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Abstract—Network traffic measurement is critical for effec-
tive network management. Sketch has been proven to be a
promising network traffic measurement solution. Considering
the skewed distribution of network traffic, where low-frequency
mouse flows dominate and high-frequency elephant flows are
fewer, recent sketch-based solutions employ hierarchical designs
to enhance memory efficiency and accuracy. However, these
solutions inevitably introduce additional challenges, including
increased memory access overhead, severe hash collisions between
elephant and mouse flows, and limited adaptability to dynamic
network environments. In this paper, we propose LA-Sketch, an
adaptive level-aware data structure. First, LA-Sketch employs
a level-aware classifier to intelligently map each flow to its
corresponding level, thereby reducing memory access overhead
caused by hierarchical designs and mitigating hash collisions
between elephant and mouse flows. Second, we introduce an
adaptive counter configuration method that dynamically adjusts
the number of counters at each level according to diverse network
traffic distributions, which theoretically minimizes overall hash
collisions. Finally, to adapt to the continuously changing network
traffic characteristics, we propose an adaptive online training
method that enables LA-Sketch’s classifier to maintain high
performance using only sketch query values for training, avoid-
ing the significant overhead of massive traffic data collection.
Extensive evaluations on two real-world network traces across
five measurement tasks demonstrate that LA-Sketch outperforms
state-of-the-art hierarchical sketches.

Index Terms—sketch, hierarchical designs, network traffic
measurement.

I. INTRODUCTION
A. Background and Motivation

Network traffic measurement is fundamental to various
network management applications, including traffic billing,
congestion control, anomaly detection, and so on [1]-[8].
These applications depend on core measurement tasks such
as flow size estimation, heavy-hitter detection, and entropy
estimation. Since most data centers have not yet fully deployed
programmable switches and such switches are constrained by
limited resources, the majority of measurement tasks are still
performed on dedicated servers or end hosts. Therefore, this
paper focuses on software-based measurement solutions rather
than switch-based approaches.

Sketch-based network traffic measurement solutions have
been widely adopted due to their ability to achieve high
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Fig. 1: Overview of Tower Sketch [10] and FCM Sketch [11].

accuracy with low memory overhead. Sketch is a probabilistic
data structure that uses hash functions to map flows into
buckets, which can be bits, counters, or key-value pairs. For
instance, the widely used Count-Min (CM) Sketch [9] consists
of k equal-length counter arrays, each associated with a hash
function. When inserting a flow, CM Sketch maps it to &
counters using k hash functions and increments each counter
by one. When querying a flow, it checks the £ mapped counters
and reports the minimum value among them.

Although the CM Sketch achieves high memory efficiency,
its memory efficiency and accuracy are limited. To address
this, recent sketch-based solutions have considered the skewed
characteristics of network traffic and adopted hierarchical
designs to improve both memory efficiency and accuracy.
However, these solutions also introduce additional challenges.
For example, Tower Sketch [10] and FCM Sketch [11] repre-
sent two state-of-the-art hierarchical sketches that exemplify
these advancements and associated limitations.

Tower Sketch, as shown in Fig. 1a, differs from the CM
Sketch by using counter arrays with varying bit-widths. Lower-
level arrays contain more counters with smaller sizes, while
higher-level arrays have fewer counters with larger sizes. The
insertion algorithm of Tower Sketch is consistent with that
of CM/CU Sketch [9], [12]. While Tower Sketch improves
memory efficiency, it suffers from three significant limitations:

o All flows are inserted into every level rather than being
directed to their corresponding levels, leading to hash
collisions between elephant and mouse flows.

o Due to the large counter values of elephant flows, their
effective counts tend to appear only in the higher-level
layers of the sketch. As a result, they suffer from higher
estimation errors compared to the CM Sketch.



« How to configure the number of counters optimally
remains an open question. Tower Sketch uses a fixed
2:1 ratio between layers, which may not accommodate
diverse network traffic distributions effectively.

FCM Sketch, as shown in Fig. 1b, is similar to Tower Sketch
in that lower-level arrays contain more counters with smaller
sizes, while higher-level arrays have fewer counters with larger
sizes. However, unlike Tower Sketch, the insertion algorithm
of FCM Sketch starts with CM insertion at the lowest level
and progressively moves to higher levels upon overflow. While
FCM Sketch also achieves high memory efficiency, it suffers
from three significant limitations:

« Since all flows are initially inserted at the lowest level
and progressively moved to higher levels upon overflow,
severe hash collisions occur between elephant and mouse
flows.

o For elephant flows, each insertion requires sequential
memory accesses from the lowest level to the correspond-
ing higher-level array, resulting in excessive memory
access overhead.

