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Abstract

Nowadays, large-scale individual trajectories can be collected by various location-
based social network services, which enables us to better understand human
mobility patterns. However, the trajectory data usually contain sensitive infor-
mation of users, raising considerable concerns about the privacy issue. Existing
methods for protecting user trajectory data face two major challenges. First,
existing methods generally emphasize on data privacy but largely ignore the
data utility. Second, most existing work focus on protecting the privacy of users’
check-in locations, which is not sufficient to protect against the trajectory-user
linking (TUL) attack that infers a user’s identity based on her/his trajectories.
In this paper, we for the first time propose a collaborative adversarial learning
model named BPUCAL to effectively resist the TUL attack and preserve the
data utility simultaneously. The general idea is to fool the TUL model by adding
a small perturbation on the original trajectory data to balance the data utility
and privacy. BPUCAL perturbs a few numbers of carefully identified check-ins
of a trajectory which are pivotal for a TUL model to infer the identity of a user.
Specifically, BPUCAL contains three parts: a perturbation generator, a discrim-
inator, and a TUL model. The generator aims to produce learnable noise and
adds it to the original trajectories for obtaining perturbed trajectories. The per-
turbed trajectories with a minimal changes compared to the original trajectories
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can deceive both the discriminator and the TUL model. Extensive experiments
are conducted over two real-world datasets. The results show the superior perfor-
mance of our proposal in balancing data privacy and utility on trajectory data
by comparison with baselines.

Keywords: Trajectory Privacy Protection, Data Utility, Adversarial Learning,
Trajectory-User Linking

1 Introduction

With the wide application of sensor techniques in geographical information systems,
various location-based services emerge, where individuals can expose their traces to
service providers. A large number of individual trajectories provide us unprecedented
opportunities to study human mobility patterns and facilitate many real applications
such as POI recommendation [3, 21], human mobility prediction [46, 47], event crowd
management [44], and traffic forecasting [4, 22, 45]. The massive available human
trajectory data can facilitates people’s travel, contributes to commercial development,
government decision-making and so on.

However, releasing individual trajectories directly without any processing may lead
to the risk of privacy leakage, because some sensitive information about users, such
as addresses, financial situations, and habits can be inferred from their trajectories
[39]. Due to the great concern on privacy leakage, users are not willing to share their
trajectories with public. This limits the potential of mining valuable information from
users’ trajectories to facilitate various applications. To address this issue, a general
practice is to remove the identifiers and publish the anonymous data. Some service
providers, such as ridesharing services, protect user’s privacy by generating large vol-
umes of anonymous trajectories. However, these trajectories may still pose privacy
risks as the spatio-temporal patterns and semantic information in the trajectories can
be used as quasi-identifiers for linking the trajectories to their corresponding users.
Recently, some attackers can infer the user identity of an anonymous trajectory by
comparing the similarity between the anonymous trajectory and user’s historical tra-
jectories. With more trajectory-user linking (TUL) techniques developed to accurately
link anonymous trajectories to users who have generated them, it becomes more dif-
ficult to prevent users from being re-identified. Figure 1 (a) illustrates the training
process of a TUL model. the TUL model is trained in a supervised manner, using tra-
jectories as input and using users as labels. A well-trained TUL model captures the
behavior preferences of users, and when an anonymous trajectory is input into TUL,
the model tries to infer the user who has generated the trajectory.

Most existing work on geographical data privacy protection focus on protecting
the location privacy [29, 30], which are not sufficient to prevent the TUL model
from identifying users through analyzing their entire trajectories [27]. Another line of
studies focus on privacy protection for trajectory data, such as k-anonymity. However,
k-anonymity has shown to be not effective to defend a user’s identity when an attacker
(e.g. a TUL model) has additional background knowledge [13]. Differential privacy [32]
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Fig. 1: An illustration of the training process of a TUL model and the basic idea of
our method. (a) shows the training process of a TUL model. (b) illustrates the basic
idea of our proposed method for resisting TUL attacks.

has been applied to confuse the attacker by adding noise to the raw data. Adding
too much noise will remarkably change the semantic information of the trajectories,
and thus reduce their utility. Recently, a deep learning-based method called LSTM-
TrajGAN [8] is proposed to resist the attack of TUL for data publication. However,
LSTM-TrajGAN will also reduce the utility of the trajectories due to its serious data
distortion problem. Different from existing methods, in this paper, we aim to study
such a novel problem: can we propose a model that can resist the TUL attack, and at
the same time do not sacrifice the data utility much?

The challenges of the studied problem are two-fold. First, it is challenging to achieve
a balance between data utility and privacy protection. For example, some methods
protect the privacy by generating synthetic trajectories. However, while these synthetic
trajectories might reduce the risk of user identification, they may differ significantly
from the original trajectories, resulting in reduced utility. To preserve the utility of
the data, most check-ins of a trajectory should not be perturbed. Therefore, a small
number of check-ins that are critical for TUL attack should be identified for pertur-
bation, rather than adding perturbation to all check-ins. As the goals of the two tasks
are actually incompatible, it is very challenging to preserve data utility and protect
data privacy simultaneously. Second, it is also challenging to identify a small number
of check-ins in a trajectory that are more critical for a TUL attack. Not all check-ins
on a trajectory are equally important for a TUL model to identify the user. For exam-
ple, Judy and Lucy are roommates, they leave from the same house every day, go to
the same subway station, and go to their companies for work. Judy’s route can be rep-
resented as (home1, subway station1, office1), and, Lucy’s route can be represented as
(home1, subway station1, office2). We can find that only the office check-in is helpful
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for distinguishing Lucy and Judy. However, in real application scenarios it is very dif-
ficult to use a simple statistics based method to compare the trajectories of different
users to determine which check-ins are more critical for a TUL model to identify users.

