
 

Multiresolution Taxi Demand Prediction: A Big Data Statistical and
Zero-Inflated Spatiotemporal GNN Approach
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Abstract: Urban  taxi  demand  prediction  faces  a  critical  resolution  paradox:  high-resolution  forecasts  enable

operational  agility  but suffer from extreme sparsity-induced volatility,  while low-resolution predictions sacrifice

responsiveness  for  stability.  We  present  a  Scalable  SpatioTemporal  Zero-Inflated  Poisson  Graph  Neural

Network (SSTZIP-GNN), that resolves this paradox through three innovations: (1) Zero-Inflated Poisson (ZIP)

integration  that  explicitly  models  structural  zeros  in  sparse  demand  distributions,  distinguishing  genuine  low-

demand  periods  from  data  artifacts;  (2)  Adaptive  spatiotemporal  learning  that  dynamically  adjusts  kernel

dilation  factors  and  graph  diffusion  rates  across  temporal  resolutions  using  Diffusion  Graph  Convolutional

Networks (DGCNs) and Temporal Convolutional Networks (TCNs); (3) Multimodal feature fusion incorporating

real-time  crowd-sourced  mobility  data,  socioeconomic  indicators,  and  Global  Position  System  (GPS)

trajectories for enhanced robustness under variable urban conditions. Extensive evaluation on 130 million real-

world  mobility  records  demonstrates  superior  performance,  achieving  34.8% Mean  Absolute  Error  (MAE)

reduction  over  state-of-the-art  baselines.  The  model  reduces  computational  costs  by  46.3% compared  to

ensemble approaches while maintaining high accuracy across resolutions, delivering 33.4%−53.3% Root Mean

Square Error (RMSE) reduction across different prediction resolution scenarios. This unified framework enables

cities to implement demand-responsive fleet management, dynamic pricing, and sustainable mobility planning

across diverse urban landscapes.

Key words:  statistical big data analytics; urban transportation; taxi demand prediction; multi-resolution prediction;

data sparsity; Zero-Inflated Poisson (ZIP) distribution

1　Introduction

The  proliferation  of  ride-hailing  platforms  has
fundamentally  transformed  urban  mobility,  creating
unprecedented  operational  complexity  that  demands

sophisticated  prediction  capabilities[1].  Accurate  taxi
demand  forecasting  serves  as  the  cornerstone  of
intelligent  transportation  systems,  enabling  dynamic
pricing,  optimal  fleet  dispatching,  and  sustainable 
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urban  planning[2, 3].  However,  modern  smart  cities
present  a  critical  challenge:  achieving  prediction
accuracy  across  multiple  temporal  resolutions  while
managing inherent data sparsity.

Contemporary  forecasting  systems  encounter  a
fundamental  resolution  paradox.  High-resolution
predictions (5-min intervals) provide operational agility
but  suffer  from severe  data  sparsity  that  compromises
statistical  reliability[4, 5].  Conversely,  low-resolution
predictions (60-min intervals) achieve stability through
temporal  aggregation  but  sacrifice  responsiveness  to
dynamic demand patterns[6]. This paradox intensifies as
cities deploy heterogeneous mobility services requiring
simultaneous  multi-scale  predictions—a  capability
beyond  current  single-resolution  architectures[7].
Maintaining  separate  prediction  systems  for  different
temporal  resolutions  imposes  prohibitive
computational costs on mobility platforms[8].

Recent  spatiotemporal  deep  learning  advances
leverage  graph  convolutional  networks  and  temporal
attention mechanisms[9−12], with diffusion-based hybrid
architectures  showing  particular  promise[13].  However,
three  critical  limitations  persist:  (1)  inadequate
integration  of  real-time  crowdsensing  data  streams[14],
(2)  insufficient  modeling  of  zero-inflated  distributions
in  sparse  demand  data[4],  and  (3)  architectural
inflexibility  preventing  dynamic  multi-resolution
adaptation[15].

These  limitations  manifest  as  significant  operational
deficiencies:  reduced  responsiveness  to  real-time
demand  shifts,  inaccurate  predictions  in  low-activity
zones,  and  computational  inefficiency  from
maintaining  resolution-specific  models.  Addressing
these  challenges  requires  a  unified framework capable
of  handling  sparse,  zero-inflated  demand  distributions
across multiple temporal scales.

We  present  Scalable  SpatioTemporal  Zero-Inflated
Poisson  Graph  Neural  Network  (SSTZIP-GNN),  a
scalable  spatiotemporal  framework  that  resolves  the
resolution paradox through three innovations: (1) Zero-
Inflated  Poisson  (ZIP)  distribution  modeling  for
explicit  structural  zero  handling,  (2)  adaptive
mechanisms  for  dynamic  multi-resolution  prediction,
and (3) multimodal feature fusion integrating real-time
crowdsensing,  socioeconomic  indicators,  and  GPS
trajectories.

Our contributions are threefold:
(1)  A  novel  spatiotemporal  architecture  combining

diffusion  graph  convolutions  with  temporal  dilated
convolutions  in  a  ZIP  framework,  achieving  34.8%
Mean Absolute  Error  (MAE)  improvement  over  state-
of-the-art methods.

(2)  An  adaptive  mechanism  enabling  unified  multi-
scale  prediction  with  46.3% computational  cost
reduction compared to ensemble approaches.

(3)  Comprehensive  evaluation  on  130  million
mobility  records  demonstrating  33.4%−53.3% Root
Mean  Square  Error  (RMSE)  reduction  across  the
different prediction time resolution scenarios.

Experimental  analysis  reveals  that  high-resolution
predictions  benefit  most  from  ZIP  modeling  and  real-
time  crowdsensing  data  (15.6% F1-score
improvement), while low-resolution predictions depend
more heavily on historical patterns and socioeconomic
factors  (12.4% F1-score  improvement).  This  adaptive
capability  explains  the  framework’s  superior
performance across temporal scales.

The remainder of this paper is organized as follows:
Section  2  formalizes  the  multi-resolution  prediction
problem,  Section  3  details  the  SSTZIP-GNN
architecture,  Section  4  presents  experimental
validation,  Section  5  reviews  related  work,  Section  6
discusses limitations and future directions, and Section
7 concludes.

2　Preliminary

In  this  section,  we  first  present  key  definitions,  and
then  formally  formulate  the  taxi  demand  prediction
problem.

2.1　Definitions

R

Time  resolution. The  historical  taxi  demand  data  are
organized based on different time resolutions, such as 5
min,  15  min,  30  min,  and  60  min.  These  resolutions,
denoted  as ,  allow  the  model  to  capture  temporal
patterns at various granularities, enabling a flexible and
robust forecasting process.

Sparsity. Data  sparsity  reflects  the  uneven
distribution  of  taxi  demand  across  time  and  space,
which  poses  challenges  to  predictive  modeling.  By
incorporating sparsity as a feature, the model accounts
for underrepresented regions or times with low activity.

2.2　Problem description

The  taxi  demand  prediction  task  can  be  formally
defined  as  predicting  the  future  taxi  demand based  on
historical  records  and  additional  contextual
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information. This task can be expressed as
 

X̂r+1:r+N =Y(Xr−N′+1:r, R, S , CGD, SED) (1)

where
N
′● :  Number  of  historical  records  used  for

prediction.
N● : Number of predicted records.
Xr−N′+1:r N

′● : Taxi demand for different areas over 
historical records.