« How to configure the number of counters optimally
remains an open question. FCM Sketch simply sets
different proportions for each level and continuously tests
to obtain the optimal configuration.

In summary, an ideal hierarchical sketch should achieve
high memory efficiency while intelligently mapping flows
directly to the corresponding level. This approach reduces
hash collisions between elephant and mouse flows, as well
as the overhead of sequential memory accesses. Additionally,
it should automatically provide the optimal counter number
configuration according to diverse network traffic distributions.

B. Proposed Solution and Contributions

In this paper, we propose the Level-Aware Sketch (LA-
Sketch) to address the aforementioned challenges. LA-Sketch
approximates the ideal hierarchical sketch through three key
components: a level-aware classifier, an adaptive counter con-
figuration method, and an adaptive online training method.
Specifically, our contributions are as follows:

1) LA-Sketch (§III-B): We propose LA-Sketch, a novel
level-aware hierarchical sketch. LA-Sketch employs a level-
aware classifier to intelligently map each flow to its corre-
sponding level and perform insertion, significantly reducing
hash collisions between elephant and mouse flows as well as
the number of sequential memory accesses.

2) Adaptive counter configuration and online train-
ing methods (§III-C and §III-D): We introduce an adaptive
counter number configuration method, which is theoretically
proven to minimize the overall hash collisions in LA-Sketch.
Additionally, to adapt to the continuously changing network
traffic characteristics, we propose an adaptive online training
method that continuously improves the LA-Sketch’s classifier
using only the query values, without the need to collect
massive network traffic data.

3) Extensive experimental verification (§V): We conduct
extensive experiments on two real-world network traces across

five measurement tasks to evaluate LA-Sketch. Experimental
results demonstrate that LA-Sketch outperforms the state-of-
the-art hierarchical sketches. The adaptive counter configu-
ration method enhances LA-Sketch’s performance, while the
adaptive online training method achieves results comparable
to traditional online training method.

II. RELATED WORK

In this section, we provide background knowledge on differ-
ent types of sketches, previous work on hierarchical sketches,
and previous work on learning-enhanced sketches.

A. Sketch

Sketch-based solutions can be classified into two categories:
simple sketches and complex sketches. Simple sketches typi-
cally consist of multiple arrays of counters, each associated
with a hash function. These sketches assign uniform bit
widths to all counter arrays, leading to low memory efficiency.
Moreover, as they equally treat elephant flows and mouse
flows, the accuracy of these sketches is poor due to hash
collisions. Representative examples of simple sketches include
CM Sketch [9], CU Sketch [12], CO Sketch [13]. In con-
trast, complex sketches use advanced algorithms to separate
the storage of elephant and mouse flows, thereby achiev-
ing higher memory efficiency and accuracy. Representative
examples of complex sketches include HeavyGuardian [14],
OneSketch [15], Elastic Sketch [16] and so on. However,
their hierarchical granularity remains relatively coarse, leaving
room for further improvements in memory efficiency.

B. Hierarchical Sketch

Traditional sketch-based methods typically allocate fixed-
length bit counters uniformly. Recent approaches exploit the
skewness of network traffic to enhance memory efficiency
and accuracy through hierarchical designs, as exemplified by
Ladder Filter [17], Cold Filter [18], Tower Sketch [10], FCM
Sketch [11] and so on. These works allocate counters of
varying sizes and quantities across different levels, with lower-
level arrays generally containing more counters of smaller size,
and higher-level arrays containing fewer counters of larger
size. While hierarchical designs improve memory efficiency
and accuracy, they inevitably introduce additional challenges,
including increased memory access overhead, severe hash
collisions between elephant and mouse flows, and limited
adaptability to dynamic network environments.

C. Learning-Enhanced Sketch

In recent years, several works have emerged that enhance
sketches using machine learning [19]-[24]. Among these, the
most relevant are those focusing on learning flow frequen-
cies [19], [20], [25] to improve accuracy by avoiding collisions
between elephant and mouse flows. However, learning the
exact frequency of each flow is both complex and unnecessary.
In contrast, our work learns the level associated with each
flow rather than its frequency and introduces new techniques,
including an adaptive counter configuration method and an
adaptive online training method.
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Fig. 2: Overview of LA-Sketch.

III. LA-SKETCH

In this section, we first provide an overview of LA-Sketch.
Then, we present a detailed explanation of its three key
components: the level-aware classifier, the adaptive counter
configuration method, and the adaptive online training method.