In this paper, we propose a collaborative adversarial learning-based model BPU-
CAL to address the above challenges. To solve the first challenge, we propose to
perturb a few points that are more critical for TUL attack. As for the second chal-
lenge, we employ a TUL module to enable our perturbation generator to produce
perturbations for the identified critical check-ins in a trajectory. Specifically, BPUCAL
contains three modules, the trajectory embedding module, the collaborative adver-
sarial learning module, and the perturbed trajectory generation module. Given the
original trajectory Tr, we first employ the trajectory embedding module to obtain the
trajectory embedding X. Then, X is input into the collaborative adversarial learning
module to obtain a perturbed trajectory embedding X̂. The perturbed trajectory gen-
eration module takes X̂ as input to further produce a slightly perturbed trajectory
T̂ r. The collaborative adversarial learning module consists of a perturbation generator
G, a discriminator D, and a TUL model. G takes X as input and generates pertur-
bations to generate the perturbed trajectory embedding X̂. To make X̂ generated by
G follows the same data distribution with X and effectively fools the TUL model, D
and the TUL model collaboratively assist the training of G. Figure 1 (b) shows the
idea of the perturbed trajectory generated by our model. When the original trajectory
are input to the TUL model, the TUL model can correctly identify the user. However,
when the lightly perturbed trajectory generated by our model is input into the TUL
model, the TUL model cannot correctly identify the user. The core contributions of
this paper can be summarized as follows:

• To our knowledge, we for the first time study the novel problem of resisting the TUL
attack by balancing the data utility and privacy on trajectories. A collaborative
adversarial learning model is proposed to effectively address it.

• Our collaborative adversarial learning model cleverly incorporates a TUL model to
guide the generation of perturbations, with the aim of allowing our perturbations
to perturb a few check-ins that are crucial for the TUL model to identify the user.

• We compare our proposal with baselines on three TUL tasks, and the results show
that our model has better privacy protection performance when changing the same
ratio of check-ins. The experiments conduct on a POI recommendation task further
verifies the utility of our perturbed trajectories.

The remainder of the paper is organzied as follows: in the related work section, we
introduce existing work for protecting location privacy and trajectory privacy, and
discuss some existing TUL models. In the preliminaries section, we introduce some
concepts employed in this paper and define the studied problem. In the method section,
we detail the design of each module in our model. The experiment section shows the
datasets and baselines used in our paper, and also provides extensive experimental
results to validate the effectiveness of our proposed model.
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2 Related Work

2.1 Privacy Protection on Locations

To reduce the risk of user location privacy leakage, numerous methods have been
proposed, which can be mainly fell into two categories: obfuscation-based methods
and anonymization-based methods.

Obfuscation-based methods protect privacy by obfuscating location information in
data, but they reduce the data accuracy simultaneously. Therefore, these methods are
typically used in scenarios where precise location information is not required, such as
traffic flow analysis. The obfuscation-based methods include cloaking, dummy loca-
tions, differental privacy. [37] employed a cloaking area to hide the precise locations
of users for privacy protection. Using large cloaking areas can cause a degradation in
the precision of the user’s location, thereby affecting the quality of the service pro-
vided by LBS server. Dummy locations based methods protect users’ location privacy
by spamming the adversary with fake locations. In order to prevent attackers with
background knowledge from easily distinguishing dummy locations from real ones and
causing fake locations to be ineffective, the dummy locations based methods must
ensure that the fake locations are natural. Some methods have been proposed to ensure
the naturalness of the generated dummy locations. The method proposed by [38]
considered side information that may be exploited by attackers when selecting fake
locations. They chose dummy locations based on the entropy metric, and enhanced the
algorithm to make sure the selected dummy locations are spread far away. Differental
privacy protects location privacy by adding controlled random noise to user’s location.
A famous location privacy protection method, known as Geo-Indistinguishability, is
actually implemented based on differential privacy [15]. Geo-Indistinguishability adds
random noise to the location data so that attackers cannot infer the exact location of
individuals.

Anonymization-based methods aim to prevent attackers from inferring user’s iden-
tity through the analysis of their location, which can be divided into two categories:
k-anonymity and mix-zone. K-anonymity creates anonymity sets for user location
information, whereby the location of users within the anonymity set cannot be dis-
tinguished from k-1 other users located in the same anonymity set. [40] proposed a
k-anonymity based method, which focused on reducing the correlation between the
user and the request. The method also maintained the service quality while protect-
ing the privacy. Mix-Zone establishes a specific area, in which k users simultaneously
change their pseudonyms to achieve K-anonymity. [41] aimed to protect location
privacy in vehicular networks, and proposed a dynamic mix-zone method ,which
dynamically created a mix-zone at the time the vehicle requests it.