R Xr−N′+1:r● :  Time  resolution  of ,  which  include
granularities, such as 5 min, 15 min, 30 min, and so on.

S Xr−N′+1:r● :  Sparsity  level  of ,  reflecting  the
proportion of zero demand of taxi demand data across
time and space.

CGD● :  Crowdsensed  geolocation  data,  providing
auxiliary spatial and temporal information.

SED● :  Demographic  and  economic  indicators  that
influence taxi demand.

Y (·)● :  Prediction  function  that  maps  the  input
features to the predicted taxi demand.

Y (·) X̂

X

The  objective  is  to  develop  a  scalable  prediction
function  that ensures the predicted taxi demand 
across varying resolutions closely aligns with the actual
demand .

3　Methodology

In  this  section,  we  introduce  the  proposed
methodologies  in  detail.  We start  with  introducing the
overall workflow of the SSTZIP-GNN model, followed
by  Diffusion  Graph  Convolution  Networks  (DGCNs)
and  Temporal  Convolutional  Networks  (TCNs).  Next,
we  describe  the  adaptive  mechanism.  Finally,  we
present the ZIP distribution.

3.1　SSTZIP-GNN

The  overall  framework  of  SSTZIP-GNN  is  illustrated
in Fig. 1, which primarily consists of five steps.

(1) Input representation

Xr−N′+1, Xr−N′+2, . . . , Xr

The  raw input  data  for  SSTZIP-GNN comprise  five
components.  The most critical input is the observation
sequence  of  taxi  demand  at  historical  time  steps,
denoted  as .  This  sequence
integrates  data  with  varying  temporal  resolutions.
Additionally,  two  key  external  factors  are  considered:
CGD  and  SED,  which  help  the  model  capture  the
spatio-temporal  variations  in  taxi  demand  dynamics.
Finally,  to  enable  multi-resolution  prediction,  the
model  also  incorporates  resolution  and  sparsity
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Fig. 1    Framework of SSTZIP-GNN, (a) spatio-temporal neural network, (b) adaptive mechanism, (c) probability estimation
layer, and (d) ZIP distribution layer.
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R Sinformation  of  the  data,  represented  as  and ,
respectively, ensuring the model’s scalability.

(2) Spatio-temporal feature extraction
To  capture  the  underlying  spatio-temporal

dependencies  in  taxi  demand,  we  employ  a  hybrid
learning framework combining DGCN and TCN. This
module (Fig. 1a) consists of:

● Graph-based  spatial  feature  extraction: The
first stacked DGCNs module learns spatial correlations
between  different  locations  based  on  historical
observations  while  capturing real-time crowd mobility
characteristics.

● Temporal  dependency  modeling: A  stacked
TCNs  module  processes  the  extracted  spatial  features
to capture temporal dynamics.

● Enhanced  spatio-temporal  fusion: A  second
stacked  DGCNs  module  refines  the  learned  spatial
representations  by  further  incorporating  demographic
and economic indicators across spatial regions.

(3) Adaptive factor generation

γ

One  of  the  key  innovations  of  SSTZIP-GNN  is  the
adaptive  mechanism  (Fig.  1b),  which  dynamically
adjusts  the  probability  estimation parameters  based on
input  data  characteristics.  This  module  is  designed  to
address  the  variability  in  data  sparsity  and  temporal
resolution.  A  deep  neural  network  processes  the
extracted  features  and  outputs  an  adaptive  factor ,
which modulates the probability distribution in the ZIP.

(4) Independent estimation of ZIP parameters

α λ

To  parameterize  the  ZIP  distribution,  the  outputs  of
DGCN and  TCN are  fed  into  a  probability  estimation
layer  (Fig.  1c)  to  obtain  spatial  and  temporal
embeddings,  denoted  as  and ,  respectively.  These
embeddings  provide  independent  estimates  of  the  ZIP
parameters corresponding to their spatial and temporal
localities.  The  independent  estimation  of  the  ZIP
parameters obtained are as follows:

αs1 λs1 αs2 λs2● Spatial  embedding:  and  (  and ),
representing  independent  estimate  under  the  influence
of specific dynamic (static) factors at particular spatial
positions.

αt1 λt1● Temporal  embedding:  and  representing
independent  estimates  under  the  influence  of  dynamic
temporal variations.

(5) Parameters fusion and prediction
The  final  step  in  SSTZIP-GNN  involves  fusing  the

independent  estimates  of  the  ZIP  parameters  with  the
adaptive  factors  to  derive  the  final  ZIP  parameters,

N
αs1 αs2

αt1 λs1 λs2 λt1

N
γ N

P

which are then used to predict taxi demand through the
ZIP distribution (Fig. 1d). In this paper, the objective is
to  predict  taxi  demand  for  the  next  records,  for
which  the  spatial  embeddings  and ,  and
temporal  embeddings ,  as  well  as ,  and ,
are  all -dimensional  vectors.  Likewise,  the  adaptive
factor  is  also  an -dimensional  vector.  To  fuse  the
spatial  embeddings,  temporal  embeddings,  and
adaptive  factors,  we  apply  the  Hadamard  product,
resulting in the parameter set  for the future demand
distribution,
 

P =
(
α
λ

)
=

(
αs1⊙αs2⊙αt1⊙γ
λs1⊙λs2⊙λt1⊙γ

)
(2)

α λ N
⊙

where  and  are  also -dimensional  vectors,  and
“ ” denotes  the  Hadamard  product.  The  final  ZIP
distribution is shown as follows:
 

fZIP(Xr+1:r+N |αr+1:r+N , λr+1:r+N) = fZIP(Xr+1:r+N |P) (3)

y
n

αn λn P

y

Additionally,  we  use  the  Negative  Log  Likelihood
(NLL)  as  our  loss  function  to  improve  the  fit  of  the
distribution to the data. Let  represent the ground truth
corresponding to the -th predicted entry in the matrix,
with  parameters  and  derived  from .  The  Log
Likelihood (LL) of the ZIP distribution is split into two
components  based on whether  equals  0  or  is  greater
than 0, and can be expressed as
 

LLy =

logαn+ log(1−αn)e−λn , if y = 0;
log(1−αn)+ y logλn−λn− logy!, if y > 0

(4)

Accordingly,  the  final  NLL  loss  function  is  defined
as
 

NLLSSTZIP = −LLy=0−LLy>0 (5)

The  complete  model  algorithm  pseudocode  is
outlined in Algorithm 1.

3.2　Diffusion graph convolution network

To  effectively  capture  spatial  correlations  between
different  regions,  we  model  these  relationships  as  a
diffusion process. This approach facilitates the learning
of  spatial  dependencies,  which  is  essential  for
accurately  predicting  regional  demand.  Due  to  the
Markov property,  the diffusion process converges to a
stationary  distribution  after  a  sufficient  number  of
steps.  Each  row  in  this  distribution  represents  the
diffusion  probability  originating  from  a  given  node.
The stationary distribution is given by[16]
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P =
+∞∑
k=0

η(1−η)k(D−1B)k (6)

k
D

B η ∈

where  denotes  the  diffusion  step,  which  is  typically
truncated to a finite value,  is the degree matrix, and

 represents  the  adjacency  matrix.  The  scalar  [0,
1]  is  a  restart  probability  that  controls  the  extent  of
diffusion.