A. Overview of LA-Sketch

As shown in Fig. 2, in addition to the hierarchical structure,
LA-Sketch consists of three novel components: the level-aware
classifier, the adaptive counter configuration method, and the
adaptive online training method. The primary functions of
these components are as follows:

1) Adaptive Counter Configuration: Before performing
measurement tasks, for a given memory size, we need to
configure the number of counters in each level of LA-Sketch.
For a given network traffic distribution, the adaptive counter
configuration method in LA-Sketch determines the optimal
number of counters per level, which can minimize the overall
hash collisions in LA-Sketch and optimize its performance.

2) Level-Aware Classifier: When inserting a packet with
flow ID e, LA-Sketch employs its pre-trained level-aware
classifier to directly map e to its corresponding level. At this
level, the CM/CU [9], [12] insertion operation is executed.
If overflow occurs, the packet is incrementally inserted into
higher levels. This approach significantly reduces hash colli-
sions between elephant and mouse flows and minimizes the
number of memory accesses required across levels.

3) Adaptive Online Training: Network traffic characteris-
tics evolve over time, leading to shifts where mouse flows
may become elephant flows and vice versa. Such changes
can degrade the performance of the level-aware classifier. To
address this, LA-Sketch periodically queries flow frequency
information to perform adaptive online training. This pro-
cess leverages approximate query values from LA-Sketch,
eliminating the need for massive traffic data collection. It is
worth noting that the query values provided by sketches are
approximations rather than exact values. For instance, when
the memory allocated to LA-Sketch is relatively small, the
average relative error (ARE) may be as high as several times.
ARE is defined as the ratio of the absolute difference between
the query value and the actual value to the actual value. For
example, if the query value is 5 and the actual value is 1, the
ARE is 4. Section III-D provides a detailed explanation of how
LA-Sketch’s classifier can maintain robust performance even

Algorithm 1: Insertion

1 lev < Classifier(e);

2 min_value < Allev].insert(e);

3 while min_value > 20w — 1 do

4 lev + lev + 1;

5 min_value + Allev].insert(e);
¢ end

when trained with highly approximate query values rather than
accurate traffic data.

B. Data Structure and Operations

Data Structure: Similar to previous hierarchical sketches,
in LA-Sketch, the lower-level arrays contain more coun-
ters with smaller sizes, while higher-level arrays have fewer
counters with larger sizes. LA-Sketch consists of d arrays,
A[l], ..., Ald]. Each array A[i] contains w; counters and is
associated with k hash functions h;;(-) (1 < j < k). The size
of each counter in array A[:] is J; bits. For instance, in the
example shown in Fig. 2, d = 5, and the counter widths ¢,
02, 03, d4, 05 are 2, 4, 8, 16, and 32, respectively.

CM Insertion: As shown in Alg. 1, when inserting a
packet with flow ID e, LA-Sketch uses its level-aware classifier
to map e to its corresponding level lev, and then simply
increments the k hashed counters in array A[lev] at level lev
by 1. If none of the k£ counters overflow, the insertion process
terminates. If overflow occurs, the packet is forwarded to the
next higher-level array, repeating this process until at least one
counter does not overflow. It is worth noting that if a counter
overflows upon increment, it is marked as an overflow counter
and its value is set to 2% — 1. That is, for a d,;-bit counter, the
maximum value it can record is 2% — 2.

CU Insertion: LA-Sketch can employ the CU insertion
to improve accuracy. Instead of incrementing all £ hashed
counters, CU insertion increments only the smallest non-
overflowed counter among them.

Query: As shown in Alg. 2, when querying a flow with
flow ID e, LA-Sketch first employs the level-aware classifier to
identify the corresponding level lev. The query then retrieves
the minimum value among the %k hashed counters in array
Allev]. Tf this minimum value is less than 2% — 1, the query
process terminates. Otherwise, LA-Sketch accumulates the
effective count, 2% — 2, from array A[lev] and proceeds to



Algorithm 2: Query

query_value < 0;

lev < Classifier(e);

min_value < Allev].query(e);

while min_value > 2% — 1 do
query_value < query_value + 20tev — 9:
lev <+ lev + 1;
min_value < Allev].query(e);

end

query_value < query_value + min_value;

return query_value;
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query the next higher-level arrays. This process continues,
accumulating effective counts, until the minimum value of the
k hashed counters at a level is less than 2% — 1.