However, methods for protecting location privacy typically protect the real-time
location information of users when requesting location-based services, and may not
effectively prevent attackers from obtaining users’ identity by analyzing their complete
trajectories. Different from these methods, our method focuses on preventing attackers
from inferring user identity by analyzing the trajectories.
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2.2 Privacy Protection on Trajectories

One popular method for privacy protection on trajectories is k-anonymity [12]. The
basic idea is to group similar users together and make their trajectories become
indistinguishable, thus protecting their privacy. However, when an attacker has some
background knowledge, anonymization-based methods cannot effectively protect pri-
vacy [13]. The emergence of differential privacy overcomes this deficiency. Differential
privacy adds some random perturbation into the user’s original trajectories to obscure
their personal sensitive information, thus protecting their privacy [15]. [19] proposed
a differential privacy scheme base on the recurrent neural network, which can pro-
tect the privacy of real-time dynamic trajectories effectively. Nevertheless, differential
privacy may decreases the accuracy and quality of data during the process of adding
noise, which could affect the availability of data. There are also some methods that
use deep learning to protect privacy of trajectories. [8] used generative adversarial
networks to generate synthetic trajectories that are similar to the original trajectories
in the temporal-spatial and semantic dimension. The synthetic trajectories generated
by this method bring down the accuracy of a TUL model. However, the synthetic tra-
jectories are totally different from the original ones, and thus largely affect the utility
of the data in downstream tasks. Federated learning is a distributed machine learning
technique that allows model training to be performed across multiple devices without
centralizing the data set [42], and has become increasingly popular in recent years. In
federated learning, each device holds a portion of the data and uses this data to locally
train a machine learning model, which is then aggregated to create a new global model.
By doing this, federated learning can train models while protecting user privacy and
avoiding the risk of privacy leakage. The existing privacy protection methods cannot
effectively resist attacks from attackers (e.g. a TUL model) with background knowl-
edge, and usually add noises to all points on a trajectory for protecting privacy, which
damages the utility of the data. This paper proposes a privacy protection method for
TUL attacks, which aims to perturb a small number of points of a trajectory (for
keeping utility) to make the TUL model incorrectly infer the user.

2.3 Trajectory-User Linking

TULER [1] employed the method in NLP to embed check-ins in trajectories into
a low-dimensional space and adopted LSTM to model the mobility patterns of a
user at the check-ins level. However, RNN-based methods suffer from data sparsity
issues and are not capable of capturing the multi-periodic character of human mobility
data. To alleviate the data sparsity problem, TULVAE [14] adopted a semi-supervised
variational autoencoder to take advantage of numerous unlabeled data to improve the
performance of the TUL task. Nevertheless, it still failed to fully utilize the features
and take multi-periodic into account. DeepTUL [2] integrated multiple features and
learned multi-periodic characters of human mobility from unlabeled historical data
based on an attentive recurrent network model. TULSN [48] is a Siamese network-
based model, which used a Siamese network to capture semantic information in a
trajectory. It overcame the disadvantage of having to retrain the entire model once a
new user is added. Only a small amount of geotagged data is required for the TUL
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Fig. 2: The overall architecture of BPUCAL.

when a new user is added. MainTUL [16] utilized history trajectories by trajectory
augmentation to relieve data sparsity problems. MainTUL used RNN to model the
original trajectories and encoded the augmented trajectories by a temporal-aware
transformer. Messages are transferred between the two trajectory encoders by mutual
distillation. The recent TUL technique has greatly improved the utility of anonymous
trajectories, but also raises more concerns about privacy leakage, it is necessary to
propose new privacy protection methods to resist TUL attacks.

3 Preliminaries

In this section, we first give some terminology definitions, and then formulate the
studied problem.
Definition 1 (Check-in). The check-in (i.e., point) data can be denoted as a triplet
(u, t, p) representing user u checks in at POI p at time step t. POI stands for Point
of Interest, for example, hospitals and schools can both be considered as a POI. p is
also a triplet (id, c, l), where id is the identifier of a POI, l = (latitude, longitude)
represents the location of a POI and c is the identifier of the POI category.
Definition 2 (Trajectory). The trajectory is a sequence of check-ins, e.g.,
Tru = {(u, t1, p1), · · · , (u, tk, pk)}, where k is the trajectory length.
Definition 3 (Perturbed Trajectory). Given the original trajectory Tru,
we change a certain ratio of points of Tru to obtain a perturbed trajectory
ˆTru : {(u, t1, p̂1), (u, t2, p̂2), · · · , (u, tk, p̂k)}.

Definition 4 (Trajectory-User Linking). Given a set of unlinked trajectories
{Tr1, Tr2, · · · ,Trn} which are produced by a set of users U = {u1, u2, · · · ,um}.
Trajectory-User Linking (TUL) aims to find a mapping function f(·) between unlinked
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trajectories and the corresponding users.

Based on the above definitions, we formally define the studied problem as follows.
Problem Definition. Given the users U = {u1, u2, · · · , um} and their trajecto-
ries T = {Tru1 , T ru2 , T ru3 , · · · , T rum}, our goal is to learn a generation func-
tion Γ to generate the perturbed trajectories T̂ = { ˆTru1 , ˆTru2 , ˆTru3 , · · · , ˆTrum}
by adding a small number of perturbation. The perturbed trajectories T̂ =
{ ˆTru1 , ˆTru2 , ˆTru3 , · · · , ˆTrum} can protect against the TUL attack and should also be
as similar to the raw trajectories as possible to keep the data utility.

4 Methodology

As shown in Figure 2, BPUCAL consists of three modules, the trajectory embedding
module, the collaborative adversarial learning module, and the perturbed trajectory
generation module. The original trajectory Tr is first input into the trajectory embed-
ding module to obtain a low-dimensional representation X. Then X is input into the
collaborative adversarial learning module to generate the perturbed trajectory embed-
ding X̂. Feeding X̂ into the perturbed trajectory generation module, we finally get
the perturbed trajectory T̂ r with the minimal variation to the original trajectory Tr
to fool the TUL model. Next, we will introduce the model in detail.