W f = B/rowsum(B)

Wb = B/rowsum (BT)

B

We  define  the  forward  diffusion  process  using  the
transition  matrix ,  while  the
backward  diffusion  process  is  characterized  by  the
transition  matrix ,  where
rowsum (·)  denotes  row-wise  summation  followed  by
element-wise  division  for  normalization.  Since  the
adjacency  matrix  is  symmetric,  it  follows  that

W f =Wb . The fundamental operation of a DGCN layer
can be expressed as[17]
 

Hl+1 = σ

 K∑
p=1

Tp(W f )HlΦ
p
f +Up(Wb)HlΦ

p
b

 (7)

Hl l
Tp(X) Up(X) p

Φ
p
f Φ

p
b

l
σ (·)

where  denotes  the  hidden representation at  layer ;
 and  are polynomial functions of order ,

approximating  the  convolution  operation  in  DGCN.
The  learnable  parameters  and  regulate  the
information  propagation  between  nodes  in  layer ,
while  represents  the  activation  function,  such  as
ReLU or Linear.

In our model, we employ three stacked DGCN layers
to  effectively  capture  spatial  dependencies  across
regions.  This  hierarchical  representation  enhances  the
model’s ability to leverage intrinsic spatial correlations
within the data, significantly improving the accuracy of
regional demand predictions.

3.3　Temporal convolutional network

TCNs  offer  several  advantages  over  Recurrent  Neural
Networks (RNNs), as demonstrated by Wu et al.[18]:

●  TCNs  can  accommodate  sequences  of  varying
lengths,  enhancing  adaptability  to  different  temporal
scales and resolutions.

●  Their  simplified  architecture  facilitates  more
efficient training compared to RNN-based approaches.

kl l

kl

Fl Fl−1

The  core  idea  of  TCNs  is  to  leverage  shared  gated
1D  convolutions  with  a  kernel  width  of  in  the -th
layer.  This  structure  enables  information  propagation
across  neighboring  time  steps,  capturing  temporal
dependencies  effectively.  Each  TCN layer,  denoted  as

,  updates its  state based on the preceding layer 
according to[19]
 

Fl = f (Wl ∗Fl−1+β) (8)
Wl ∗

f (·)
β

where  represents  the  convolutional  filter, “ ”
denotes  the  convolution  operation,  is  the
activation function, and  is the bias term.

TCNs  operate  as  sequence-to-sequence  models,
directly  forecasting  future  sequence  records.  Their
receptive  field  is  adjustable  by  varying  the  number  of
layers and kernel sizes, offering flexibility in capturing
temporal  dependencies  at  different  resolutions.  To
extract  meaningful  temporal  features,  we  structure  the
order  data  as  a  time  series  and  process  them  through
multiple  TCN  layers.  This  hierarchical  feature
extraction  enhances  the  model’s  ability  to  capture
trends and fluctuations over time, improving predictive

 

Algorithm 1　SSTZIP-GNN
Input: Historical taxi demand records X, real taxi demand

Y, spatial adjacency matrices CGD and SED, time
resolution R, sparsity level S, and number of layers L

^

^

Output: Predicted taxi demand X
1 // Initialization
2 D ← diag (sum (CGD));
3 H0 ← X, F0 ← X;
4 Wf1, Wb1 ← normalize (CGD), normalize (CGDT);
5 Wf2, Wb2 ← normalize (SED), normalize (SEDT);
6 Initialize 1D convolution layers {Wl}L

l=1;
7 while not converged do
8 // Spatio-temporal feature extraction
9 for l ← 0 to L − 1 do

10 HCGD ← DGCN (Hl, Wf1, Wb1, Φl
f1, Φl

b1);
l+1

l+111 HSED ← DGCN (Hl, Wf2, Wb2, Φl
f2, Φl

b2);
12 Fl+1 ← TCN (Fl, Wl, βl);
13 end
14 HCGD ← HL

CGD, HSED ← HL
SED, F ← FL;

15 // Adaptive factor generation
16 γ ← h (HCGD, F, HSED, R, S);
17 // Independent estimation of ZIP parameters
18 αs1 ← σ (HCGDWα

s1 + bα
s1);

19 λs1 ← softplus (HCGDW 
λ
s1 + bλ

s1);
20 αs2 ← σ (HSEDWα

s2 + bα
s2);

21 λs2 ← softplus (HSEDW 
λ
s2 + bλ

s2);
22 αt1 ← σ (F×Wα

t1 + bα
t1);

23 λt1 ← softplus (F×W 
λ
t1 + bλ

t1);
24 // Parameters fusion and distribution construction
25 α ← αs1 ⊙ αs2 ⊙ αt1 ⊙ γ;
26 λ ← λs1 ⊙ λs2 ⊙ λt1 ⊙ γ;
27 // Loss computation (NLL)
28 NLL ← −log fZIP (Y|α, λ);
29 end
30 // Final prediction using ZIP expectation
31 X ← (1 − α) ⊙ λ;
32 return X̂
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accuracy.  In  our  model,  we  employ  a  stack  of  three
TCN layers to further enhance performance.

3.4　Adaptive mechanism

To improve the model’s  scalability  in  handling spatial
and  temporal  sparsity  in  data  with  varying  temporal
resolutions,  we  propose  an  adaptive  mechanism  that
dynamically  adjusts  the  parameters  of  the  ZIP
distribution.  This  module  leverages  lightweight  neural
networks,  particularly  Convolutional  Neural  Networks
(CNNs),  to  generate  adaptive  adjustment  factor.  This
factor  influence  the  generation  of  ZIP  parameters,
enabling  the  model  to  effectively  respond  to  different
temporal resolutions.

The  adaptive  mechanism  integrates  data  resolution
and  sparsity  features  with  the  spatio-temporal
characteristics  extracted  by  DGCNs  and  TCNs.  It
performs  adaptive  learning  to  capture  the  intricate
relationships  among  spatio-temporal  embeddings,
resolution,  and  sparsity.  Specifically,  the  mechanism
employs  CNNs  to  jointly  model  these  features.  This
generates an adaptive factor that adjusts the parameters
of  the  ZIP distribution.  The CNN thus  learns  both  the
spatial-temporal  dependencies  and  the  distribution  of
features under varying levels of sparsity.

Regarding the CNN architecture,  it  consists  of  three
convolutional layers, each of which plays a key role in
learning  the  relationships  between  spatio-temporal
features  and the  sparsity  characteristics  of  the  data.  In
the  first  layer,  a  3×3  kernel  transforms  16  input
channels  into  32  output  channels.  The  Leaky  ReLU
activation  function  ensures  smooth  gradient
propagation,  while  BatchNorm  accelerates  training.  A
dropout rate of 0.2 effectively prevents overfitting. The
second layer  uses  the  same 3×3 kernel  to  increase  the
channel  depth  from  32  to  64.  With  a  dropout  rate  of
0.3,  this  layer  captures  more  complex  relationships
between  spatio-temporal  features  and  varying  data
resolution  and  sparsity.  The  final  layer  increases  the
channel depth from 64 to 128, utilizing a 1×1 kernel to
efficiently fuse features across channels while reducing
model  complexity.  Similar  to  the  previous  layers,
Leaky ReLU, BatchNorm, and a dropout rate of 0.3 are
applied  here  as  well  to  ensure  regularization  and
activation.

γ

These convolutional layers work together to generate
the adaptive factor ,
 

γ = h (HCGD, F, HSED, R, S ) (9)

h (·) HCGD

HSHD

F

where  denotes  the  adaptive  CNN  module, 
and  denote  the  hidden  spatial  features  extracted
by the  DGCNs,  and  represents  the  hidden  temporal
features obtained from the TCNs.

