler mitigation strategies. Section
III details our Fed-OGD approach. Section IV presents exper-
imental results and analysis. We conclude in Section V with
a summary of our findings and directions for future work.

II. RELATED WORK

This section provides a comprehensive overview of Feder-
ated Learning (FL) and discusses existing studies addressing
the straggler issue in FL, categorized by their communication
strategies. We also explore the underlying challenges and
limitations of current approaches, setting the stage for our
proposed method.

A. Federated Learning Objective

Federated Learning (FL) is a distributed machine learning
paradigm that aims to collaboratively train a shared, general-
ized global model through local training with averaging aggre-
gation on a central server. This approach allows for privacy-
preserving model training across multiple decentralized edge
devices or servers holding local data samples, without ex-
changing them [!]. The objective function of vanilla FL. can
be formulated as: min,, F(w) := min, Ef | [+Lk(w)] =
min,, + Zszl Ly (w) where Ly (w) represents the objective
function of the k-th local model, w denotes its parameters,
F(w) is the average loss across all clients, and K indicates
the total number of local devices.

Following the principle of Empirical Risk Minimization
[28], FL typically employs stochastic gradient descent (SGD)
or its variants to find the optimal w* that minimizes F'(w).
The training process in FL generally follows these steps:

The server initializes the global model parameters. A subset
of clients is selected to participate in the current round. The
selected clients download the global model. Clients perform
local training on their private data. Clients upload their updated
model parameters to the server. The server aggregates the
received updates to improve the global model. This process is
repeated for multiple rounds until convergence or a predefined
stopping criterion is met. However, in practice, some clients
fail to upload their parameters to the server due to bandwidth
limitations, device issues, or other constraints, leading to the
straggler problem. This issue can significantly impact the
efficiency and effectiveness of the FL process.
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B. Synchronous Communication Approaches

Synchronous communication strategies require the server to
receive parameters from all clients at each epoch, necessitating
additional waiting time for stragglers. Several approaches have
been proposed to address this issue:

1) Proximal and Selection-based Methods

FedProx [17] introduces a proximal term to the traditional
FL loss function, encouraging local models to stay close to
the global model. The modified objective function can be
expressed: min,, - 22{21 (Lr(w) + &|wy, — w]*) where wy,
is the local model of k-th client.and where w; indicates the
global model at round ¢, and i denotes a hyperparameter
controlling the strength of the proximal term. While this
approach helps mitigate the negative impact of non-IID data
and system heterogeneity, it does not directly address the
straggler issue and increases training cost.

FedCS [18] attempts to improve upon FedProx by selecting
active clients with the smallest estimated training time. This
method employs a two-stage protocol:

Resource Request: Clients report their available resources
to the server. Client Selection: The server selects a subset of
clients based on their reported resources and estimated com-
pletion time. While this reduces waiting time, it may bias the
global model towards active clients, potentially compromising
the model’s generalization ability.

Recent work [15] proposes a Value of Information (VOI)
metric for client selection, considering factors such as loss
values, dataset size, model staleness, and upload intervals.
However, this approach still faces challenges in reducing
training time and mitigating bias towards active clients.

2) Hierarchical Methods

Tier-based Federated Learning (TiFL) [19] and FedHiSyn
[20] employ hierarchical approaches, dividing clients into sets
based on response time or computational performance. TiFL
groups clients into tiers and performs synchronous updates
within each tier, while allowing asynchronous updates be-
tween tiers. The update rule for TiFL can be expressed as:
W1 = Wy +nZiT:1 Qi) s, Z*‘ESE"D]'I (wg —w;) where T
represents the number of tiers, .S; aeﬂotes the set of clients in
tier ¢, and «; is the weight assigned to tier 7.

FedHiSyn introduces a hierarchical structure with multi-
ple levels of aggregation to reduce communication overhead
and improve scalability. While these methods aim to reduce
waiting time for stragglers, they face practical challenges
in set formation and may increase communication costs or
degenerate to FedAvg performance in certain scenarios.

C. Asynchronous Communication Approaches

Asynchronous communication strategies avoid waiting for
stragglers but face challenges in ensuring global model con-
vergence due to the potential staleness of updates.

1) Parameter Update Strategies

FedAsync [13] allows clients to upload parameters at any
time, with the server aggregating upon receipt. The update
rule for FedAsync can be expressed as: w;4; = w; +
nea(t, 7) (wy, —wy ) where 7 indicates the learning rate, (¢, 7)
is a staleness-based weighting function, and 7 denotes the
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staleness of the update. However, this approach struggles with
stale parameters from stragglers, which can negatively impact
model convergence.

Temporally Weighted Asynchronous Federated Learning
(ASTW) [29] attempts to address this by adjusting weights for
stale parameters: wy11 = wt—i—ntzKLi:ﬁTj(wk—wt) where (3
is a hyperparameter controlling the]&écay rate of stale updates.
While this approach mitigates the impact of stale updates, it
may still bias the model towards active clients.

2) Server-side Caching

Memory-augmented Impatient Federated Averaging (MIFA)
[21] and similar approaches like TEA-fed [14] and CAZ2FL
[30] store straggler gradients on the server. MIFA introduces a
server-side memory module to cache and reuse stale gradients:
— 187 Zkes, 9 T TaL] 2omen, 9m Where Sy
indicates the set of clients participating in round ¢, M; is the
set of cached gradients, and g and g, are the gradients from
active clients and cached memory, respectively. However, these
methods still struggle with optimizing the global model direc-
tion effectively, especially in highly heterogeneous settings.

3) Advanced Optimization Techniques

Gradient-Memory-based Accelerated Federated Learn-
ing (GradMA) [31] formulates the optimization as a
Quadratic Programming (QP) problem: min, %aTQa +

T SN a; = 1oy > 0 where Q is a matrix of

W41 = Wy

c o St
inner products between gradients, and c is a vector of inner
products between gradients and the current model update. This
approach aims to find optimal weights for combining gradients
from different clients and time steps.

Hybrid Federated Learning (HFL) [32] employs Taylor
expansion to approximate straggler gradients: gp(w;) =
gk (wi—r) + Hi(wi—r)(wy — wi—,) where Hj means an
approximation of the Hessian matrix. While these approaches
introduce sophisticated optimization techniques to address
the straggler problem, they face computational challenges in
practice, especially for large-scale models and datasets.