4.1 Trajectory Embedding

To reduce computation complexity and facilitate representation learning, we first con-
duct trajectory segmentation. Specifically, we divide the original check-in sequence of
a user Tru by days into k successive sub-sequences Tru = {Tru1 , T ru2 , · · · , T ruk}. We
use one-hot encoding to represent a trajectory consisting of a set of check-ins. The
one-hot encoding is high-dimensional and is inefficient to interpret the relationship
between check-ins. Thus given the original trajectory Tr = {p1, p2, p3, · · · , pk}, we
first map the one-hot encoding of Tr to a low-dimensional space as follows,

hi = tanh(Wppi + bp) (1)

where pi is the one-hot encoding of the i-th POI, Wp and bp are learnable parameters.
In order to capture the temporal dependency between different check-ins of a trajec-
tory, we input the encoded trajectories H = {h1, h2, · · ·hk} into stacked LSTM layers,
which is formulated as follows,

it = σ(Wiht + Uixt−1 + bi),

ft = σ(Wfht + Ufxt−1 + bf ),

ot = σ(Woht + Uoxt−1 + bo),

c̃t = tanh(Wcht +Ucxt−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t,

xt = ot ⊙ tanh(ct),

(2)
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where it, ft and ot represent the input gate, forget gate, and output gate, respectively.
W , U , b are the gate parameters. σ(·) and tanh(·) refer to the sigmoid function and
hyperbolic tangent function. ht is the embedding of the current check-in. xt and xt−1

denote the current and last state embedding, respectively. ⊙ is the entry-wise product.
X = {x1,x2,· · · ,xk} is the final representation of the trajectory in the low-dimensional
space.

4.2 Collaborative Adversarial Learning

Adversarial learning has been widely applied to various computer vision tasks, which
aims to generate adversarial example to cheat the target model. Inspired by this, we
propose a collaborative adversarial learning module to generate the perturbed trajec-
tory to fool the TUL model. Adversarial learning generally adds imperceptible noise
to each pixel when generating an adversarial example for the image. Unlike images,
adding too much noise to each check-in of a trajectory could remarkably change the
original trajectory, and thus causes severe data distortion issue. The perturbed tra-
jectory generated in this way may severely hurt the utility of the original trajectory
data. It motivates us to design a method for generating a perturbed trajectory that
can effectively fool the TUL model while keeping most points on a trajectory invari-
ant. Previous studies on computer vision [25] demonstrate that only partial pixels are
critical for image classification. Inspired by this, we assume that only a small number
of check-ins of a trajectory are critical for a TUL model to re-identify the user. There-
fore, we need to identify such critical check-in points as our target for perturbation.
To this end, we design a collaborative adversarial learning framework that consists of
three modules, a perturbation generator G, a discriminator D, and a TUL model. The
novelty of our collaborative adversarial learning model is that we incorporate a TUL
model to guide the generation of perturbations cleverly, with the aim of allowing our
perturbations to perturb a small number of check-ins that are crucial for the TUL
model to identify the user. Next, we will introduce each module in detail.
Perturbation Generator G. The aim of G is to generate the perturbations
for a trajectory. By adding the perturbations to the trajectory embedding X =
{x1, x2, · · · , xk}, we obtain the perturbed trajectory embedding X̂ = {x̂1, x̂2, · · · x̂k}.
The trajectory embedding X is input into the perturbation generator to generate
perturbation for each check-in point as follows,

R = LayerNorm(MLP(X)),

Q = LeakyRelu(R),
(3)

where MLP is multi-layer perceptions. LeakyReLU denotes the Leaky ReLU activa-
tion. Q = {q1, q2, q3, · · · , qk} denotes the perturbations generated for the trajectory
embedding X and qi is the perturbation generated for xi.
To make the generator focus more on perturbing critical points which are important
for TUL to infer the user, intuitively, we should not add perturbations to all the POIs
with the equal probability. Thus we design the emphasized perturbation selector to
attenuate the perturbations added to the unimportant POIs and emphasize on critical
ones. The emphasized perturbation selector takes Q as input, it reserves the largest
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perturbation on a trajectory and attenuates the remaining perturbations, which can
be formulated as:

qmax = max(Q), (4)

mask =

{
1, if qi = qmax,
β, if qi ̸= qmax,

(5)

∆ = Q ∗mask, (6)

where β ∈ [0, 1] is the damping decrement, ∆ is the ultimate emphasized perturbation.
Adding the perturbation ∆ with X, we obtain the perturbed trajectory representation
in the low-dimensional space, which is formulated as

X̂ = X +∆. (7)

Discriminator D. The goal of the discriminator D is to distinguish the trajectory
embedding and the perturbed trajectory embedding.D drives G to generate perturbed
trajectory embedding following the original data distribution, which can be expressed
as:

I = LayerNorm(MLP(X)),

D = σ(LeakyRelu(I)),
(8)

Trajectory-User Linking Model We adopt the TULER proposed by [1] as our
TUL model. Our goal is to employ TULER to help find the pivotal points which
are important for TUL to infer users, and then we let the generator produce noises
for these points, so that a small modification of the original trajectories can cause
the TUL model misjudgement. Therefore, we need the TUL model to have strong
judgement to motivate the generator to produce more effective noise. To achieve this,
We use the trajectories as training data and employ user-trajectory pairs to train
TULER in advance. After training, we fix the TULER model and use it to guide G for
perturbation generation. The TULER model aims to drive G to generate perturbations
that can mislead itself. Inputting X̂ to the TULER, X̂ generated by G tries to mislead
TULER, TULER feeds back the effect to G to motivate G to generate a more effective
noise.