By  incorporating  this  adaptive  mechanism  into  the
SSTZIP-GNN  framework,  the  model’s  adaptability  to
data  with  different  temporal  resolutions  is
strengthened, especially in distinguishing zero-demand
areas  from naturally  low-demand  regions.  As  a  result,
the  model  becomes  more  robust  in  handling  multi-
resolution data and enhances its scalability in dynamic
environments.

3.5　ZIP distribution

The  Poisson  distribution  is  widely  used  for  modeling
count  data,  where  the  Probability  Mass  Function
(PMF) is defined as
 

fPoisson(xk; ψ) = Pr (X = xk) =
ψxk e−ψ

xk!
,

xk = 0, 1, 2, . . . (10)

ψwhere  is  the  rate  parameter,  representing  the
expected  number  of  occurrences  within  a  fixed
interval.  The  Poisson  distribution  assumes  that  the
variance  equals  the  mean,  making  it  inadequate  for
scenarios where data exhibit overdispersion, i.e., where
the  observed  variance  exceeds  the  mean.  This
limitation  becomes  particularly  evident  in  sparse
datasets,  where  an  excessive  number  of  zeros  is
present,  a  phenomenon  often  referred  to  as  zero
inflation.

α

To  address  this  issue,  we  employ  the  ZIP
distribution,  which  introduces  an  additional  parameter

 to  model  the  inflation  of  zeros  explicitly.  The  ZIP
distribution  is  a  mixture  model  that  combines  a
degenerate distribution at zero with a standard Poisson
distribution.  The  corresponding  probability  mass
function can be expressed as
 

fZIP(xk;θ, ψ) =

θ+ (1− θ) fPoisson(0; ψ), if xk = 0
(1− θ) fPoisson(xk; ψ), if xk > 0

(11)

θ

1− θ

ψ

where  represents  the  probability  that  an  observation
is  an  excess  zero,  while  denotes  the  probability
that the count value follows a Poisson distribution with
parameter . This formulation allows the ZIP model to
flexibly account for both structural zeros (i.e., inherent
zeros due to the nature of the data) and sampling zeros
(i.e., those generated by a standard Poisson process).

In  taxi  demand  forecasting,  the  ZIP  distribution  is

    6 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−18

 



particularly  suitable  for  handling  spatial  and  temporal
sparsity,  where  certain  regions  or  time  intervals
frequently exhibit  zero demand. By incorporating zero
inflation,  the  model  can  better  distinguish  between
areas  with  genuinely  low  demand  and  those  where
demand is entirely absent due to external factors.  This
capability  enhances  the  robustness  of  our  predictive
framework,  leading  to  more  accurate  demand
estimations in sparse urban environments.

4　Experimental Result

In  this  section,  we  first  present  the  dataset  and
preprocessing.  Following  that,  we  introduce  the
baseline models  and outline the evaluation metrics  for
the task. Finally, we report the experimental results.

4.1　Data description

Taxi  Trajectory–HK‡ : This  dataset  contains  GPS
trajectory  data  collected  from  Uber  drivers  in  Hong
Kong between October 1, 2020, and January 31, 2021.
Location coordinates  (longitude,  latitude),  timestamps,
anonymized  trip  identifiers,  and  binary  occupancy
status  (1  for  occupied,  0  for  unoccupied)  are  recorded
at  one-minute  intervals.  A  summary  of  the  dataset
statistics is provided in Table 1.

Taxi  Trajectory–MH§: This  dataset  comprises  for-
hire  vehicle  trip  records  in  Manhattan  from  January
2018  to  April  2019,  collected  by  the  New  York  City
Taxi & Limousine Commission. Each trip includes the
pickup  and  drop-off  time,  date,  and  zone  location  ID.
The Manhattan area is divided by ZIP code zones, each
with associated demographic and transit metadata.

Taxi Zone Map Data¶: It  utilizes map data aligned
with the 2021 town planning framework established by
the  Hong  Kong  government.  In  addition,  we
incorporate  map  data  from  Manhattan,  New  York,
based  on  the  Taxi  &  Limousine  Commission  defined
taxi zones.

Crowdsensing  Geolocation  Data  (CGD)‡ : CGD
comprises  users’ geolocation  information,  including
individual latitude and longitude coordinates, as well as
residential and workplace locations. This dataset offers
a  finer  granularity  compared  to  traditional  taxi  Global
Position System (GPS) records by capturing a broader
range  of  mobility  patterns,  such  as  pedestrian
movement  and  traffic  flow.  The  inclusion  of  these
additional data helps mitigate data sparsity, particularly
in  regions  or  time  periods  with  low  taxi  activity,  by
providing  supplementary  contextual  information.
Moreover,  CGD  is  frequently  updated  in  real  time,
ensuring its relevance for dynamic urban environments.
By  integrating  CGD  with  conventional  taxi  trajectory
data,  the  proposed  model  can  achieve  greater
robustness,  enhance  prediction  accuracy,  and  improve
the  understanding  of  complex  spatiotemporal
dependencies in urban traffic systems.

Socioeconomic  Data◎:  The  socioeconomic  dataset
encompasses  a  range  of  demographic  and  economic
indicators,  including  population  density,  salary  levels,
marital  status,  household  structures,  labor  force
participation,  employment  rates,  income  distribution,
and  housing  types.  These  variables  provide  valuable
insights  into  the  demographic  composition  and
economic  conditions  of  different  regions.  As  depicted
in Fig. 2, the taxi demand correlation matrix reveals the
relationship  between  taxi  demand  and  various  static
socioeconomic factors. Notably, taxi demand exhibits a
moderate  positive  correlation  with  population  density.
Suggesting that regions with higher population density,
income,  and  educational  attainment  tend  to  show
higher  taxi  demand.  These  correlations  offer  critical
insights into the influence of socioeconomic conditions
on  urban  mobility  patterns,  contributing  to  a  more
accurate prediction of taxi demand.

4.2　Data preprocessing

To construct the datasets required for our experiments,
we  focus  primarily  on  processing  the  GPS  trajectory
data which involved three main steps:

 

Table 1    Taxi Trajectory−HK record data.
Attribute Description Example

Order IDs
Unique identifier represented as a aaf63e4b38e9b1a
32-character hexadecimal string 405f20ebe6034d93f

Time
14-digit number

20201018110500
yyyyMMddHHmmssformat 

Latitude
2-digit number with 6 decimals,

22.551760
in the degree unit

Longitude
3-digit number with 6 decimals,

114.163340
in the degree unit

Taxi status
0: Taxi not occupied,

0, 1
1: Occupied

 

 

‡ The  datasets  are  proprietary  and  available  upon  request  under
confidentiality terms. 

 

§ https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

 

 

¶ https://portal.csdi.gov.hk/geoportal/#metadataInfoPanel 

 

◎ https://data.gov.hk/en/
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(1)  Temporal  segmentation: The  raw  GPS
trajectory  data  are  segmented  based  on  different
temporal resolutions, including 5 min, 15 min, 30 min,
45  min,  and  60  min.  This  step  ensures  that  the  data
could  be  analyzed at  various  resolutions  to  effectively
capture the spatiotemporal dynamics.