Level-Aware Classifier: The corresponding level for each
flow can be derived from historical traffic data, which is easily
obtained. For instance, a CM Sketch can be used to query flow
frequency information, as demonstrated in our experiments in
Section V-D. Section III-D explains the feasibility of using
approximate sketch query values for this purpose. The level-
aware classifier is trained using flow IDs as features and
their corresponding levels as labels. Based on the learned
features, this classifier can intelligently determine the level for
each flow. The level-aware classifier employs a Multi-Layer
Perceptron (MLP) to model the relationship between flows
and their levels. The MLP incorporates batch normalization,
employs the ReLU activation function, and uses the Adam
optimizer. Cross-entropy is chosen as the loss function due to
its widespread application in classification tasks. The model’s
parameters include a random seed of 42, a learning rate of
1073, and an input layer vector length determined by the flow
ID. For example, if the flow ID corresponds to the source IP,
the input layer vector length is 32. The output layer vector
length matches the number of levels, while the number and
size of hidden layers are adapted to the complexity of the
data. Although this paper employs an MLP as an example,
other machine learning models, such as LSTM [26], can also
be used. However, the focus of this work is not on the choice
of machine learning models but rather on the functionality of
the classifier.

Discussion: 1) Compared to FCM Sketch, the level-aware
classifier in LA-Sketch effectively eliminates hash collisions
between elephant and mouse flows, as well as excessive mem-
ory accesses caused by inserting flows sequentially from the
lowest level. Compared to Tower Sketch, LA-Sketch addresses
both hash collisions and higher estimation errors for elephant
flows. Some may argue that the multiple hashing mechanisms
in FCM Sketch and Tower Sketch already mitigate hash
collisions between elephant and mouse flows. However, we
emphasize that FCM Sketch indiscriminately inserts all flows
from the lowest level upwards, and Tower Sketch hashes all
flows to every level, which inevitably leads to hash collisions
between elephant and mouse flows. Multiple hashing only
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Fig. 3: The flow size distributions of five consecutive periods
from CAIDA [27] and MAWI [28] datasets.

alleviates these collisions, whereas the level-aware classifier in
LA-Sketch fundamentally prevents elephant and mouse flows
from being hashed to the same level. 2) In the experiments
detailed in Section V-B, the memory overhead introduced by
the level-aware classifier is taken into account. Despite this,
LA-Sketch consistently outperforms hierarchical sketches such
as FCM Sketch and Tower Sketch, demonstrating superior
accuracy.

C. Adaptive Counter Configuration Method

Our Observation: For a given memory size M, how to set
the length w; of each array A[é] is an open challenge. Existing
solutions, such as Tower Sketch and FCM Sketch, allocate
counters based on predefined ratios. Tower Sketch allocates
equal memory to each array, resulting in a 2:1 counter ratio
between adjacent levels. FCM Sketch employs a fixed counter
ratio (e.g., 16 : 1 or 8: 1), testing various configurations to
identify the optimal setup. While such approaches may yield
good performance under specific network traffic distributions,
they lack adaptability to diverse traffic distributions and fail
to consistently optimize performance. This leads a critical
question: for a given network traffic distribution, is there an
optimal configuration? To investigate, we analyze network
traffic data sampled over five consecutive measurement peri-
ods, each consisting of approximately 5 million packets, from
CAIDA [27] and MAWI [28] traces. As shown in Fig. 3,
we illustrate the flow size distribution curves for these five
periods. It is evident that the flow size distribution remains
relatively stable for specific regional data centers or backbone
networks. Furthermore, considering that LA-Sketch can di-
rectly map flows to their corresponding levels, the problem can
be reformulated: given a fixed memory size M and N; flows
at each level, is there an optimal counter number configuration
to minimize hash collisions and maximize performance?

Adaptive Counter Configuration: With the goal of mini-
mizing the overall hash collisions in LA-Sketch, we formulate
the problem as an optimization task and solve it using the
method of Lagrange multipliers, leading to the following
result:

Theorem 1: Consider an LA-Sketch consisting of d arrays,
A[1], A[2],. .., A[d], where N; flows are mapped to array A[i].
To minimize total hash collisions, the number of counters w;
and w; in arrays A[i] and A[j] must satisfy:



w; N;

This indicates that the ratio of counter numbers between
any two arrays at different levels should match the ratio of
flows mapped to those levels. As shown in Fig. 3, flow size
distributions for a specific data center or backbone network
remain approximately constant, meaning [V, values can be
treated as known. Thus, given a fixed memory size M, the
memory size m; for each array A[i] can be determined by
solving the following system of equations:

{M = Z?:l m;

Ni—mew 2y Ge[1,2,...,d

= o
2 m;

Nj

Proof. We provide the proof of Theorem 1.

Step 1: Prior Knowledge.

1) In array A[i], when N; flows are randomly hashed into w;
buckets, let X denote the number of flows in a given bucket.
X follows a binomial distribution with parameters N; and wi
For large NV;, X can be approximated by a Poisson distribution
with A = % This has been proven in the previous paper
SeqHash [29].