D. Hybrid Approaches

Semi-Asynchronous Federated Averaging (SAFA) [22] in-
troduces a hybrid approach, waiting for a subset of strag-
glers and randomly selecting clients for aggregation. The
update rule for SAFA can be expressed as: w;y1 = w; +
ntﬁ D ke s, (wy, —wy) where S; indicates a subset of clients
selected for aggregation in round ¢. While this method attempts
to balance synchronous and asynchronous benefits, it still
incurs waiting time and may lead to suboptimal global model
convergence due to the random selection of clients.

E. Research Gap and Motivation

Despite the diverse approaches proposed in these literature,
existing methods for addressing the straggler problem in FL
face significant challenges. Synchronous methods often incur
substantial waiting times or introduce biases towards active
clients, compromising the efficiency and fairness of the FL
process. Asynchronous methods struggle with convergence
due to stale parameters and suboptimal aggregation strategies,
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potentially leading to unstable or inferior global models. Hy-
brid approaches, while promising, still face trade-offs between
waiting time and model quality, and may not fully leverage
the information from all clients. Most existing methods do not
adequately address the underlying causes of stragglers, such as
system heterogeneity and non-IID data distributions. There is
a lack of theoretical guarantees for many proposed approaches,
particularly in terms of convergence rates and model quality
in the presence of stragglers. These limitations motivate our
research to develop a novel approach that can address the
straggler problem while maintaining model efficiency in FL.
Our proposed method aims to tackle these challenges by intro-
ducing a new paradigm that combines adaptive client selection,
intelligent gradient aggregation, and theoretical guarantees for
convergence and performance.

III. FED-OGD
A. Convergence Difficulty Explanation with CF

The definition of Catastrophic Forgetting (CF) in continual
learning is the model “forgetting” knowledge from old tasks
when learning the knowledge of new tasks. In FL, since
the global model aggregation appears at each epoch. When
the stragglers miss to aggregate the parameters of the global
model that can be viewed as the global model “forgetting”
the parameters from stragglers when facing the parameters
from active clients. In such a scenario, the global model is
significantly affected by the active clients, thus causing a
convergence difficulty. In this way, we explain the difficulty
of global model convergence with CF.

Assuming there are two types of clients (i.e. active clients
and stragglers). Let f” be the status of the global model at r-
th epoch, and let A f7+* be the sum of gradients from active
clients at (r + t)-th epoch (i.e., Afrtt = frt — frot=1)
Afr*!is the sum of gradients from stragglers. The objective
function of global model is shown as follows:

T T
FAT =+ AT DY AL =T AL W)
t=2 t=2

where T denotes the interval epoch. It means that the stragglers
only uploads their gradients to server every 1" epochs.

In continual learning, let cy be the initial status of the model
and also assuming there are n tasks. Let ¢; be the first status
of model after training it on task 1, co be the second status of
model after training it on task 2, ..., and ¢, be the last status of
this model after training it on task n. Besides, let Ac,, be the
sum of gradients calculated on task ¢ (i.e., Ac; = ¢;—c¢;_1), the
process of the model updating in continual learning is defined
as follows:

n n
cnzco—l—ZAci:cl—i-ZAci 2)
i=1 i=2

To explain the convergence difficulty with CF, here we
assume n = 2, i.e., one active client and one straggler in FL
and 2 tasks in continual learning. With this, we can regard the
process of model updating in continual learning as the model
moving away from its optimal status in task 1 to approach to
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that in task 2. In other words, this model is heavily affected
by the task 2 rather than task 1, because new task (i.e., task
2) could cause it “forgetting” the knowledge of old task (i.e.,
task 1). Under such a scenario, there is an optimizing direction
difference between task 1 and task 2. For the straggler issue in
FL, the global model “forgets” the knowledge from straggler,
so its optimization is mainly affected by the updates from
active client. In other words, there is also a difference between
the straggler and the active client. Besides, since the straggler
does not participate in the aggregation of the global model, it is
difficult to get converged. Considering the similar “forgetting”
scenario and the optimizing direction difference dilemma in
both FL and continual learning, we innovatively explain the
global model convergence difficulty with CF in this paper. We
now state this properly in the following.

Proposition 1. Let 7" be the interval epoch and f denotes
the global model status. f) indicates the optimal status of
straggler. If there is a difference between the optimizing
direction of active client and straggler at r-th epoch in FL,
we can explain Eq. (1) with Eq. (2) (i.e., Eq. (1) = Eq. (2)).

Proof. In continual learning, the status of model (i.e., c1)
becomes optimal (i.e., c]) after training this model in task
1. Its status is far away from c] and approaches c; when
facing the new task 2. Assuming the status of model is co at
a certain epoch in task 2, we can observe that the distance
between cg and cj is less than that between c¢; and cj, i.e.,
llca — 5|l < |lex — ¢f]|- Such a scenario is also shown in
straggler issue, because the optimal status of global model
approaches that of active client. Assuming the global model
receives parameters from both straggler and active client at r
epoch, and only receives parameters from active client from
7 4+ 1 to r + T epochs. Obviously, the distance between the
status of global model and optimal status of straggler (i.e.,
f¥) at r + 1 epoch is less than that at » + T epoch, i.e.,
17— f| < [ f7+T = f7]|. Here, we expand || /47 — 2|

Hfr+T i ‘fr+1 g T
N ||fr+T _ f:H2 _ ||fr+1 _ f:||2 _ ||fr+1 _ fr+TH2
+2c0s(f7F1 — frHT fEL - £

.Hfr+1 _ fr+T|| . Hfr+1 _ f:H

||fr+T _f;H? _ Hfr+1 _ f:H? B Hfr+1 _ frJrTH

Lfret = Tt = fel = A
+2cos(fH = frHE T f)

2 2
=1

=

Since there is a difference between the optimizing directions
of active client and straggler at r-th epoch, we have cos(f" —
T — f¥) < 0. According to Eq. (1), it is obvious that
the global model updates along the optimizing direction of
straggler at (r 4 1)-th epoch and updates along the optimizing
direction of active client from epoch r 4 2 to epoch r + T
In this way, we obtain cos(f" — f, f7 — f¥) ~ cos(f"+! —
frrrfrtl — f5) < 0. With this, we deduce cos(f™+! —
frrL o+ — £ in following:

cos(fH = [T fTH— p) <0
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= COS(fr-i-l _ fT+T,fT+1 _ fs*) <0< ||fr+j_1_ thTH
[fr+t = f