(2)  Random  sampling: After  temporal
segmentation, the data for each resolution are randomly
sampled according to predefined proportions, as shown
in Table  2.  For  instance,  in  SSTZIP-GNN-I,  the  data
are  sampled  at  5% for  the  5-min  resolution,  40% for
the  30-min  resolution,  and  80% for  the  60-min
resolution.  Similar  sampling  schemes  are  applied  for
SSTZIP-GNN-II  and  SSTZIP-GNN-III,  covering  time
resolutions from 5 to 60 min.

(3)  Dataset  integration: The  data  sampled  at
different  time  resolutions  are  integrated  into  three
distinct  data  structures,  each  designed  to  train
predictive models with varying scalability capabilities.
These  models  are  designed  to  capture  multi-scale
temporal  dependencies,  with  their  predictive
performance  varying  based  on  the  range  of  time
resolutions included in each data structure.

This  preprocessing  approach  ensures  that  the
constructed  datasets  effectively  represent  the

spatiotemporal  variability,  while  addressing  data
sparsity by leveraging a randomized sampling strategy.

4.3　Baseline models

In  the  experiment,  we  use  the  following  baseline
models:

● Historical  Average  (HA): predicts  taxi  demands
at  the  next  time  slot  in  each  region  by  averaging  the
historical taxi demands at the same time slot.

● Diffusion  Convolution  Recurrent  Neural
Network  (DCRNN)[20]: utilizes  diffusion  graph
convolutional  networks  and  seq2seq  to  encode  spatial
information and temporal information, respectively.

● Spatial-Temporal  Graph  Convolutional
Network  (STGCN)[21]: consists  of  several  ST-Conv
blocks,  which  are  built  with  entirely  convolutional
layers,  to  tackle  traffic  prediction  tasks.  Specifically,
each block is composed of graph convolution and gated
temporal  convolution,  which  jointly  process  graph-
structured time series.

● Spatial-Temporal  Zero-Inflated  Negative
Binomial  Graph  Neural  Network  (STZINB-
GNN)[4]: is featured with the uncertainty quantification
of  the  sparse  travel  demand  with  diffusion  and
temporal convolution networks.

● Spatial-Temporal  Guided  Multi-graph
sandwich-Transformer  (STGMT)[22]: addresses
spatial-temporal  heterogeneity  in  traffic  demand
forecasting using a Sandwich-Transformer architecture.
It  integrates  Multi-head  Spatial-Temporal  Attention,
guided  by  Node2Vec-based  embeddings,  to  capture
spatiotemporal dependencies.

● SpatioTemporal  Zero-Inflated  Poisson  Graph
Neural  Network  (STZIP-GNN)[23]: utilizes  the  zero-
inflated  poisson  distribution  to  handle  the  high
frequency  of  zeros  in  sparse  data  and  integrates  CGD
and SED mitigate data sparsity.

4.4　Evaluation metrics

To  evaluate  the  prediction  accuracy  of  the  expected
values,  we  employ  the  Mean  Absolute  Error  (MAE),
which is defined as
 

MAE =
1
N

N∑
i=1

|yi− ŷi| (12)

yi ŷi

N
where  and  represent  the  ground-truth  value  and
the  predicted  value,  respectively,  and  denotes  the
total number of prediction samples. MAE measures the
average magnitude of the errors in a set of predictions,
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Fig. 2    Correlation  matrix  between  taxi  demand  and
various socioeconomic factors.

 

Table 2    Proportion of data with different resolutions in the
three models.

(%)
Model 5 min 15 min 30 min 45 min 60 min

SSTZIP-GNN-I 5 − 40 − 80
SSTZIP-GNN-II − 20 40 50 80
SSTZIP-GNN-III 5 20 40 50 80
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providing a straightforward and interpretable metric for
evaluating model performance.

In  addition  to  MAE,  we  utilize  the  Root  Mean
Squared Error (RMSE), defined as
 

RMSE =

√√√
1
N

N∑
i=1

(yi− ŷi)2 (13)

RMSE  penalizes  larger  errors  more  heavily  than
MAE, making it particularly sensitive to outliers in the
predictions.  It  provides a  comprehensive evaluation of
the  model’s  performance  by  capturing  both  the
magnitude and variability of prediction errors.

Furthermore,  we  assess  the  accuracy  of  discrete
predictions  using  the  F1-score,  which  evaluates  the
balance  between  precision  and  recall.  Although
traditionally  designed  for  classification  tasks,  the  F1-
score  can  be  adapted  to  analyze  discrete  prediction
values by treating them as multiple labels and defining
precision  and  recall  accordingly.  A  higher  F1-score
indicates better performance in terms of discrete value
predictions. The F1-score is formulated as
 

F1-score = 2× Precision×Recall
Precision+Recall

(14)

where “precision” is  the  proportion  of  correctly

predicted  positive  instances  among  all  predicted
positives,  while “recall” measures  the  proportion  of
correctly predicted positives relative to the total actual
positives.

4.5　Experimental results

Performance  comparison  on  Taxi  Trajectory−HK
dataset. The  upper  half  of Table  3 presents  model
performance on the Taxi Trajectory−HK dataset under
three  time  resolutions  (10  min,  30  min,  and  50  min).
SSTZIP-GNN-III consistently achieves the best results,
reporting  the  lowest  MAE  (2.421,  1.434,  and  3.334)
and  RMSE  (3.514,  2.016,  and  4.652),  as  well  as  the
highest  F1-scores  (0.830,  0.887,  and  0.771).  SSTZIP-
GNN-II  follows  closely,  maintaining  strong
performance across all metrics and resolutions.

While  SSTZIP-GNN-I  remains  competitive  overall,
its  effectiveness  decreases  at  lower  resolutions.  At
30 min,  for  example,  its  RMSE (3.995)  exceeds  those
of  STGMT  (3.581)  and  STZIP-GNN  (3.647);  at
50 min, its MAE (3.667) is also higher than that of both
models.

Regarding  baseline  methods,  STZIP-GNN  performs
best  in  high-resolution  settings  (10  min),  whereas
STGMT  shows  advantages  in  medium  and  low

 

Table 3    Performance comparison of different models on Taxi Trajectory−HK and Taxi Trajectory−MH with different time
resolutions. Bold numbers indicate the best results for each metric.

Dataset Model name
10 min 30 min 50 min

MAE RMSE F1-score MAE RMSE F1-score MAE RMSE F1-score
HA 6.476 7.467 0.670 4.223 6.653 0.748 6.658 8.375 0.610

DCRNN 4.888 5.724 0.712 2.825 4.712 0.760 5.524 7.437 0.642
STGCN 4.535 5.556 0.720 2.439 4.466 0.800 4.634 6.844 0.670
STZINB 3.275 5.374 0.744 1.998 3.978 0.811 3.856 6.597 0.740

Taxi Trajectory−HK STGMT 3.478 5.422 0.721 1.934 3.581 0.855 3.640 6.612 0.736
STZIP-GNN 3.256 5.275 0.746 1.947 3.647 0.850 3.625 6.427 0.740

SSTZIP-GNN-I 2.885 4.762 0.763 1.913 3.995 0.876 3.667 6.485 0.730
SSTZIP-GNN-II 2.562 4.123 0.770 1.850 2.655 0.883 3.485 5.238 0.746
SSTZIP-GNN-III 2.421 3.514 0.830 1.434 2.016 0.887 3.334 4.652 0.771

