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Abstract—Mobile cloud computing offloads intensive code to
remote servers to improve execution performance and battery
lifetime. Unfortunately, it is prone to data breaches and depen-
dent on network connectivity. In light of these issues, we explore
the potential of an under-utilized local computing resource:
Digital Signal Processors (DSPs). Programmable DSPs are widely
equipped in mobile devices and can conduct mathematical oper-
ations at high speed and low power. However, existing mobile ap-
plications rarely offload computation to DSPs due to two reasons.
Firstly, conventional DSP development requires high proficiency
in low-level programming languages. Secondly, DSP application
deployment involves many complex steps such as kernel memory
allocation and remote procedure calls. In this paper, we introduce
DSPBooster, a framework to facilitate application offloading
to DSPs for power-performance optimal execution. DSPBooster
supports unmodified applications implemented in various high-
level programming languages. It transparently deploys suitable
application functions to DSPs based on runtime measurement and
prediction. Implementing such a system entails many technical
challenges thanks to DSPs’ unique micro-architecture and inter-
processor communication mechanism. In this paper, we provide
workable solutions and a thorough system evaluation. We show
that DSPBooster can provide up to 11% performance gain and
3× power reduction.

I. INTRODUCTION

Mobile cloud computing aims to reduce battery consump-

tion and execution time by offloading intensive applications to

cloud servers. Unfortunately, this remote computing paradigm

is prone to data breaches and highly dependent on network

connectivity. In light of these issues, this paper explores

the potential of Digital Signal Processors (DSPs), a local

computing resource that can be found in nearly all mobile

devices.

DSPs can perform mathematical operations at high speed

and low power. They are responsible for many essential

functionalities of mobile devices such as wireless communi-

cation [1] and sensory data processing [2]. Note that early

generation DSPs were generally non-programmable and ded-

icated only to one task. Recent years have witnessed many

breakthrough technologies in DSP design such as Very Long
Instruction Word micro-architecture [3] and System Memory

Management Unit [4]. DSPs now can support general-purpose

programming languages and handle very versatile workloads.

†Corresponding author

Yet, despite these advances, DSPs are still an under-explored

resource in mobile computing. Mobile applications nowadays

(excluding those from device vendors) seldom offload com-

putation to DSPs. The reasons are two-folded. Firstly, DSP

software development requires a deep knowledge of low-

level programming languages (e.g., Assembly). Secondly, DSP

application deployment involves many complex procedures

such as loading firmware, allocating memory, and issuing

remote procedure calls. The high complexity of development

and deployment discourages developers from utilizing DSPs.

A recent research work [5] proposed an abstraction layer

to insulate mobile applications from DSPs-specific details.

However, it demands developers to refactor the entire codebase

using a particular programming paradigm. This is labor-

intensive and would be impossible without access to source

code.

In this work, we present DSPBooster, a novel framework to

offload mobile applications to DSPs for power-performance

optimal execution. DSPBooster supports mobile applications

written in various high-level programming languages (e.g.,

WebAssembly or Kotlin). It transparently deploys suitable

application functions to DSPs based on runtime measurement

and prediction. This process requires neither access nor mod-

ification to the application source code.

Implementing such a system entails many technical chal-

lenges. Firstly, before we can offload application code, we

first need to translate it into efficient machine instructions

understood by DSPs. This is difficult since an application can

be implemented in any high-level language and we do not

have access to the source code. Secondly, not every function

can benefit from offloading. DSPs’ unique micro-architecture

generally favors tasks with a high level of data parallelism

and a high compute-control ratio. Identifying these tasks

without manual analysis of source code can be challenging.

Thirdly, existing inter-processor communication mechanisms

only support function invocation from CPUs to DSPs, but not

vice versa. As a result, a considerable number of functions

are not directly offloadable since they contain calls to system

interfaces running in CPUs.