< 7COS(]C’I“+1 _ fr+T7fr+1 _ f:)

= Hfr+1 - fT+T" 4 2COS<fT+1 _ f7"+T7fr+1 _ f*)
Lfrt = fzll ’

< COS(fT+1 _ fT+T,fT+1 _ fs*) <0

= == =g <o

Here, r satisfies || f™t7 — f*|| < ||+ — fZ||, which is

similar to |ca — cf|| < [le1 — ¢}]|. In this way, f"+1, fr+7,
and f¥ can be explained as ci, co, and cf. f™+T = frtl 4
Z% o AfIF (ie.,, Eq. (1)) can also be explained by ¢ = ¢+
o Afrtt (ie., Eq. (2) Considering that both 23:2 Afrt
and A02 represent updates on a task, f7H! 4 ZtT:2 Afrtt &
co = ¢1 + Aco, ie., Eq. (1) = Eq. (2).

There are many methods that are used to address CF (e.g.
distribution matching [33], data replay [34], and OGD [25]).
However, both distribution matching and data replay have a
potentially privacy issue [35] and this is against the principle
of FL, while OGD does not have such an issue. Hence,
we utilize OGD to address the convergence difficulty. Since
directly applying the traditional OGD to FL might cause it to
be difficult to quantitatively measure the difference between
the optimizing directions of both straggler and active client,
we present a new OGD to measure this difference, thereby
addressing the global model convergence difficulty and thus
improving the global model performance. Since FL includes
global model updating and local model updating, we discuss
them in the following, respectively.

B. Global Model Updating

In our Fed-OGD, the server constructs a key-value dic-
tionary, M, and its length is equivalent to the number of all
clients. It caches the latest gradients from all clients. M can be
divided into M; and M, respectively. M is utilized to cache
the gradients from straggler, and M5 caches the gradients
from active clients. The key in the dictionary contains the
information about whether the current gradients belong to M}
or M, while the value holds the latest uploaded gradients
from all clients. If a client becomes an active client, its
key will indicate that its gradient belongs to M5, and the
straggler’s gradient cached in value will be replaced with
the new gradient from the active client, because active client
uploads its gradients at each epoch. In contrast, if a client
becomes a straggler client, its key will indicate that its gradient
belongs to M, and the gradient cached in value will remain

unchanged until it uploads. The gradients cached in server are
wt,I t

represented as Aw! = % where ¢ represents the t¢-th
epoch and I denotes the number of iterations. 7; indicates the
learning rate of client (i.e., local learning rate). Moreover, w?
indicates the parameters of the global model at ¢-th epoch.
wZ’I means the parameters of k-th local model, no matter it
is active or straggler, at ¢-th epoch. Aw}, denotes the sum of
gradients from the k-th client at the ¢-th epoch.

Then, the server calculates two orthogonal bases before ag-

gregation. The calculated value represents the latest optimizing

Transactions on Computers

Algorithm 1: Fed-OGD

Input: number of local step I, global model w°.
Output: Prediction results from the global network.
1 for each epoch t = 0,1,---, T-1 do

2 for i € Sy parallel do
3 Aw! + ClientUpdate (i, w’, by);
4 update Awf-_l in My by Aw;
5 end
6 for j € Sy ready to training next round do
7 Athr1 < ClientUpdate (j, w', b1);
8 update Aw’ in My by Ath
9 end
10 b1 + \M | Z‘Ml‘ Awk, by +— |1W ‘ Zlel Awk;
11 Aw' = by + by, W — w — nyAwt;
12 end
13 Function ClientUpdate (k, w', b):
14 w,tc’o —wt;
15 for each local step T = 0,1,---, I-1 do
16 gf < Af(wy"), proj(gy,b) = fiz - b;
17 if proj(gf.,b) < 0 then
18 g < gi, — proj(gg. b);
19 else
20 | g« gi:
21 end
2 Update local model wj,” " + w}™ — m,d;
23 end

wh T gt
24 Return —& ;

m

25 Function End

direction of the global model, which is determined by active
clients and stragglers rather than active clients only, and they
are denoted as by and bs, respectively. by (b2) is obtained by
averaging the gradients in M7 (M) and is then transmitted
to all straggler clients (active clients) who participate in the
subsequent training. The calculation of the orthogonal basis is
shown as follows:

1 [M;]

b = Awy, i€{1,2 3)

where both orthogonal bases, b; and bo, are initialized to
0. Then, the orthogonal base of stragglers is transmitted to
the active clients, which provides the optimizing direction of
stragglers for active clients to perform OGD. Similarly, the
orthogonal basis of active clients is transmitted to stragglers.

Last, the server calculates the updates from the global model
by formatting Aw’ Ek 1 Awy, where Aw;, denotes the
latest gradients remained in both M; and M, for the global
model aggregation. According to Eq. (3), the global model
updates can be transformed to Aw? = by + by. After that, we
utilize w'*! = w! — nyAw' to update the parameters of the
global model where 7, indicates the global learning rate. In
this way, the global model finishes its update.

Our Fed-OGD handles dynamic straggler behavior or vary-
ing participation rates by transferring the caching location of
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the gradient in server. Assuming there are 30 active clients
and 20 stragglers at ¢-th epoch, and there are 10 active clients
and 40 stragglers at (¢ + 1)-th round, which means that
there are 20 active clients becoming straggler ones. Here, we
assume that M} = {gi,...,g30} caches the gradients from
the 30 active clients at ¢-th epoch, and M{ = {g31,..., 950}
caches the gradients of these 20 stragglers at t-th epoch in
server, where g; denotes the gradient of i-th client. Assuming
the gradients of clients that become straggler clients from
active clients are denoted as {gi,...,g20}, these gradients,
cached in M} are directly transferred to M|, (i.e. MiT! =
M§ — {g1,-,920} = {921,930} and Mf“ = M{ +
{gl, ...,ggo} = {gl, <3920, 931, -+ g50}). The server utilizes
the gradient of Mlt'*'1 and MQH'1 to compute the orthogonal
bases, by and bo, at (¢ + 1)-th epoch.