2) If X flows are hashed into the same bucket, each flow
collides with the remaining X — 1 flows, resulting in a total of
X (X — 1) hash collisions for that bucket. It is worth noting
that if you believe repeated hash collisions should not be
considered, multiplying by % is acceptable and does not affect
the final result of Theorem 1.

Let X represent the number of flows in any given bucket.
Based on the two prior knowledge above, the expected number
of collisions in a single bucket of array Alf] is:

N?

E(X(X-1)=EX?% -EX)= wl

<

Thus, the total number of collisions in all w; buckets of
array A[i] is:

N2

?

w;
Step 2: Minimizing Total Hash Collisions.
The objective is to minimize the total hash collisions across
the d arrays of LA-Sketch:

d
ny" N?
min
‘ W;
i=1

Assuming W = Z?:l w;, we apply the method of La-
grange multipliers. Introducing the Lagrange multiplier A, the
Lagrangian function is:

d

NZ ¢
L(wy,wa, ..., wq, A) :Z wz- + A <Zwi—W>

i=1 i=1

Taking the partial derivative of £ with respect to each w;
and setting it to zero:

oL N?
ow; | w? A=

Solving for w; yields:
N2 N

Using the constraint W = Z?:l w;, we have:

d
N;
> w
i=1 VA
Solving for v/ gives:

d
Y
\/X — 21:1 2

Substituting this back into the expression for w; results in:
— =
w 21:1 N;

This derivation generalizes to:

Finally, it follows that:
w; Ni
wj N
D. Adaptive Online Training Method

Our Observation: Network traffic characteristics tend to
remain similar across adjacent time periods, enabling the level-
aware classifier in LA-Sketch to accurately map flows to their
corresponding levels. However, over time, these characteristics
gradually diverge, leading to a decline in the classifier’s
performance. To address this issue, retraining the classifier
with more recent traffic data becomes necessary. Incorporating
traffic data from periods closer to the current time significantly
improves LA-Sketch’s performance. However, frequent data
collection incurs substantial overhead. Thus, the key challenge
is to enable adaptive online training while minimizing the
overhead of massive traffic data collection.

Adaptive Online Training Method: The adaptive online
training method leverages LA-Sketch itself to estimate flow
sizes using its query values, eliminating the need for additional
traffic data. This approach reduces overhead while ensuring
the classifier adapts effectively to evolving traffic patterns.
It is worth noting that we always use flow keys and their
corresponding levels from the most recent period, while dis-
carding historical traffic from earlier periods. This is because
network traffic is inherently dynamic, and the most recent
flows better reflect the characteristics of upcoming traffic. In
contrast, outdated traffic may introduce noise or even degrade
model performance if used for training.



Analysis: The feasibility of using LA-Sketch’s approximate
query values for online training is supported by the following
points:

1) Accurate Mapping of Elephant Flows: In LA-Sketch,
no flow is underestimated. As a result, elephant flows are
consistently mapped to higher levels, ensuring their correct
classification in subsequent periods.

2) Robust Mapping of Mouse Flows: Most mouse flows are
correctly estimated as mouse flows. Although some mouse
flows may be overestimated as elephant flows due to poten-
tial classification errors by the level-aware classifier or hash
collisions, this leads to their temporary assignment to higher
levels in the subsequent period. By periodically changing the
hash seed, such mouse flows are reassigned to lower levels
unless they again collide with elephant flows under the new
hash configuration.

In summary, since most mouse flows are consistently
identified as mouse flows and elephant flows are always
recognized as elephant flows, the vast majority of flows are
correctly mapped to their corresponding levels. Even if some
misidentified mouse flows are mapped to higher levels, they
can be corrected in subsequent periods through hash seed
adjustments.

IV. MEASUREMENT TASKS

In this section, we elaborate on how LA-Sketch performs
five representative measurement tasks. The explanation uses
an end-host running LA-Sketch as an example. To perform
these tasks, the end-host constructs an LA-Sketch and inserts
each incoming packet, using its flow ID as the key.

Flow Size Estimation: estimating the size of any given
flow. LA-Sketch returns the direct flow size estimate through
the query algorithm in Alg. 2.

Heavy Hitter Detection: reporting flows whose sizes are
larger than a threshold Ap. Similar to previous hierarchical
sketches, we maintain a small hash table to track heavy hitters
by recording their flow IDs. For each incoming packet, we
insert it into LA-Sketch and query its estimated flow size ;.
If n; > Ay, and the flow is not already in the hash table, we
add it to the table. To retrieve all heavy hitters, we report all
flow IDs stored in the hash table.

Heavy Change Detection: reporting flows whose sizes
drastically change beyond a predefined threshold A, in two
adjacent time windows. We construct an LA-Sketch for each
time window and use the hash table described above to
maintain flows with size greater than A.. For each flow
recorded in the two hash tables, we calculate the difference
in flow size by querying the two LA-Sketch. If the difference
exceeds A., the flow is reported as a significant change.