4.3 Perturbed Trajectory Generation

In previous modules, we map the trajectory into a low-dimensional space and generate
perturbations for a trajectory embedding to get the perturbed trajectory embedding.
In this module, we generate the perturbed trajectory from the perturbed trajectory
embedding, which is represented by the following formula:

T̂ r = softmax(MLP(X̂)), (9)

where T̂ r = {p̂1, p̂2, p̂3, · · · , p̂k}. During the perturbation generation stage, the more
perturbation generated for a point, the harder it is to restore to the original point.
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4.4 Loss Function

The training process contains the pretraining and model training steps. Next we intro-
duce the two steps in detail.
Pretraining We first pretrain the trajectory embedding module TE and the per-
turbed trajectory generation module PTG. The two modules are then fixed during the
entire model training. The trajectory embedding module TE aims to map the check-in
points in the high-dimensional space to a low-dimensional space. The perturbed tra-
jectory generation module denoted as PTG generates the perturbed trajectory from
the perturbed trajectory embedding. We pretrain the two modules by minimizing the
reconstruction error as follows.

X = TE(Tr),

LR = −1

k

k∑
i=1

PTG(xi)logpi
(10)

where Tr ={p1, p2, p3, · · · ,pk}, and pi is the one-hot encoding of the i-th check-in.
X = {x1,x2,· · · xk}, where xi is the dense representation of the i-th check-in.
Model Training. To train the perturbation generator G that generates perturbed
trajectory embedding which can both mislead the TUL model and the discriminator,
we design the loss function to drive the training process. In general, we optimize two
networks, i.e., the perturbation generator network G and the discriminator network
D. We design loss functions for these two networks separately. For G, the loss function
is as follows

LG = LTUL + Ldc (11)
LTUL = −EX̂ [−TULER(X̂)logu)] (12)

Ldc = EX [log(1−D(X̂)] (13)
where EX [·] represents the expectation operator over the training samples, X̂ is the
perturbed sample of the original sample X, and u denotes the user of X. LT UL drives
G to generate X̂ to fool the TUL model. Ldc propels G to produce perturbed trajectory
embedding that follows the original data distribution. D (X̂) ∈ [0, 1] denotes the
probability that the perturbed sample is classified as geniue by the discriminator D.
For D, the loss function is defined as follows.

LD =
1

2
(EX [log(1−D(X))] + EX [log(D(X̂))]). (14)

5 Experiments

5.1 Datasets and Baselines

We use two widely used check-in mobility datasets [34, 35] collected from two popular
location-based social network platforms, i.e., Foursquare1 and Weeplaces2 for evalua-
tion. For the two datasets, we choose top 531 and 420 users with the most check-ins

1http://sites.google.com/site/yangdingqi/home/foursquare-dataset
2http://www.yongliu.org/datasets.html
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for evaluation respectively. The Foursquare dataset contains 50,414 trajectories, 9,458
POIs, and 248 categories of POI. Weeplaces has 101,771 trajectories, 22,140 POIs and
660 categories of POI. In the experiment, we use the 60% of the trajectories of each
user for training, 20% for testing and the remaining 20% data as the validation set.

As this paper studies a new problem, we do not find suitable baselines that are
directly comparable. LSTM-TrajGAN is a trajectory generation model proposed in
2021, which generates a totally different trajectory from the raw one for privacy pro-
tection, but the data utility is not considered. As our method and LSTM-TrajGAN
both focus on resisting against TUL attacks for privacy protection, we compare our
proposed method with it. To make a more comprehensive evaluation of our model,
we design two baselines for comparison. AMF is a heuristic algorithm that identifies
and replaces the most frequently visited POIs by each user, because such POIs may
contain the most informative features for user identification. The Random baseline
randomly selects some check-ins and replaces them. The following is a more detailed
introduction for our baselines.

• Originals This method uses the raw trajectory data without any processing.
• Random This method randomly changes a portion of the check-ins of the original
trajectories. We randomly select a POI from the entire POI collection to replace
the selected one as the perturbation.

• AMF This method perturbs the check-ins that are visited with the highest fre-
quency for each user. As these points may appear on multiple trajectories of the
user, it may be recognized as an quasi-identifier by a TUL model for inferring the
user.

• LSTM-TrajGAN It is a recent generative adversarial model proposed by [8]
to generate synthetic trajectoris which reserves spatial, temporal, and semantic
characteristics of the original trajectories . However, it generates a totally different
trajectory from the raw one for privacy protection, and thus the data utility is not
considered.

5.2 Evaluation Metrics and Parameter Settings

To assess the utility and privacy protection performance of the perturbed trajectories,
we propose the following two indicators, similarity that represents the reserve ratio of
the original data, and the prediction performance of a TUL model. A better prediciton
performance of the TUL model means a higher possibility of user identification and the
worse privacy protection performance. We validate the privacy protection performance
of our perturbed trajectories on three TUL tasks, MainTUL [16], TULER [1], and
S2TUL [43]. We use the Acc@k, Macro-Precision, Macro-Recall, and Macro-F1 to
evaluate the model performance. ACC@K is to evaluate the accuracy of the TUL
model, which can be represented as follows:

ACC@K =
correctly linked trajectories@K

the number of trajectories
(15)
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Macro-F1 is the harmonic mean of the macro-P and macro-R, averaged across all
classes:

macro− F1 = 2× macro− P ×macro−R

macro− P +macro−R
(16)

We also test the performance of the perturbed trajectories on a POI recommenda-
tion task to verify the utility. We adopt the top-k recall rates, Recall@5 and Recall@10,
to evaluate the recommendation performance. Recall@k counts the rate of the true
positive samples in all positive samples. We employ the STAN model proposed by
[36] as our evaluation model. For our model, we set check-in embedding dimension d
to 128, and β to 0.3. To generate perturbed trajectories, we run our method and all
the baselines 10 times. For privacy evaluation, we run each TUL task 10 times. For
data utility evaluation, we run STAN 3 times. We report the average result for all the
methods.