Additionally, since the Fed-OGD transmits and caches the
gradients is in an unencrypted manner in server, attackers may
infer the input information of clients or even reconstruct the
original data by analyzing the cached gradients. To avoid this,
clients can keep their gradients szfl from the last training
to avoid the privacy risks rather than having the latest gradients
in the server cache. Specifically, clients upload the difference
Aby = Awl — Aw,i_l to the server after the local training for
orthogonal calculation, with b; = b; + Abg. Obviously, this
does not give the impact on calculating the orthogonal base
and the global updating. Besides, the uploading differences
can avoid the gradient inference attack.

C. Updating of Local Models

Although caching the gradients of stragglers helps alleviate
the “forgetting” scenario, the global model still tends to
converge towards the optimal status of the active clients,
because the averaging aggregation of the global model is
mainly affected by the active clients during training and the
cached gradients are stale. To address this issue, we present
a new OGD strategy, which includes two steps: 1) the active
clients project their current gradients on the orthogonal bases
of stragglers to obtain the projected components and then mea-
sure the difference between current gradients and orthogonal
bases based on the projected components; 2) active clients
would orthogonalize gradients by subtracting the projected
component from current gradients of these active clients to
obtain the orthogonalized gradients when suffering from a
difference between current gradients and orthogonal bases.
After that, we utilize those orthogonalized gradients to update
the parameters of active clients with back-propagation. This
OGD operation is the same for straggler clients.

In our study, a gradient is represented by a vector [36], and
we view the latest cached gradients of stragglers as orthogonal
bases for active clients and also view the last gradients of
active clients as orthogonal bases for stragglers. In this way,
the projection indicates such a component that a vector is
projected on the direction of another vector, and we calculate
the projected component by following steps. Assuming that
the gradient of k-th client at 7-th iteration is g and the
orthogonal base is b. First, we flatten the tensor of gradient
and orthogonal base into a one-dimensional vector. Then, we

6

calculate the square of the norm of the orthogonal base (i.e.,
[|6]1?), and perform the inner product between g7, and b (i.e.,
(g%, b)). Third, we calculate the quotient of (g7, b) and ||b]|?,
with <ﬁ;§”2>. Last, we multiply the result of the quotient by b
to obtain the projected component, proj(gj,b). The formula
can be written as proj(gp,b) = ﬁ;fl"l; b If (g],b) < 0, the
two directions are different, so the difference appears; while
<g,:, b) > 0, the two directions are parallel to each other, and
there is no difference.

After that, we orthogonalize the gradients of active clients
by subtracting the projected components from the current
gradients of the same clients when proj(gy,b2) < 0, that is
G = gf. —proj(gy, b2). With this, the orthogonalized gradients,
g, are orthogonal to by. § = g when proj(gf,b2) > 0. In
such a scenario, we do not perform OGD. Such an OGD
strategy reduces the difference between optimizing directions
of both active clients and stragglers by removing the projected
components in different directions from the current gradients
of active clients or retaining the projected components in
parallel direction from the current gradients of active clients.
This can be formulized as follows:

<g]7g—;b2> .
= by i ,ba) <0
G= 9k SE 2 if (9k,b2) (4)

After obtaining gradient orthogonalization, we utilize
wZ’TH = wy" — g to update the parameters of the global
model where 7, denotes the learning rate of the global model.
Note that such an orthogonalization operation is also the same
as the stragglers. For the stragglers, they receive the orthogonal
base, by, which is the averaging gradients of the active clients.
This guarantees that the optimizing directions of active clients
are not deviating far away from their optimal status, while
guiding the optimizing direction of the global model to its
optimal status rather than the active clients. The pseudo-codes
of Fed-OGD is presented in Algorithm 1, and its convergence
is proven in the following.

The orthogonalization subtracts a projected component from
the gradient, which results in the optimization direction chang-
ing for active clients. However, the norm of orthogonal gradi-
ent can restrict the deviation of the local model’s optimization
path. If the difference between the gradient and the orthog-
onal base becomes large, the direction of the orthogonalized
gradient diverges from that of the original gradient, and the
norm of the orthogonalized gradient becomes small. The small
norm of orthogonal gradient can restrict the updating of the
local model, which prevents this local model updating away
from its optimal status. If the difference between the gradient
and the orthogonal base becomes small, which means that
the subtracted projection component becomes small and the
updating direction of the gradient after orthogonalization also
becomes small, the local model can still update towards its
original updating direction. Therefore, Fed-OGD does not
have impact on the optimization paths of active clients.

Page 6 of 14
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D. Scalability and Complexity Analysis

Caching overhead: The Fed-OGD requires the server to
cache the gradients from K clients and the two orthogonal
bases. Assuming the size of each client’s gradient is G bytes,
the total storage requirement on the server is (K + 2) x G
bytes. FedAvg caches similar parameters of K local models
for averaging aggregation, so its storage requirement is K x GG
bytes. Assuming that K=50 and the model is Resnet-18,
FedAvg requires 2274.40 MB caching space, while Fed-OGD
requires 2364.31 MB. The caching spaces of both are similar
to each other. The caching requirements of other FL. models
(e.g. SAFA or MIFA) are the same as those of FedAvg.
Therefore, the storage overhead does not limit the practicality
of Fed-OGD for large-scale FL systems.

Computation overhead: Compared to FedAvg, the addi-
tional computation overhead of Fed-OGD is primarily from
the orthogonalization. Other computations are the same as Fe-
dAvg. For the orthogonalization, each client projects its current
gradient onto the orthogonal bases as in Eq. (13), which only
calculates the inner product once and the norm once. Hence,
the computation overhead of the gradient orthogonalization for
each client is O(|w|), where |w| indicates the number of model
parameters, which is also equivalent to the number of gradient
parameters. While the computation overhead of a training
iteration is O(n x |z| x |w]|) in FedAvg, where n indicates the
batch size, |x| denotes the size of a single sample. Because
n X |x| > 1, the computation overhead of the local training of
Fed-OGD is O((n x |z|+ 1) x |w|) = O((n x |z| x |w|),
which is the computation overhead of FedAvg. Therefore,
the computation overhead from our Fed-OGD is similar to
FedAvg, and the computation overhead does not limit the
practicality of Fed-OGD for large-scale FL systems.