HA 8.371 8.773 0.660 7.611 8.866 0.690 9.212 10.475 0.571
DCRNN 7.171 7.734 0.710 5.937 7.855 0.722 8.450 9.881 0.590
STGCN 6.583 6.674 0.721 5.278 7.737 0.741 7.381 8.754 0.647
STZINB 5.377 6.162 0.730 4.836 6.248 0.760 5.724 7.835 0.677

Taxi Trajectory−MH STGMT 4.787 5.814 0.753 4.471 5.744 0.783 5.362 6.622 0.701
STZIP-GNN 5.131 6.126 0.747 4.533 5.991 0.774 5.078 6.227 0.723

SSTZIP-GNN-I 4.832 6.073 0.750 4.712 6.149 0.771 5.217 6.630 0.720
SSTZIP-GNN-II 4.774 5.913 0.774 4.579 5.787 0.794 4.833 6.018 0.748
SSTZIP-GNN-III 4.113 5.347 0.793 3.957 4.875 0.807 4.661 5.844 0.762
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resolutions.  Other  baselines,  including  STZINB,
STGCN, and DCRNN, exhibit higher errors and lower
F1-scores,  indicating  difficulty  in  modeling  sparse
spatiotemporal  demand.  HA  yields  the  weakest
performance across all tasks.

Generalization  to  Taxi  Trajectory−MH  dataset.
To  evaluate  cross-city  generalization,  we  test  the
models  on  the  Taxi  Trajectory−MH  dataset,  which
corresponds to the public dataset from Manhattan, New
York. As shown in the lower half of Table 3, the results
largely  align  with  the  trends  observed  on  the  Taxi
Trajectory−HK  dataset,  confirming  the  robustness  of
the proposed framework across diverse urban settings.

SSTZIP-GNN-III  once  again  delivers  the  strongest
overall  performance  under  three  time  resolutions  10
min,  30  min,  and  50  min,  achieving  the  lowest  MAE
(4.113, 3.957, 4.661) and RMSE (5.347, 4.875, 5.844),
along with the highest F1-scores (0.793, 0.807, 0.762).
SSTZIP-GNN-II  and  SSTZIP-GNN-I  also  perform
well,  though  both  are  marginally  outperformed  by
STGMT at  the 10- and 30-min resolutions.  At  the 50-
min level,  however,  all  SSTZIP-GNN variants surpass
the baseline models.

STGMT  shows  the  best  generalization  among
baselines  in  short  to  medium  horizons,  while  STZIP-
GNN  performs  slightly  better  at  50  min.  Traditional
models, such as DCRNN and HA, produce the highest
error  rates,  highlighting  their  limited  adaptability  to
cross-domain transfer.

The  effectiveness  of  our  proposed  models  is  further
illustrated in Fig. 3, where a visual comparison of each
model’s  average  MAE  and  RMSE  is  provided.  The
scatter plot clearly shows SSTZIP-GNN-III positions at
the  lower-left  corner,  indicating  its  superior  predictive
accuracy  with  minimal  error.  SSTZIP-GNN-II  and

SSTZIP-GNN-I  also  perform competitively,  clustering
closely with lower error rates compared to the baseline
models.  In  contrast,  baseline  models  exhibit  higher
errors,  with  HA  positioned  at  the  far  upper-right,
reflecting  its  poor  predictive  accuracy.  Notably,
STZIP-GNN  and  STGMT  perform  better  than  other
baselines  but  remain  less  effective  than  the  proposed
SSTZIP-GNN models.

Overall,  these  results  indicate  that  SSTZIP-GNN-III
provides  the  most  reliable  predictions  across  different
time  resolutions,  while  SSTZIP-GNN-II  and  SSTZIP-
GNN-I also demonstrate significant improvements over
baseline models.

Scalability  analysis  in  specific  prediction
scenarios. To  evaluate  the  scalability  of  the  proposed
SSTZIP-GNN  model  in  taxi  demand  prediction,  we
apply its variants to predict demand on a specific day.
The  predictions  are  compared  with  the  ground  truth,
and the performance of each variant is analyzed across
different  time  resolutions  (10  min,  30  min,  and  50
min).  As  shown  in Fig.  4,  all  variants  perform  well,
especially  in  the  30-min  resolution,  where  all  models
exhibit strong prediction accuracy.

However,  scalability  varies  across  prediction
scenarios.  SSTZIP-GNN-III  demonstrates  superior
scalability  compared  to  SSTZIP-GNN-I  and  SSTZIP-
GNN-II, due to the different time resolution types used
in  training,  which  affect  the  models’ adaptability.  As
shown  in Table  2,  SSTZIP-GNN-I  is  trained  on  three
resolutions  (5  min,  30 min,  and 60 min),  which limits
its  scalability  due  to  large  intervals  between  them.
SSTZIP-GNN-II  incorporates  15-min  data,  improving
its  ability  to  capture  mid-term  demand  patterns.
SSTZIP-GNN-III,  however,  integrates  time  resolution
data across a wider range (5 min to 60 min), enabling it
to  capture  both  short- and  long-term demand patterns,
thus improving scalability and prediction accuracy.

When  processing  the  data  with  a  10-min  sampling
frequency,  taxi  demand  exhibits  greater  sparsity,
resulting in a significant discrepancy between predicted
values and ground truth, as shown in Fig. 4a. SSTZIP-
GNN-III performs best, likely due to its use of higher-
resolution  data  during  training,  allowing  it  to  better
capture short-term fluctuations.

In the 30-min resolution,  all  models  show improved
performance, with the smallest error between predicted
and  ground  truth  values  (Fig.  4b).  This  indicates
effective learning of mid-term demand patterns, where
the  sparsity  issue  is  alleviated  by  incorporating  rich
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Fig. 3    Comparison  of  average  MAE  and  RMSE  of  each
model.
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mid-term  data,  enabling  the  models  to  capture
variations more accurately.

At  the  50-min  resolution,  data  sparsity  is  further
reduced,  and  demand  trends  become  more  stable,

leading to smaller discrepancies between predicted and
actual  values  (Fig.  4c).  However,  the  overall
performance  is  slightly  lower  than  in  the  30-min
scenario,  due  to  the  limited  long-term  demand  data
used  during  training.  Nevertheless,  SSTZIP-GNN-III
still  outperforms  the  other  models,  benefiting  from
multi-resolution data fusion, which enhances its ability
to capture long-term demand patterns.

Theoretically,  the  model’s  scalability  improves  by
addressing  data  sparsity  and  incorporating  a  wider
range of  time resolutions during training.  However,  in
practical  applications,  the  model’s  complexity  and
training costs must also be considered.

Evaluation of SSTZIP-GNN in capturing dynamic
taxi  demand  patterns. To  evaluate  SSTZIP-GNN’s
ability  to  capture  dynamic  taxi  demand  patterns,
experiments are conducted on all variants (I, II, and III)
in  30-min  and  50-min  resolution  prediction  scenarios.
Daily  average  demand  fluctuation  trends  are  obtained
in Fig.  5,  and  model  predictions  are  compared  with
ground-truth  data.  The  results  show  that  all  variants
effectively  capture  daily  demand  fluctuations,
reflecting both peak and off-peak variations.