5.3 Overall Performance Comparison

The comparison results of BPUCAL and baselines on three TUL tasks are presented in
Tables 1, 2, and 3, respectively. The performance of perturbed trajectories generated
by our model and baselines on POI recommendation tasks is shown in Table 4. From
these tables, one can have the following conclusions.

• On both datasets it shows that the lower similarity to the original trajectories leads
to worse performance of STAN. It verifies our idea of maintaining data utility by
making a minimum variation to the original trajectory.

• The excellent performance of three TUL models(i.e. MainTUL, TULER, S2TUL)
for inferring users in the unprocessed data (Originals), shows that the TUL model is
indeed a powerful attacker, and confirms what we discussed before that publishing
raw trajectories directly leads to a high risk of privacy leakage. Compared to the
Originals baseline, our method BPUCAL makes the accuracy of three TUL model
drop significantly by sacrificing tiny data utility.

• Compared to Random, under the same similarity of 0.75, Random only decreases
the accuracy of MainTUL by about 0.03 on two datasets, while BPUCAL brings
MainTUL down by about 0.3. This means that simply modifying a certain percent-
age of points will not greatly reduce the performance of a TUL model. We should
modify the points that are more pivotal to a TUL model. It is difficult to find those
points by Random. Our BPUCAL efficiently finds these key points.

• Trajectory points that each user visits frequently may appear on multiple trajecto-
ries of a user. Therefore, it may be a key feature for TUL model to infer the identity
of a user. One can also observe from the experimental results that AMF which mod-
ifies the frequently visited POIs makes the TUL model drop significantly compared
to Random. Our BPUCAL performs better than AMF on three TUL tasks. It shows
that BPUCAL can identify more important points for the TUL model compared to
AMF.

• LSTM-TrajGAN changes almost all points of the original trajectories and generates
totally different trajectories. Although it makes the accuracy of TUL models drop
significantly , the data utility has been greatly damages for downstream tasks, which
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Table 1: Performance comparison with baselines on MainTUL. Macro-P/R: Macro-
Precision/Recall.

Dataset Similarity Methods
MainTUL

Acc@1 Acc@5 Macro-P Macro-R Macro-F1

Foursquare

1.00 Originals 0.7252 0.8433 0.7316 0.7024 0.7167

0.90
AMF-10 0.6285 0.7892 0.6972 0.6342 0.6691

Random-10 0.7241 0.8432 0.7305 0.7009 0.7154
BPUCAL-10 0.6120 0.7683 0.7166 0.5783 0.6411

0.85
AMF-15 0.5811 0.7632 0.6772 0.6325 0.6541

Random-15 0.7225 0.8414 0.7286 0.6999 0.7139
BPUCAL-15 0.5649 0.7307 0.7171 0.5412 0.6168

0.80
AMF-20 0.5382 0.7336 0.6538 0.6032 0.6274

Random-20 0.7135 0.8361 0.7208 0.6893 0.7047
BPUCAL-20 0.5018 0.6916 0.7033 0.4663 0.5608

0.75
AMF-25 0.4567 0.6693 0.5786 0.4877 0.5292

Random-25 0.7092 0.8342 0.7190 0.6855 0.7018
BPUCAL-25 0.4313 0.6545 0.7090 0.3999 0.5114

0.70
AMF-30 0.4093 0.6328 0.5542 0.4536 0.4988

Random-30 0.6909 0.8207 0.6995 0.6661 0.6824
BPUCAL-30 0.3697 0.6160 0.6901 0.3427 0.4581

0.08 LSTM-TrajGAN 0.0687 0.1042 0.0525 0.0737 0.0613

Weeplaces

1.00 Originals 0.7796 0.8903 0.7614 0.7319 0.7464

0.90
AMF-10 0.6921 0.8132 0.7254 0.6544 0.6881

Random-10 0.7777 0.8896 0.7601 0.7303 0.7449
BPUCAL-10 0.6748 0.7956 0.6949 0.6098 0.6495

0.85
AMF-15 0.6528 0.7796 0.6877 0.6284 0.6567

Random-15 0.7739 0.8873 0.7574 0.7264 0.7416
BPUCAL-15 0.6311 0.7538 0.6803 0.5321 0.5972

0.80
AMF-20 0.6336 0.7538 0.6377 0.6098 0.6234

Random-20 0.7638 0.8801 0.7475 0.7168 0.7318
BPUCAL-20 0.5864 0.7222 0.6549 0.5231 0.5816

0.75
AMF-25 0.5436 0.6623 0.5622 0.5145 0.5372

Random-25 0.7549 0.8723 0.7402 0.7086 0.7239
BPUCAL-25 0.4671 0.5993 0.6599 0.4028 0.5002

0.70
AMF-30 0.5071 0.6262 0.5581 0.4637 0.5065

Random-30 0.7466 0.8681 0.7334 0.7001 0.7164
BPUCAL-30 0.3911 0.5782 0.7074 0.3442 0.4631

0 LSTM-TrajGAN 0.0129 0.0422 0.0031 0.0152 0.0052

can be confirmed by the prediction results of STAN. Obviously, this method which
sacrifices much data utility for privacy protection is inefficient and unadvisable.

• Overall, our method achieves the best performance on two public datasets for
balancing data utility and privacy.
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Table 2: Performance comparison with baselines on TULER. Macro-P/R: Macro-
Precision/Recall.