The orthogonalization achieved by Fed-OGD holds two
steps: First, we calculate the projected component of gradient
on orthogonal base, with proj(g,b) = le”z b where g
denotes the gradient and b indicates the orthogonal base. (g, b)
denote the inner product of gradient, g, and orthogonal base
b, and, ||b||, is the norm of b. Last, we subtract the projected
component from gradient, g, with g = g—proj(g, b). Since the
computational complexity of inner product and norm is O(|g|),
our computation complexity of Fed-OGD is also O(|g|),
which is better than Householder transformation and Givens
transformation. Moreover, the orthogonal value of Fed-OGD
is the real value (i.e., g - b = 0) rather than the approximation,
which is higher than O(|g|) of Fed-OGD.

The orthogonalization achieved by the Householder trans-
formation holds three steps: First, we calculate the House-
holder vector, v, with v = g— (b-g)-b where g denotes the gra-
dient and b indicates the orthogonal base. Then, we construgt
the Householder transformation matrix, H, with H = I —2%
where I indicates a (|g| X |g|) identity matrix (Assuming the
number of the gradient parameters is |g|). v7 indicates the
transpose of vector, v, and vvT means the outer product of the
vector v with its transpose. Last, we apply the Householder
transformation to the gradient, v, to obtain the orthogonal
gradient, g, with § = Hg = g — 2v(v g) Obviously, the
computational complexity of Householder transformat1on is
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O(]g|?), due to the outer product.

The orthogonalization achieved by the Givens transforma-
tion gradually rotates the gradient until it is orthogonal to the
orthogonal base. It includes four steps: First, we calculate the
cosine with ¢(i,j) = Ji and calculate the sine with

V9% +g;2
. . _ gJ .
s(t = —2L__ where ¢ denotes the gradient and g; means
(4,5) PR g g i

the i-th parameter of g. Then, we construct a (|g| x|g|) identity
matrix, G(%, j), where n indicates the number of the model
parameters. We replace (,1)-th, (4,7)-th, (j,7)-th, (j,7)-th
parameters of G with ¢(i, ), s(i, ), —s(i,7), c(4, j). Next, we
rotate the parameters, g; and g;, with [g;, 9;]7 = Glg;, g;]"
where [g;,g;]7 indicate the transpose of [g;,g,]. Last, we
repeat this process until g - b ~ 0. Since the rotation needs
O(|g|?) and each rotation involves O(|g|), the total computa-
tional complexity is O(|g|®). Moreover, since g - b ~ 0 is the
approximate orthogonal value, the performance of the Givens
transformation is further worse than Fed-OGD. Therefore,
Fed-OGD holds more efficient than both Householder and
Givens transformations.

E. Convergence Analysis

Assumption 1. V& € [0,
all L-smooth with L>0: fj(w)
Lljw — |2, Vw,v € R%

Assumption 2. The global objective function, f(-), satisfies
thg condition of ||V f(w)||* > p(f(w) — f(w*)) Vw,w* €
R.

Assumption 3. Considering non-I1ID data among different
clients, a heterogeneity parameter o, satisﬁes the condition of
# Dt [V fie(w) = VI (I < 0

As described in the previous subsection, the gradients up-
loaded from active clients is orthogonal to the orthogonal basis
ba, which is the averaging gradients of stragglers cached in
server. Thus we have (sz, IMz\ Z‘Mz Aw )> =0,i €
[1,|M1]] in which 57 Z‘MQ‘A ~5(t3) s the averaging
gradients from stragglers cached 1n server, and Aw§- is the
gradient uploaded from j-th active client at epoch ¢. With this,

we properly state that our Fed-OGD can get converged in the
following.

., K], the local functions, fy, are

— Ji(v) < (V/fi(v),w—v) +

Proposition 2. If Assumption 1-3 hold, and the

gradients cached in server at ¢-th epoch satisfies
M. t s(t,s .

(Awf, b S AW ) = 0,0 e [1,[My]], Fed-

0OGD gets converged w1th the number of epoch increasing.

Proof. The updating procedure of Fed-OGD can be sum-
marized as w't! = w' — 23K Aw! where Awl =
Zi:l V fx(wl, 7) and [ denote the total number of iterations.
If [[w® — w*||? is bounded, it indicates that Fed-OGD can
render the global model, w?, converged to its optimal status,

w*. In this way, ||w!™ — w*||? is deduced as:
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772
S T

K
Z Aw},
k=1

K
gg kz: (Aw}, w' — w*)

T1 T2
For the first term 77, we define Awtk as:

| M| | Ma|

K
_n t—s(t.j)
7 228k = iy 2wt g 2 8w 9

Based on the square expansion formula, 77 is deduced as:

2

‘]V[l ‘M2
T = Aw t— s(t,7)
' |M1| Z \le Z
n | M| 2 | Ma| 2
g 9 Awf A t S(t7J)
iy 2 2|+ |y 2 2
Sl 82
+ — Awl, Aw —sltg
|M1|\M2 P
S3

To prove that the first two terms Sy, Sy are bounded, it is
necessary to prove ||V f(z)||? is bounded. Hence, based on the
definition of L-smoothness and Jensen inequality, we have:

f*< fla - 1Y)
< @)+ 5z IV @) -

= (@)~ o IV

(V@) TV ()

Rearranging the terms on both sides gives ||V f(x)||* <
2L(f(x) — f*). Therefore, the first and the second items of

this equation can be deduced as:

oLn? Ml

817|M‘2zzf’ )

=1 7=1

s 2SS (-

It means that S; and S; are bounded. Based on
(e S Awt, Awt) = 0,0 € [1,|Ms]], which indicates
that the uploaded gradients of active clients at ¢-th epoch is
orthogonal to the orthogonal basis of stragglers, we have:

M 2 |Ma| [ Mz]

t stz
5= |Ml\Z “|M|ZA -

thus we find that S3 = 0 and S3 is bounded. With this, 77 is
bounded as well.