SSTZIP-GNN-III  performs  best  at  both  resolutions,
closely aligning with ground-truth data,  demonstrating
its  strong capability to extract  complex spatiotemporal
features.  However,  some deviations occur during peak
and  off-peak  periods.  For  example,  SSTZIP-GNN-I
and  II  tend  to  underestimate  demand  during  high-
demand  periods  (8:00−9:00  and  18:00−19:00),
indicating  limited  ability  to  capture  rapid  fluctuations.
In  contrast,  during  low-demand  periods  (midnight),
some  models  produce  overly  smoothed  predictions,
possibly due to insufficient data in low-sample regions.
Different  time  resolutions  also  impact  accuracy.  The
30-min  resolution  scenario  shows  higher  accuracy
across all models compared to the 50-min resolution, as
the models better capture mid-term fluctuations and are
more  sensitive  to  dynamic  demand  changes.  In  the
50-min  scenario,  predictions  are  smoother,  reducing
sensitivity to sudden demand shifts.

In  summary,  SSTZIP-GNN  effectively  captures
dynamic  taxi  demand  characteristics,  offering  a
promising  approach  for  prediction  across  varying
resolutions in dynamic urban environments.

Analysis  of  computing  resource  consumption. To
explore  the  advantages  of  the  proposed  multi-
resolution  model  in  optimizing  computational
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Fig. 4    Performance  comparison  of  predicted  and  ground
truth taxi demands across different time resolutions.
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resources,  we select  a  subset  of  data  from the original
dataset  and  train  both  deep  learning  based  baseline
models  and  the  SSTZIP-GNN variants.  By  comparing
GPU  time  consumption  for  predicting  different
resolution  scenarios,  we  evaluate  the  resource
performance of each model. As shown in Fig. 6, when
predicting  a  single  resolution,  all  proposed  models
consume more GPU time than the baseline models,  as
they  require  training  on  multiple  resolution  datasets,
while  baseline  models  use  only  a  single  resolution
dataset.

However,  as  the  number  of  predicted  scenarios
increases to 2, the advantages of SSTZIP-GNN-I and II
become  more  apparent.  SSTZIP-GNN-I  requires  the
least  GPU  time,  followed  by  STGMT  and  STZIP-
GNN, while SSTZIP-GNN-II consumes less GPU time
than  DCRNN  and  STGCN.  SSTZIP-GNN-III  remains
the  most  computationally  intensive.  When the  number
of  prediction scenarios  reaches 3  or  more,  all  baseline
models experience a nearly linear increase in GPU time
due to the need for multiple parallel prediction systems.
In  contrast,  the  three  SSTZIP-GNN  variants  require

only a single training session, regardless of the number
of  scenarios.  As  the  scenario  count  grows,  SSTZIP-
GNN’s  GPU  efficiency  becomes  more  pronounced,
achieving an average reduction of  46.3% compared to
the baseline models.

In  conclusion,  the  SSTZIP-GNN  variants
significantly  reduce  computational  resource
consumption for multi-resolution prediction tasks. This
advantage grows as  the number of  predicted scenarios
increases,  and  depending  on  the  application,  the  most
suitable  SSTZIP-GNN  variant  can  be  selected  to
achieve  the  best  balance  between  performance  and
cost.

Ablation  experiment. To  thoroughly  assess  the
contribution  of  each  key  component  in  the  SSTZIP-
GNN framework, we conduct ablation studies focusing
on  three  core  innovations:  the  ZIP  distribution  layer,
the  adaptive  mechanism,  and  the  integration  of  CGD
and  SED.  By  using  the  SSTZIP-GNN-III  model  as  a
baseline,  we  systematically  remove  or  modify  these
components  to  evaluate  their  individual  impact  on
model performance.

First,  we  examine  the  ZIP  distribution  layer  by
comparing  the  performance  of  SSTZIP-GNN-III  with
and  without  this  component,  evaluating  its  effect  on
handling  sparse  demand.  Next,  we assess  the  adaptive
mechanism  by  comparing  performance  under  a  fixed
learning  strategy  versus  dynamic  adaptation  based  on
input  data  granularity.  Finally,  we evaluate  the impact
of  external  datasets  CGD  and  SED  by  comparing  the
model’s  robustness  with  and  without  these  additional
inputs.  The  results  provide  valuable  insights  into  the
individual  contributions  of  each  module  to  the  overall
performance of SSTZIP-GNN.
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Fig. 5    Evaluation of SSTZIP-GNN model performance for taxi demand prediction at different time resolutions.
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(1)  Effectiveness  of  the  ZIP  distribution: Figures
7a−7c  show  the  impact  of  the  ZIP  distribution  on
model  performance  compared  to  the  normal  Poisson
distribution,  evaluated  using  MAE,  RMSE,  and  F1-
score  across  different  prediction  resolutions  (10  min,
30  min,  and  50  min).  SSTZIP-GNN-III  with  the  ZIP
distribution  significantly  outperforms  the  normal
Poisson distribution in all metrics. For example, at the
10-min  resolution,  MAE  decreases  by  48.35%,  and
RMSE by 43.57%. At the 30-min resolution, MAE and
RMSE decrease by 58.71% and 61.85%, respectively.

Even  at  a  50-min  resolution,  where  zero-demand

occurrences  are  less  frequent,  the  ZIP  distribution
significantly  enhances  model  performance.  Although
zero-inflation  is  less  pronounced  at  finer  temporal
resolutions, ZIP improves the model’s ability to handle
sparse  data  and  low-frequency  events,  leading  to
noticeable  gains  across  various  performance  metrics.
These  results  highlight  the  effectiveness  of  the  ZIP
distribution in addressing zero-inflation, particularly in
medium- and  short-term  prediction  scenarios  with  a
higher prevalence of zero-demand instances.

(2)  Impact  of  external  data  sources  on  model
performance: Figures  7d−7f  assess  the  impact  of
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Fig. 7    Comparison of the results of ablation experiments.
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external  data  sources,  CGD,  and  SED.  The  results
show  that  integrating  these  datasets  significantly
improves  model  robustness.  SSTZIP-GNN-III  with
CGD  and  SED  outperforms  the  model  without  these
inputs across all prediction resolutions. For example, at
the  10-min  and  30-min  resolutions,  the  model  with
CGD  and  SED  shows  an  average  improvement  of
38.28% in MAE and 43.42% in RMSE. This highlights
the  importance  of  CGD  and  SED  in  enhancing  the
model’s  accuracy,  especially  in  sparse  data  scenarios,
where CGD helps capture short-term dynamic changes.
At  the  50-min  resolution,  the  model  shows  a  15.07%
improvement  in  F1-score,  indicating  that
socioeconomic  data  enrich  the  model’s  ability  to
handle low-resolution predictions.

(3)  Contribution  of  the  adaptive  mechanism:
Figures  7g−7i  highlight  the  significant  contribution  of
the  adaptive  learning  mechanism to  SSTZIP-GNN-III.
Comparing  the  model  with  and  without  the  adaptive
mechanism  underscores  the  importance  of  dynamic
learning  strategies  in  improving  performance.  The
addition of the adaptive mechanism leads to substantial
improvements  in  MAE,  RMSE,  and  F1-score.  It
enables  the  model  to  better  adjust  to  varying  data
granularities,  improving  prediction  accuracy.  In
different resolution scenarios,  the model with adaptive
learning achieves an average reduction of 20% in MAE
and  35.24% in  RMSE.  These  results  demonstrate  the
adaptive  mechanism’s  ability  to  handle  diverse  data
granularities  and  select  optimal  ZIP  parameters,
leading to more accurate predictions.