Flow Size Distribution Estimation: estimating the distribu-
tion of flow sizes. Similar to the design of Elastic Sketch [16],
for each incoming packet, we insert it into LA-Sketch and
query its flow size. For the flows in the lower-level arrays
(A[1] — A[3]) of LA-Sketch, we maintain a distribution array
(no,n1,...,MN270), Where n; represents the number of flows in

LA-Sketch with a queried value of 7. For flows in the higher-
level arrays (A[4]-A[5]), the basic MRAC [30] algorithm
is applied to each counter array in LA-Sketch. Finally, we
combine the above results.

Entropy Estimation: estimating the entropy of flow sizes.
For each incoming packet, we insert it into LA-Sketch and
query its flow size. Based on the queried value before and
after the insertion, we calculate the entropy in real-time.

V. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments on two
real-world network traces across five measurement tasks
to evaluate LA-Sketch. Experimental results demonstrate
that LA-Sketch outperforms the state-of-the-art hierarchical
sketches.

A. Experimental Setup
Dataset: Our evaluation utilizes two real-world datasets.

o CAIDA Dataset: We use anonymous IP tracking collected
from CAIDA in 2018 [27]. Each trace contains approxi-
mately 2.7 million packets. In the case of aggregation by
source IP, there are around 70,000 flows. We consider
ten consecutive traces, where each trace represents the
network traffic data for one period.

¢ MAWI Dataset: We use the MAWI dataset [28], com-
prising real Internet traffic traces collected by the MAWI
Working Group of the WIDE Project. Each trace con-
tains approximately 8 million packets. In the case of
aggregation by source IP, there are around 50, 000 flows.
We consider ten consecutive traces, where each trace
represents the network traffic data for one period.

Experimental Settings: We introduce the common exper-
imental settings. LA-Sketch is designed with five levels, as
shown in Fig. 2, with counter sizes of 2, 4, 8, 16, and 32
bits from the lowest to the highest level. The level-aware
classifier employs a 4-layer Multi-Layer Perceptron (MLP)
with hidden layer dimensions of 128. Other model parameters
are consistent with those described in Section III-B. The
model is stored in half-precision, incurring a storage overhead
of approximately 85 KB. The experiments consider model
storage overhead, e.g., assuming a memory allocation of 300
KB, only 215 KB is allocated to the data structure part of
LA-Sketch. It is worth noting that only model parameters
require persistent storage, as runtime memory is released
after execution. All sketches utilize five hash functions for
packet insertion. For heavy hitter detection and heavy change
detection tasks, the threshold is set to A, = 500.

Abbreviations: The following are some abbreviations and
their meanings.

o LA-Sketch: refers to the standard LA-Sketch, which
trains the level-aware classifier using accurate traffic data
from the previous period and applies it to predict traffic
levels in the subsequent period.

o ILA-Sketch: represents an idealized version of LA-
Sketch, assuming perfect knowledge of the traffic levels
in the current period. This configuration represents the



theoretical optimal performance of LA-Sketch. While this
is unattainable in the networking domain due to the
impossibility of predicting future traffic, it is feasible in
database applications where the data requiring persistent
storage is already known.

o OLA-Sketch: refers to the adaptive online training variant
of LA-Sketch, which utilizes approximate sketch query
values from the previous period for training.

Metrics: We evaluate the following metrics.
« Average Absolute Error (AAE): £ 57" | |n; — 7;|, where

m
m is the number of flows, n; and n; are the actual and
estimated flow sizes respectively.

e Average Relative Error (ARE): %221 |'“n_7m|, where
m is the number of flows, n; and n; are the actual and
estimated flow sizes respectively.

e I'1 Score: %;};i'gg, where PR (Precision Rate) refers to
the ratio of the number of the correctly reported instances
to the number of all reported instances, and RR (Recall
Rate) refers to the ratio of the number of the correctly
reported instances to the number of all correct instances.

e Relative Error (RE): W, where True and Est

are the true and estimated values, respectively.

o Weighted Mean Relative Error (WMRE): %,
T

z

=1
where m; and m; are the true and estimated numbers of
the flows of size 7 respectively, and z is the maximum
flow size.

B. Experimental Results on Accuracy

In this section, we compare the accuracy of LA-Sketch with
the widely used CM Sketch [9] and two state-of-the-art hier-
archical sketches, Tower Sketch [10] and FCM Sketch [11].