8

For the second term 73, we transform it with inequalities
from the Assumption 2:

k=171=1
K 1
2SSV fwl) — V() wt )
277 k;17;1 t
> NS pp) — fw) + B — w0
k=17=1

K 1
* 2% SN V) = V() w' - w)

Because w;” is local model parameters, let [|w}” —w!| <
0. Then, we expand 73 by Cauchy-Schwarz inequality and
Assumption 3 to:

K
2 T * T *
Toz 200N fi) - fw) + Gllwp” - w'|?
k=

17=1
K
27} T T *
+ 2SS IV AT~ V)]t w0
k=17=1
K 1
277 T *
> S22y D fwyT) — fw)
k=17=1
:u ,T * *
+ S llwy™ = w*|? = 2nglo|jw' —w¥|

> 2l (f(w') = f(w")) = 2ngl(L8 + o) w" — w”|

Here, we get 72 bounded. Under such a scenario, which 7y
and T3 is bounded, we get [|w!Tt — w*||? — ||w® — w*||? is
also bounded. In other words, our Fed-OGD gets converged
after ¢ epochs if both Assumption 1-3 hold.

IV. EXPERIMENT
A. Experiment Setting

For the experiments, four public datasets are studied, which
are CIFAR-10, CIFAR-100, Tiny-ImageNet, and AG_NEWS.
Because the straggler issue rarely appears in I[ID (Independent
and identically distributed) scenario and it is often in non-
IID scenario [37], [38], all models are validated on non-IID
scenarios (i.e., few categories hold many samples while many
categories have few samples in a client).

Five SOTA FL models are employed, which are FedAvg
[1], SAFA [22], MIFA [21], FLANP [39], and GradMA
[31]. These models are representatives in reducing straggler
issue. We validate those models on the four datasets, and set
three different non-IID scenarios for each dataset. Moreover,
we employ 50 clients and 1 server for all cases. After that, we
divide all clients into three groups (one active client group
and two straggler groups), according to their responses to
server at each epoch. Here, we assume that the responded
time of active client group is r, while that of two straggler
groups are 37 and 57, in which 7 indicates responding server
at each epoch and 3r (5r) denotes responding to server
every 3 (5) epochs. Besides, we set the proportions of each
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Fig. 2: The classification performance of all models on CIFAR-10 dataset with non-IID scenario. Sub-figures (a)-(c) show the
classification accuracy, while sub-figures (d)-(f) show the convergence of all models.

group as follows: Ly={r:60%, 37:20%, 57:20%}, Lo={r:40%,
3r:30%, 57:30%}, L3={r:20%, 3r:40%, 5r:40%}. Take L, as
an example, it indicates that the active client group takes 60%
proportion of all clients, while each straggler group takes 20%
proportion of all clients, respectively.

TABLE I: Accuracy variances on CIFAR-10 at different cases

CIFAR-10 L1 Lo L3
Fed-OGD | 9.552x 1075 | 1.942x 10~5 | 9.233x10—*
FedAvg 1.726x10~3 | 1.046 x10~3 | 2.700x10~3

SAFA 1.614x10~% | 3.666 x10~3 | 1.849x10~3

MIFA 1.643x1073 | 2,997 x10~* | 2.440x10~3
FLANP 2.535x10~% | 1.326 x10~3 | 2.562x10~3
GradMA 1.524x10=2 | 3.161 x10~3 | 3.081x10~3

To quantitatively evaluate the performance of all models,
the Top-1 accuracy [1] is employed as the evaluation metric
where a higher score indicates the better global model perfor-
mance. Besides, the stragglers heavily affect the robust of the
global model, it is necessary to compare the robustness of Fed-
OGD with that of baselines. In this way, Accuracy variance
is employed [40], [41], with var = 3 (|a; — a* + |az — al?)
where a indicates the averaging accuracy from the global
model and a; denotes the accuracy from active clients as well
as ay represents the accuracy from stragglers. The smaller the
variance is, the better robustness the global model holds.

B. CIFAR-10

For the CIFAR-10, 50000 training samples are divided
into 50 sub-sets, and each sub-set has 1000 images with all
categories. In each sub-set, there is only one main category,
which takes the 95% proportion of samples, and the remaining
images are from other categories. For example, sub-set 1
contains 950 car images (i.e., %), and sub-set 2 includes 950
horse images. The rest of each sub-set holds other 9 categories.
One client solely holds one sub-set, and we employ a Resnet-
18 model to each client.

The experimental results are shown in Fig. 2 in which
sub-figures (a)-(c) show the classification accuracy results in
different proportions of groups. Obviously, our Fed-OGD
outperforms other SOTA FL models in all cases, especially
in Ly case that Fed-OGD improves accuracy by 15.79%
compared to the SAFA model that holds a highest accuracy
score among all baseline models. Moreover, only the accuracy
score from Fed-OGD is over 50% (i.e., 51.49%), while others
are less than 47%. Sub-figures (d)-(f) shows the convergences
of all models. From the three sub-figures, we can observe that
Fed-OGD gets better converged among all models. The recent
models, such as FLANP and GradMA, are difficult to get
converged, in which FLANP holds fluctuation while GradMA
cannot get converged in the three cases. MIFA model cannot
get converged in the L3 case, and it becomes worse when
epoch increases. Those results demonstrate the effectiveness
of our Fed-OGD in reducing the straggler issue.

To describe the robustness of Fed-OGD that is better than
baseline models, we compare its variance with SOTA baseline
models as listed in Table I. From Table I, it is obviously
observed that Fed-OGD holds the smallest variance value over
all baseline models. The smallest variance indicates that Fed-
OGD holds the best robust performance in all cases, which
further demonstrates the effectiveness of our Fed-OGD.

C. CIFAR-100

CIFAR-100 also holds 50000 training images and 10000
test images. Since there are 100 categories, each sub-set holds
2 main categories. In this way, we set the proportions of each
main category holds 40% proportion of all samples in a sub-
set. Similar to CIFAR-10, each client solely holds one sub-set
and one Resnet-18 model.