In  addition  to  improving  performance,  the  adaptive
module  also  significantly  reduces  computational
resource consumption. As shown in Fig. 8, when only a
single prediction resolution is required, SSTZIP-GNN-

III  with  the  adaptive  module  consumes  roughly  twice
as  much GPU time as  the  model  without  it.  However,
as the number of prediction scenarios increases to two,
the  adaptive  model  reduces  GPU  time  by  about  11%.
With  three  prediction  scenarios,  the  reduction  reaches
approximately  43.9%.  These  results  highlight  the
scalability  of  the  adaptive  module,  especially  in
dynamic  urban  environments  where  multi-resolution
predictions  are  needed.  The  adaptive  mechanism  not
only reduces resource usage, but also ensures accurate
predictions  across  varying  scenarios  and  data
granularities,  demonstrating its  efficiency in  balancing
resource consumption while maintaining high accuracy
in complex tasks.

5　Related Work

This  section  reviews  existing  research  on  travel
demand  prediction,  organized  into  three  categories:
traditional models,  deep learning based spatiotemporal
models, and sparse data prediction methods.

5.1　Traditional models

Early  efforts  in  travel  demand  prediction  relied  on
mathematical and statistical models to capture temporal
dependencies  in  travel  data.  For  example,  Li  et  al.[24]

modeled taxi demand as a time series problem using an
improved ARIMA method, which demonstrates limited
accuracy  due  to  its  inability  to  handle  nonlinear
dependencies.  Similarly,  Tong  et  al.[25] employed  a
high-dimensional  linear  regression  model  for  regional
taxi  demand  prediction  but  faced  challenges  in
modeling  complex  spatiotemporal  interactions.  These
methods,  while  foundational,  struggle  with  low
accuracy  due  to  their  reliance  on  linear  assumptions
and inability to capture intricate spatial correlations.

5.2　Deep learning based spatiotemporal models

The advent of deep learning significantly advanced the
field  by  enabling  the  modeling  of  complex
spatiotemporal dependencies in travel demand data.

Convolutional and recurrent architectures. Yao et
al.[26] introduced  a  hybrid  model  combining  local
CNNs  for  spatial  feature  extraction  with  LSTMs  for
capturing  temporal  dependencies,  demonstrating
improved  performance  over  traditional  methods.
Encoder-decoder  frameworks  further  enhance
predictive  capabilities  by  incorporating  attention
mechanisms  to  emphasize  important  spatiotemporal
patterns[27, 28]. For instance, Zhou et al.[27] proposed an
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attention-based  encoder-decoder  model  leveraging
ConvLSTM  units  for  citywide  passenger  demand
prediction.

GNNSs. Recent  studies  have  utilized  GNNs  to
address spatial  dependencies inherent  in transportation
networks.  He  et  al.[29] developed  a  Multi-Graph
Convolutional-Recurrent  Neural  Network  (MGC-
RNN)  to  capture  inter-station  correlations  influenced
by  external  factors,  such  as  Points  of  Interest  (PoI).
Similarly, Wu et al.[9] proposed a hybrid GCNN-LSTM
model  to  predict  urban  rail  transit  passenger  flows,
integrating  inbound-outbound  flow  dynamics  across
stations.

While these models excel at capturing spatiotemporal
relationships, they are often limited by their reliance on
fixed  temporal  resolutions  and  lack  adaptability  to
varying data granularities.

5.3　Sparse data prediction methods

Sparse  travel  demand  data  presents  unique  challenges
due  to  the  prevalence  of  zero-demand  periods  and
uneven distribution across time and space.

Several  approaches  have  been  developed  to  address
sparsity  in  travel  demand  data.  Wang  et  al.[30]

introduced  a  pre-weighted  aggregator  leveraging  grid
embeddings  to  mitigate  sparsity  at  multiple
granularities.  Zhang  et  al.[31] proposed  a  segmentation
CNN with  masking  loss  functions  to  transform sparse
traffic  data  into  dense  feature  representations.  To
explicitly  model  zero-inflated  distributions,  Zhuang  et
al.[4] developed STZINB-GNN, which combines Zero-
Inflated  Negative  Binomial  (ZINB)  and  Negative
Binomial  (NB)  distributions  for  sparse  OD  matrices,
incorporating spatiotemporal embeddings for improved
predictions.  Han  et  al.[32] extended  this  concept  by
introducing  layered  message-passing  modules  for
virtual clusters to share information with regions.

Recent  work  has  explored  hybrid  frameworks
tailored  for  sparse  scenarios.  Lee  et  al.[33] proposed  a
multi-task  deep  learning  model  for  real-time  Demand
Responsive  Transport  (DRT)  services,  incorporating
zero-inflated  loss  functions  to  simultaneously  predict
demand probability and volume. Li et al.[34] presented a
two-stage  framework  combining  trip  generation/
attraction predictions with trip distribution modeling to
address sparsity issues effectively.

Despite  these  advances,  existing  methods  often  rely
on  fixed  temporal  resolutions  (e.g.,  hourly  intervals),

limiting  their  ability  to  capture  multi-time  patterns  or
adapt  to  varying  levels  of  sparsity  across  resolutions.
By addressing both  spatial-temporal  dependencies  and
multiresolution  adaptability,  SSTZIP-GNN  achieves
state-of-the-art  performance  across  varying  temporal
granularities  while  reducing  computational  costs
compared to ensemble approaches.

6　Limitation and Future Work

While SSTZIP-GNN demonstrates strong performance
in  multi-resolution  taxi  demand  prediction  under  data
sparsity,  several  limitations  remain.  First,  the  model
relies  on  the  availability  and  quality  of  multimodal
data,  including  CGD  and  SED.  In  cities  where  such
data are unavailable or incomplete, model performance
may  degrade.  Second,  the  adaptive  mechanism,  while
effective  in  capturing  multi-resolution  temporal
patterns,  introduces  additional  computational
complexity  that  may  pose  challenges  for  real-time
deployment in resource-constrained settings. Third, our
current  evaluation  focuses  on  data  from  a  single
metropolitan area. The generalizability of the proposed
framework  to  other  cities  with  different  urban
topologies,  mobility  behaviors,  and  data  distributions
remains an open question.

In  future  work,  we  plan  to  explore  strategies  to
reduce  the  model’s  dependency  on  auxiliary  data  by
leveraging  transfer  learning  and  domain  adaptation
techniques. Lightweight variants of GNNs and efficient
temporal encoding methods will also be investigated to
support  low-latency,  real-time  deployment.
Furthermore,  we  intend  to  evaluate  the  framework
across  multiple  urban  regions  to  systematically  assess
its  scalability  and  generalization  ability  in  diverse
environments.

7　Conclusion

In this paper, we propose SSTZIP-GNN, that integrates
diffusion  graph  convolution  networks  and  temporal
convolutional  networks  within  a  ZIP  framework.  The
model  effectively  captures  spatiotemporal
dependencies  while  explicitly  modeling  structural  and
sampling  zeros,  thus  addressing  data  sparsity.
Additionally,  the  adaptive  resolution  mechanism
enhances  the  scalability  of  the  model  across  varying
temporal  granularities.  Extensive  experiments  on  real-
world  datasets  demonstrate  that  SSTZIP-GNN
significantly  outperforms  existing  baselines  in  both

  Yifei Shen et al.:  Multiresolution Taxi Demand Prediction: A Big Data Statistical and Zero-Inflated Spatiotemporal... 15

 



accuracy and robustness, particularly in sparse demand
scenarios.
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