1) Experimental Settings: For fairness, we make the follow-
ing settings. All sketches utilize 5 hash functions, matching the
number of hash operations required by Tower Sketch due to
its hierarchical design. The CM insertion algorithm is adopted
for all sketches, as FCM Sketch supports only CM insertion.
Secondly, none of the sketches use the EM algorithm for
flow size distribution estimation. For FCM Sketch, the counter
ratio per level is set to 8, as this configuration yields optimal
performance in subsequent experiments. The other settings
for Tower Sketch and FCM Sketch are consistent with their
papers.

2) Accuracy on the CAIDA Dataset: The experimental
results are as follows.

Flow Size Estimation (Fig. 4a-4b): We find that ILA and
LA achieve lower errors compared to CM, Tower, and FCM.
Compared to CM, Tower, and FCM, ILA on average reduces
the AAE by 25.3, 4.68, and 1.24 times respectively; compared
to CM and Tower, LA on average reduces the AAE by 17.7
and 3.26 times, respectively. Compared to CM, Tower, and
FCM, ILA on average reduces the ARE by 219, 6.38, and
10.3 times respectively; compared to CM, Tower, and FCM,
LA on average reduces the ARE by 46.6, 1.35, and 2.17 times,
respectively.

Heavy-Hitter Detection (Fig. 4c-4d): We find that all
sketches have an F1 score over 95%, but ILA and LA achieve
lower errors compared to CM and Tower.

Heavy Change Detection (Fig. 4e-4f): Similarly, we find
that all sketches have high F1 scores, but ILA and LA achieve
lower errors compared to CM and Tower.

Flow Size Distribution Estimation (Fig. 4g): We find that
ILA and LA achieve lower errors compared to CM, Tower, and
FCM. Compared to CM, Tower, and FCM, ILA on average
reduces the WMRE by 47.8, 7.58, and 21.6 times respectively;
compared to CM, Tower, and FCM, LA on average reduces
the WMRE by 28.2, 4.49, and 12.8 times, respectively.

Entropy Estimation (Fig. 4h): We find that ILA and LA
achieve lower errors compared to CM, Tower, and FCM.
Compared to CM, Tower, and FCM, ILA on average reduces
the RE by 23, 21.1, and 83 times respectively; compared to
CM, Tower, and FCM, LA on average reduces the RE by 10.9,
10.2, and 40 times, respectively.

3) Accuracy on the MAWI Dataset: The experimental re-
sults are as follows.

Flow Size Estimation (Fig. 5a-5b): We find that ILA and
LA achieve lower errors compared to CM, Tower, and FCM.
Compared to CM, Tower, and FCM, ILA on average reduces
the AAE by 46.6, 9.54, and 1.68 times respectively; compared
to CM, Tower, and FCM, LA on average reduces the AAE by
33.5, 7.16, and 1.24 times, respectively. Compared to CM,
Tower, and FCM, ILA on average reduces the ARE by 391,
9.54, and 13.8 times respectively; compared to CM, Tower,
and FCM, LA on average reduces the ARE by 96.8, 2.37, and
3.36 times, respectively.

Heavy-Hitter Detection (Fig. 5c-5d): We find that all
sketches have an F1 score over 95%, but ILA and LA achieve
lower errors compared to CM and Tower.

Heavy Change Detection (Fig. Se-5f): Similarly, we find
that all sketches have high F1 scores, but ILA and LA achieve
lower errors compared to CM and Tower.

Flow Size Distribution Estimation (Fig. 5g): We find that
ILA and LA achieve lower errors compared to CM, Tower, and
FCM. Compared to CM, Tower, and FCM, ILA on average
reduces the WMRE by 76.1, 11.6, and 31.5 times respectively;
compared to CM, Tower, and FCM, LA on average reduces
the WMRE by 38, 5.81, and 15.9 times, respectively.

Entropy Estimation (Fig. Sh): We find that ILA and LA
achieve lower errors compared to CM, Tower, and FCM.
Compared to CM, Tower, and FCM, ILA on average reduces
the RE by 30.1, 26.7, and 231 times respectively; compared
to CM, Tower, and FCM, LA on average reduces the RE by
13.5, 12.1, and 106 times, respectively.

Analysis: In comparison with existing hierarchical sketches,
LA-Sketch demonstrates superior accuracy across most mea-
surement tasks. This improvement stems from its ability to
map flows directly to their corresponding levels, thereby mini-
mizing hash collisions between elephant and mouse flows. Fur-
thermore, the proposed counter configuration method enhances
LA-Sketch’s performance, as corroborated by the experimental
results presented below.
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Fig. 5: Experimental Results on Accuracy using the MAWI Dataset.

C. Experimental Results on the
Method

Counter Configuration

In this section, we evaluate the effectiveness of the proposed
counter configuration method using the CAIDA dataset.