The experimental results are shown in Fig. 3. From Fig. 3,
we can observe that Fed-OGD still obtains the best classi-
fication performance over all baseline models in all cases.
Sub-figures (a)-(c) show that Fed-OGD achieves the highest
accuracy score in all models. The FedAvg holds the lowest
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Fig. 3: The classification performance of all models on CIFAR-100 dataset with non-IID scenario. Sub-figures (a)-(c) show
the classification accuracy, while sub-figures (d)-(f) show the convergence of all models.
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Fig. 4: The classification performance of all models on Tiny-ImageNet dataset. Sub-figures (a)-(c) show the classification
accuracy, while sub-figures (d)-(f) show the convergence of all models.

TABLE II: Accuracy variances on CIFAR-100 at different
cases

CIFAR-100 L, Lo L3
Fed-OGD | 1.408x 10—5 | 3.045x10 =5 | 1.150x10~°
FedAvg 2.004x10~% | 5.895x10~5 | 3.239x10~*
SAFA 2.630x10~4 1.563x1073 | 1.923x1073
MIFA 9.990x10~° 1.619x10~* | 4.589x10~°
FLANP 4.074x107° 1.882x10~* | 8.254x10~*
GradMA 1.958x1072 | 4.720x1073 | 1.226x10~2

accuracy score, while the recent studies (e.g. FLANP and
GradMA) achieve the lower accuracy score in the three cases.
Although the accuracy score from MIFA approaches to that
from Fed-OGD in both L; and L, cases (MIFA gets 31.65%
and Fed-OGD achieves 33.35% in L; case while MIFA gets
31.5% and Fed-OGD achieves 33.0% in L, case), it decreases
sharply in L3 case (MIFA obtains 25.27% and Fed-OGD

reaches to 31.59%). Sub-figures (d)-(f) show the convergence
performance of all models. From the three sub-figures, it is
observed that Fed-OGD gets better convergence than other
baseline models, especially in Lg case in which MIFA cannot
get converged and it is always fluctuation. The loss from
FedAvg decreases very slowly, which means that FedAvg
cannot get converged. FLANP, GradMA, and SAFA hold
larger loss values than Fed-OGD, which indicates a worse
convergence. Moreover, we compare the robustness of Fed-
OGD with baseline models as shown in Table II. It is observed
that Fed-OGD still holds the best robust performance over
baseline models in all cases, which further demonstrates the
effectiveness of Fed-OGD in reducing the straggler issue.

D. Tiny-ImageNet

We continue to validate all models on Tiny-ImageNet with
Resnet-34, and the experimental results are shown in Fig.
4. From Fig. 4 (a)-(c), we still observe that our Fed-OGD
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Fig. 5: The classification performance of all models on AG_NEWS dataset. Sub-figures (a)-(c) show the classification accuracy,

while sub-figures (d)-(f) show the convergence of all models.

TABLE III: Accuracy variances on Tiny-ImageNet at different
cases

TABLE IV: Accuracy variances on AG_NEWS at different
cases

Tiny-ImageNet Ly Lo Ls
Fed-OGD 5.349x 1076 | 1.594x10 —° | 5.221x10~8
FedAvg 1.596x10~% | 6.269x10~% | 1.471x10~%
SAFA 2.721x1073 1.105x10~23 | 1.375x10~2
MIFA 2.184x107° | 1.610x10~% | 1.650x10~°
FLANP 8.715x10~% | 1.404x10=3 | 3.763x10~3
GradMA 3.219x10~4 1.748x10~3 | 4.133x10~4

achieves the largest classification accuracy in L;-L3 cases. The
recent studies, such as FLANP and GradMA, obtain accuracy
scores with around of 5% in the three cases. MIFA is unstable
(See sub-figures (a) and (b)), and its output score decreases
after 150 epochs. As to FedAvg and SAFA, their scores are
less than Fed-OGD. Sub-figures (d)-(f) show the convergence
performance of all models. It is easy observed that Fed-
OGD gets better convergence than all baseline models. The
loss values from both FedAvg and GradMA decrease slowly,
which means that they are difficult to get converged. MIFA
gets intense fluctuation (See sub-figure (f)), which indicates
that MIFA cannot get convergence. Besides, we also compare
the robustness of Fed-OGD with all baseline models as the
previous two datasets. The compared results are shown in
Table III. Obviously, our Fed-OGD still achieves the smallest
variance values, holding the best robust performance. This also
demonstrates the effectiveness of Fed-OGD in reducing the
straggler issue.

E. AG_NEWS

To validate the effectiveness of our Fed-OGD in NLP
task, we compare it with baseline models on the text dataset
AG_NEWS. To make a fair comparison, we employ the
TextCNN model for all FL models and other experimental
settings are unchanged as other datasets. Fig. 5 (a)-(c) show
that Fed-OGD still achieves the highest accuracy scores across

AG_NEWS Ly Lo Ls
Fed-OGD | 5349x 10~6 | 1.594x10 =5 | 5221x10—8
FedAvg 1.596x10~% | 6.269x10~% | 1.471x10~%
SAFA 2.721x1073 1.105x10~3 | 1.375x10~2
MIFA 2.184x107° | 1.610x10~% | 1.650x10~°
FLANP 8.715x10~* | 1.404x10=3 | 3.763x10~3
GradMA 3.219x10~4 1.748x10~3 | 4.133x10~4

L;-Lj cases. It is over 50% accuracy score, while the accuracy
scores of other FL. models are lower than 50%. Moreover, the
accuracy of FedAvg is the lowest in both L, and L, cases, and
MIFA performs worst in Lg case, and their scores are below
40%. Note that the recent studies, such as FLANP and SAFA,
also lag far behind Fed-OGD. Fig. 5 (d)-(f) show the conver-
gence behavior of all models. Fed-OGD demonstrates the best
convergence over all baselines. FedAvg and GradMA show
the worst convergence in L;-Lg cases, and MIFA becomes
instable after 50 epochs (see sub-figure (f)) in L3 case. As the
other datasets, we also evaluate the robustness of Fed-OGD
on AG_NEWS dataset, and the evaluated results are shown
in Table IV. Obviously, the variance values of Fed-OGD
are still lower than those of other baseline models, further
demonstrating the effectiveness of Fed-OGD in addressing the
straggler issue in NLP task.