Dataset Similarity Methods
TULER

Acc@1 Acc@5 Macro-P Macro-R Macro-F1

Foursquare

1.00 Originals 0.6582 0.7892 0.5671 0.5671 0.5671

0.90
AMF-10 0.5724 0.7432 0.5231 0.5416 0.5321

Random-10 0.6555 0.7855 0.5632 0.5636 0.5634
BPUCAL-10 0.5524 0.7127 0.4931 0.4761 0.4844

0.85
AMF-15 0.5112 0.7177 0.4877 0.4635 0.4752

Random-15 0.6534 0.7847 0.5607 0.5621 0.5614
BPUCAL-15 0.4937 0.6828 0.4731 0.4474 0.4599

0.80
AMF-20 0.4483 0.6324 0.4312 0.4294 0.4302

Random-20 0.6311 0.7726 0.5392 0.5368 0.5381
BPUCAL-20 0.4291 0.6199 0.4241 0.3854 0.4037

0.75
AMF-25 0.3684 0.5572 0.3988 0.3212 0.3558

Random-25 0.6287 0.7708 0.5376 0.5366 0.5372
BPUCAL-25 0.3511 0.5332 0.3677 0.3191 0.3416

0.70
AMF-30 0.3102 0.5005 0.3205 0.2945 0.3069

Random-30 0.6037 0.7501 0.5133 0.5113 0.5123
BPUCAL-30 0.2898 0.4724 0.3174 0.2764 0.2954

0.08 LSTM-TrajGAN 0.0512 0.0518 0.0231 0.0312 0.0265

Weeplaces

1.00 Originals 0.6968 0.8309 0.5974 0.5968 0.5971

0.90
AMF-10 0.6012 0.7623 0.4922 0.5014 0.4967

Random-10 0.6899 0.8276 0.5879 0.5874 0.5876
BPUCAL-10 0.5899 0.7311 0.4852 0.4882 0.4867

0.85
AMF-15 0.5444 0.6996 0.4672 0.4518 0.4593

Random-15 0.6805 0.8199 0.5791 0.5778 0.5784
BPUCAL-15 0.5296 0.6711 0.4523 0.4467 0.4495

0.80
AMF-20 0.5219 0.6648 0.4032 0.4101 0.4066

Random-20 0.6607 0.8058 0.5574 0.5571 0.5572
BPUCAL-20 0.4935 0.6511 0.4011 0.4035 0.4023

0.75
AMF-25 0.4812 0.6399 0.3868 0.3923 0.3896

Random-25 0.6367 0.7903 0.5325 0.5329 0.5327
BPUCAL-25 0.3641 0.5173 0.3383 0.3098 0.3234

0.70
AMF-30 0.4528 0.6129 0.3629 0.3678 0.3653

Random-30 0.6282 0.7838 0.5254 0.5243 0.5249
BPUCAL-30 0.3334 0.5022 0.3209 0.2901 0.3047

0 LSTM-TrajGAN 0.0112 0.0216 0.0145 0.0132 0.0138

5.4 Ablation Study

In this section, we compare our model with three elaborate variants. We conduct
experiments on all two datasets. The three variants are as follows:
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Table 3: Performance comparison with baselines on S2TUL. Macro-P/R: Macro-
Precision/Recall.

Dataset Similarity Methods
S2TUL

Acc@1 Acc@5 Macro-P Macro-R Macro-F1

Foursquare

1.00 Originals 0.6066 0.7648 0.6346 0.5803 0.6062

0.90
AMF-10 0.5291 0.6673 0.6428 0.4672 0.5411

Random-10 0.6061 0.7651 0.6328 0.5799 0.6051
BPUCAL-10 0.4931 0.6597 0.5803 0.4592 0.5126

0.85
AMF-15 0.4512 0.6228 0.5789 0.4476 0.5048

Random-15 0.6001 0.7623 0.6295 0.5738 0.6003
BPUCAL-15 0.4347 0.6189 0.5662 0.4241 0.4899

0.80
AMF-20 0.3764 0.5534 0.5612 0.3528 0.4332

Random-20 0.5913 0.7541 0.6213 0.5646 0.5915
BPUCAL-20 0.3556 0.5276 0.5549 0.3452 0.4256

0.75
AMF-25 0.3231 0.4932 0.5019 0.3123 0.3851

Random-25 0.5911 0.7522 0.6209 0.5621 0.5901
BPUCAL-25 0.2906 0.4453 0.4892 0.2741 0.3513

0.70
AMF-30 0.2312 0.4012 0.4537 0.2464 0.3193

Random-30 0.5729 0.7386 0.5961 0.5451 0.5694
BPUCAL-30 0.2291 0.3675 0.4409 0.2092 0.2837

0.08 LSTM-TrajGAN 0.0921 0.1113 0.0734 0.0664 0.0697

Weeplaces

1.00 Originals 0.5804 0.6957 0.5663 0.5581 0.5621

0.90
AMF-10 0.4921 0.6363 0.5227 0.4776 0.4913

Random-10 0.5785 0.6951 0.5657 0.5562 0.5609
BPUCAL-10 0.4587 0.5974 0.5111 0.4118 0.4561

0.85
AMF-15 0.4432 0.5872 0.4912 0.3718 0.4232

Random-15 0.5765 0.6926 0.5641 0.5539 0.5589
BPUCAL-15 0.3595 0.4834 0.4858 0.3166 0.3833

0.80
AMF-20 0.3928 0.5463 0.4836 0.3484 0.4051

Random-20 0.5688 0.6871 0.5558 0.5471 0.5514
BPUCAL-20 0.3453 0.4793 0.4782 0.3091 0.3754

0.75
AMF-25 0.3564 0.4827 0.4512 0.3112 0.3683

Random-25 0.5612 0.6775 0.5547 0.5411 0.5478
BPUCAL-25 0.3123 0.3678 4412 0.2893 0.3494

0.70
AMF-30 0.3121 0.3924 0.4239 0.2725 0.3317

Random-30 0.5598 0.6712 0.5497 0.5385 0.5441
BPUCAL-30 0.2824 0.3218 0.3729 0.2642 0.3092

0 LSTM-TrajGAN 0.0721 0.1032 0.0937 0.0829 0.0879

• BPUCAL-RL: Replace the MLP layer in the perturbation generator with LSTM.
This variant is used to verify the effectiveness of the MLP layer in the perturbation
generator.