1) Experimental Settings: The counter ratio per level in
LA-Sketch is varied across values of 1, 2, 4, and 8 to com-
pare against the proposed counter configuration method. To
eliminate the potential impact of classification errors, we use
ILA-Sketch for the experiments, which bypasses the classifier.

2) Accuracy: The experimental results are as follows.

Flow Size Estimation (Fig. 6a-6b): We find that ILA_Our
achieves lower errors. Compared to ILA_1, ILA_2, ILA_4,
and ILA_8, ILA_our on average reduces the AAE by 37, 2.31,
9.8, and 404 times, and the ARE by 292, 3.74, 4.66, and 109
times, respectively.

Heavy-Hitter Detection (Fig. 6¢-6d): Compared to ILA_4
and ILA_8, ILA_Our achieves higher F1 scores and lower
errors. Compared to ILA_1 and ILA_2, ILA_Our performs
worse, as they have more counters in the higher level arrays.

Heavy Change Detection (Fig. 6e-6f): Compared to ILA_4
and ILA_8, ILA_Our achieves higher F1 scores and lower
errors. Compared to ILA_1 and ILA_2, ILA_Our performs
worse, as they have more counters in the higher level arrays.

Flow Size Distribution Estimation (Fig. 6g): We find that
ILA_Our achieves lower errors. Compared to ILA_1, ILA_2,
ILA_4, and ILA_8, ILA_Our on average reduces the WMRE
by 22.5, 1.89, 2.87, and 8.54 times, respectively.

Entropy Estimation (Fig. 6h): We find that ILA_Our
achieves lower errors. Compared to ILA_1, ILA_2, ILA_4,
and ILA_8, ILA_Our on average reduces the RE by 44, 2.84,
14.6, and 933 times, respectively.
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Fig. 6: Experimental Results on the Counter Configuration Method using the CAIDA Dataset.
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Fig. 7: Experimental Results on the Adaptive Online Training Method.

Analysis: In summary, the proposed counter configuration
method significantly improves accuracy across most measure-
ment tasks, confirming its effectiveness. By leveraging this
method, LA-Sketch achieves optimized performance.

D. Experimental Results on the Adaptive Online Training
Method

In this section, we evaluate the effectiveness of the proposed
adaptive online training method.

1) Experimental Settings: The memory allocated to LA-
Sketch is fixed at 400 kb. The first five periods use the CAIDA
dataset, while the last five periods use the MAWI dataset, to
evaluate the performance of LA-Sketch under abrupt traffic
changes (from period 5 to period 6). It is worth noting
that even within the same dataset, traffic characteristics vary
significantly between adjacent periods. Due to the absence of

historical traffic data for the initial period, neither LA-Sketch
nor OLA-Sketch includes results for this period in the figures.
In subsequent periods, LA-Sketch trains using the accurate
network traffic data from the preceding period, while OLA-
Sketch utilizes query values from the prior sketch for training.
Notably, during the first period, OLA-Sketch relies on query
values from the CM Sketch for training, as historical traffic
data is unavailable, precluding the use of LA-Sketch to train
the level-aware classifier.

2) Accuracy: The experimental results are as follows.

Due to space limitations, we omit detailed analysis for each
task. As shown in Fig. 7, the performance curves of OLA-
Sketch and LA-Sketch are closely aligned, demonstrating
that the adaptive online training method achieves accuracy
comparable to the traditional online training method across
most measurement tasks, which verifies the effectiveness of



the adaptive online training method. Moreover, when traffic
changes abruptly (from period 5 to period 6), OLA-Sketch
is able to adapt and achieve satisfactory performance after
a single period. By employing adaptive online training, the
classifier in LA-Sketch dynamically adapts to evolving net-
work traffic characteristics without requiring massive traffic
data collection, maintaining high performance.

VI. CONCLUSION

In this paper, we propose a Level-Aware Sketch (LA-
Sketch), a novel hierarchical sketching solution. Unlike prior
hierarchical sketches, LA-Sketch leverages a level-aware clas-
sifier to intelligently map each flow to its corresponding level,
significantly reducing hash collisions between elephant and
mouse flows while minimizing sequential memory access over-
head. Additionally, we introduce an adaptive counter number
configuration method that minimizes overall hash collisions,
optimizing LA-Sketch’s performance. Finally, to adapt to
the continuously changing network traffic characteristics, we
develop an adaptive online training method that eliminates
the necessity for massive traffic data collection by using only
sketch query values. Extensive evaluations on two real-world
network traces across five measurement tasks demonstrate that
LA-Sketch outperforms state-of-the-art hierarchical sketches.
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