The communication overhead in FL is from the mutual
communication between the server and all clients, e.g. the
clients uploading the gradients and the server broadcasting
the parameters of the global model to local models. For the
AG_NEWS dataset, we employ 50 clients, and each client
holds a TextCNN model (9.92 MB). The experimental results
are shown in Fig. 5. From sub-figure (d) of Fig. 5, it is
observed that Fed-OGD achieves the fastest convergence,
reaching a loss value of 1.219 at 193 epoch. However, SAFA,
which has the second-fastest convergence, reaches the same
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Fig. 6: The ablation studies on both CIFAR-10 and CIFAR-100 datasets in Lo case. Sub-figures (a)-(c) show the classification
performance on CIFAR-10 dataset, while sub-figures (d)-(f) show the classification performance on CIFAR-100 dataset.

loss value at 299 epoch. For Fed-OGD, this communication
overhead is 9.92 x 3 = 29.76 MB, given that Fed-OGD holds
the extra orthogonal bases. With this, the total communication
overhead at 193 epoch is 29.76 x 193 x (32 4 10 4 10) —
202943.36 MB in L; case, while the total communication
overhead at 299 epoch for SAFA is 19.84 x 299 x (? +
10 4 19)=209602.986 MB. Other baseline models have the
higher communication overhead than SAFA. Therefore, our
Fed-OGD achieves smaller communication overhead than
the baseline models. The similar scenarios are also shown
in other datasets. Take CIFARI10 as an example. Fed-OGD
reaches the loss value of 1.497 at 124 epoch, while SAFA,
which gets the second-fastest convergence among the baseline
models, reaches the same loss at 299 epoch. Fed-OGD holds
44.70 x 124 x (% + ? + %?) = 195845.59 MB, while SAFA
obtains 44.70 x 299 x (22 + £ + ) = 472240.60 MB, given
that ResNet-18 has size of 44.70 MB. Therefore, Obviously,
the total communication overhead of our Fed-OGD is smaller
than the baseline models.

FE. Ablation Studies

Different from the traditional OGD, Fed-OGD caches the
latest gradients in server for global model aggregation at each
epoch and views the latest cached gradients of stragglers
as orthogonal bases for active clients, and also views the
last gradients of active clients as orthogonal bases for strag-
glers. Therefore, we conduct a series of ablation studies to
demonstrate the necessity of each component of Fed-OGD
by only removing cached gradients and directly replacing
our OGD with the traditional OGD. Here, we take Lo case
and both CIFAR-10 and CIFAR-100 datasets as an example.
The experimental results are shown in Fig. 6 (a) and (d).
It illustrates that each component is necessary to Fed-OGD,
because removing any component could reduce performance.
Since Fed-OGD relies on the projected component to perform
an orthogonal operation to guide the global model towards
its optimal status, we illustrate the projected components of

both Fed-OGD and the traditional OGD as shown in the
sub-figures (c) and (f) of Fig. 6. The larger the projected
component, the smaller the difference between the orthogonal
bases of the straggler clients and the current gradients of the
active clients, and the better convergence the global model
gets (see Fig. 6 (b) and (e)). The difference curves show the
importance of our idea, which is better than the traditional
OGD method. Moreover, the variance of traditional OGD is
2.853x107° (1.897x1073) and that of Fed-OGD removing
cached gradients is 6.044x107% (1.930x10~2) on CIFAR-10
(CIFAR-100). The variances of Fed-OGD, 1.942x10~° for
CIFAR-10 and 3.045x10~° for CIFAR-100, are lower than
those variances, further illustrating that each component is
important for the robustness of Fed-OGD.

G. Discussion

Note that the proportions of each group (i.e., L, Lo, and L3)
correspond to three main aspects. In L; case, the active clients
take the largest proportion of all clients, while straggler clients
occupy the minority proportion of all clients; in Ly case, the
proportion of active clients approaches that of stragglers in all
clients; the case of L3 is opposite to L1, active clients occupy
the minority proportion of all clients, while straggler clients
take most proportion of all clients. Given that the stragglers
fail to upload their parameters to server at some epochs,
the optimizing direction of the global model is inevitably
towards that of the active clients, because the interval uploaded
parameters of stragglers have a small impact on the global
model, resulting in its convergence difficulty. This is shown
in the convergence performance of FedAvg in Fig. 2, Fig. 3,
Fig. 4 and Fig. 5 (d)-(f). Moreover, stragglers bring the non-
robustness for the global model [8], so we utilize the variance
metric to quantitatively compare the robustness of Fed-OGD
with baseline models (see Table I-Table 1V).

Given that FL algorithms are usually validated by classifi-
cation [!1], we employ it to demonstrate the performance of
each model. From the experimental results (see Fig. 2-Fig. 5),
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we can observe that Fed-OGD not only achieves the highest
accuracy score but also has the best convergence among all
SOTA FL models. Moreover, we conduct a serious of ablation
studies by only removing the cached gradients and replacing
our OGD with the traditional OGD to demonstrate the neces-
sity of each component of Fed-OGD, which is shown in Fig. 6
(a)-(b) and Fig. 6 (d)-(e). It illustrates the importance of each
component, because reducing any one component could bring
about a decrease in performance. Besides, we use projected
component to measure the difference in optimizing direction
as shown in Fig. 6 (c) and (f), which further demonstrate
the effectiveness of our Fed-OGD. Since most real-world FL
classification applications (e.g. medical image analysis [42]
and agricultural image analysis [43]) focus on CNN-based
model [44], our paper also employs the CNN-based model
(e.g. Resnet-18, Resnet-34 and TextCNN) to validate our idea.

V. CONCLUSIONS

In this paper, to deal with the straggler issue, we propose
the Fed-OGD, which caches the latest gradients of stragglers
in server and orthogonalizes the difference between the or-
thogonal bases (i.e., the latest cached gradients) of stragglers
and the current gradients of active clients. The contributions
of our Fed-OGD are: 1) innovatively explaining the global
model convergence difficulty with CF theory and prove it
theoretically; 2) presenting a new strategy to guide the global
model towards its optimal status rather than the optimial status
of active clients; 3) presenting 16.66% (5.37%, 38.51%, and
16.30%) higher classification accuracy and achieving 93.52%
(74.94%, 99.68%, and 99.69%) lower variance on CIFAR-10
(CIFAR-100, Tiny-ImageNet, and AG_NEWS) when compar-
ing with the model that holds the best performance in all
baselines; 4) providing new insights into the understanding
of straggler issue in FL.
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