• BPUCAL-REPS: Remove the emphasized perturbation selector in the perturba-
tion generator. This variant is used to verify the effectiveness of the perturbation
generator.
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Table 4: Performance comparison with baselines on STAN.

Similarity Methods
Datasets

Foursquare Weeplace

Recall@5 Recall@10 Recall@5 Recall@10

1.00 Originals 0.3398 0.4435 0.3618 0.4553

0.90
AMF-10 0.3305 0.4385 0.3406 0.4324

Random-10 0.3276 0.4367 0.3503 0.4412
BPUCAL-10 0.3392 0.4412 0.3473 0.4384

0.85
AMF-15 0.3172 0.4336 0.3256 0.4175

Random-15 0.3105 0.4322 0.3302 0.4257
BPUCAL-15 0.3249 0.4352 0.3313 0.4263

0.80
AMF-20 0.3024 0.4193 0.3115 0.4073

Random-20 0.3089 0.4286 0.3213 0.4123
BPUCAL-20 0.3045 0.4256 0.3189 0.4109

0.75
AMF-25 0.2885 0.4095 0.3027 0.4061

Random-25 0.2914 0.4103 0.2851 0.3922
BPUCAL-25 0.2879 0.4089 0.2953 0.4017

0.70
AMF-30 0.2702 0.3912 0.2616 0.3804

Random-30 0.2635 0.3948 0.2736 0.3839
BPUCAL-30 0.2612 0.3883 0.2672 0.3823

0.08 LSTM-TrajGAN 0.0145 0.0237 - -

0 LSTM-TrajGAN - - 0.0057 0.0082

BPUCAL-RL BPUCAL-REPS BPUCAL-RT BPUCAL
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Fig. 3: Performance comparison of data generated by four variants on MainTUL.

• BPUCAL-RT: Remove the TUL module in our model. This variant is used to verify
the effectiveness of the TUL module.
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Fig. 4: Performance comparison of data generated by four variants on STAN.

The results are presented in Figure 3 and Figure 4, where Figure 3 shows the perfor-
mance of the perturbed trajectories generated by the four models on MainTUL, and
Figure 4 shows the performance on STAN. Our experiment is based on the perturbed
trajectories which have a similarity of 0.8 with the original trajectories. Since the per-
turbed trajectories produced by the four models, all have a similarity of 0.8 to the
original trajectories, their performance on STAN differs very little.

Comparing the performance of the perturbed trajectories generated by four models
on MainTUL, one can see that BPUCAL-RT has the worst performance. The rea-
son may be that with the assistance of TUL, the emphasized perturbation generation
module can learn which points are more important for TUL, and generate perturba-
tions for disturbing these points. Without the help of the TUL model, it generates
perturbation for each point randomly, and the performance is similar to Random.

The results of BPUCAL-RL show that replacing the MLP layer with LSTM in
emphasized perturbation generation module results in worse performance. It may
be that each time unit of LSTM shares weights, it is more difficult to generate
perturbation for each point based on their importance to TUL.

BPUCAL-REPS shows the effect of the emphasized perturbation selector. Com-
pared to BPUCAL-REPS, BPUCAL can make the accuracy of the MainTUL drop
by more than 0.1. The emphasized perturbation selector keeps the largest perturba-
tion on a trajectory and attenuates the rest. It can drive the perturbation generation
module to focus more on disturbing the points which are important for TUL.

5.5 Parameter Study

In this section, we evaluate the sensitivity of our BPUCAL with different settings of
damping decrement β and the check-in embedding d on two datasets. We compare the
privacy protection performance of the perturbed trajectories generated by BPUCAL
under different parameter settings on MainTUL. The results are shown in Figure 5
and Figure 6. We compare the performance of BPUCAL with parameter β ranging
from 0.3 to 1. It shows that although the curve fluctuates, it is generally in an upward
trend. This may be because when β is smaller, the perturbation generator G can focus
more on perturbing the points which are pivotal for TUL during the confrontation
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Fig. 5: Analysis of damping decrement β.
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Fig. 6: Analysis of check-in embedding dimension d.

between G and TUL. We then study the impact of check-in embedding dimension d
and vary the value in 32, 64, 128, 256, and 512 these five empirical values. One can
notice that the privacy protection performance is sensitive to the value of d. But one
can also note that the privacy protection performance could gain improvement when
d is moderate, so it is vital to choose an appropriate d value.

6 Conclusion

In this paper, we propose a collaborative adversarial learning-based model BPUCAL.
We aim to make a minimum variation of the original trajectories to mislead the
TUL model for balancing data utility and privacy protection. To achieve this goal,
we elaborately design a collaborative adversarial learning module, which generates
perturbations to disturb a few points on a trajectory that is pivotal for TUL. Exten-
sive experiments are conducted over two real-world datasets. The results show the
effectiveness of our proposal in balancing data privacy and utility for trajectories.
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