In this paper, we present practical solutions to cope with

the above challenges. We implement a compiler pipeline that

can directly ingest high-level language bytecode and generate
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DSP machine instructions. The pipeline is extensible; new

bytecode can be supported by simply transforming it to a

language-independent intermediate representation. To identify

DSP-friendly tasks, we adopt an reinforcement learning model,

which analyses our compiler’s internal statistics and predicts

the benefits of offloading. The model also accepts the observed

performance gain/penalties as a feedback signal to constantly

fine-tune itself. To increase the offloading opportunities, we

emulate the missing DSP-to-CPU function call mechanism.

This is achieved by applying co-routine code transformations

on offloaded functions.

We consolidate the above techniques and implement a

prototype of DSPBooster on a vanilla Android 10 in a Google

Pixel 4 XL device. Our performance evaluation indicates that

DSPBooster achieves up to 11% performance speedup and 3×
power saving.

The main contributions of this paper can be summarized as

follows:

• We propose a framework that allows Android applications

to be transparently offloaded into DSPs.

• We present a reinforcement learning model to identify

functions that can benefit from DSP offloading.

• We enhance the existing inter-processor communication

mechanism to support function calls from DSPs to CPUs.

II. SYSTEM OVERVIEW

Figure 1 demonstrates the main workflow of our framework.

The initial stage is called ‘profiling’, where we start an unmod-

ified application and maintain an invocation counter for each

function. If this count exceeds a predefined limit, we mark the

function as a potential candidate for DSP offloading. Once a

satisfactory amount of profiling information is gathered, our

system proceeds into the next phase called ‘compilation’. An

LLVM-based compiler will take the bytecode of candidate

functions as input and emits machine instructions for DSPs.

Subsequently, the output binary and the compiler’s internal

statistics will be fed into a profit prediction component. In this

stage, a reinforcement learning model will predict whether it

is profitable to offload the function. If yes, the function will

be moved to DSPs for execution, otherwise it will continue

executing in CPUs. In the meantime, this model can take

the runtime performance measurement as a feedback signal

to constantly fine-tune itself.

This framework can benefit native or web-based mo-

bile applications implemented in various high-level program-

ming languages such as WebAssembly, Kotlin/Java, Dart and

JavaScript. In this paper, we mainly highlight the potential of

our framework for WebAssembly applications. Recently, they

have been widely adopted by the industry thanks to their high

portability and near-native performance [6], [7]. Despite the

focus, the following methodology sections are highly generic.

Key instructions to adapt our framework to other programming

languages are also provided in Section VIII-A. Another thing

to note is that our framework is compatible with mobile DSPs

from different vendors. In this paper, we use Qualcomm DSPs
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Fig. 1. System workflow

as the main experimentation platform. Qualcomm is one of the

dominant mobile processor producers. In the second quarter

of 2021, it leads the smartphone market with 35 percent of

revenue share [8].

III. PRELIMINARY PROFILING

Offloading programs to DSPs requires certain upfront per-

formance costs. The first overhead lies in converting program

bytecode to DSP machine code. It is achieved via a compiler

with a long optimization pipeline, which is generally memory

and computationally intensive. The second overhead derives

from CPU-DSP communication latency. CPUs communicate

with DSPs using asynchronous interrupt events. A CPU gener-

ates an interrupt to a DSP to signal that a task needs to be per-

formed. The DSP also raises an interrupt on the CPU upon task

completion. Under ideal conditions where CPU clock rates

are set to their maximum and power saving is disabled, the

overhead may be as low as 200 microseconds. Unfortunately,

these settings are not sustainable for mobile devices due to

high battery consumption. In a realistic condition, the CPU

clock rates are throttled according to thermal status. CPUs

also tend to go into a low-power state while awaiting DSP

responses. All these factors increase the round-trip latency up

to several milliseconds.

These overheads make us aware that, if a function is rarely

executed and each invocation only consumes a limited amount

of time, it is not worth offloading the function. Instead,

executing it on CPUs may take less energy and fewer CPU

cycles. To filter out this type of functions, our framework

initially executes applications entirely on CPUs and conducts

performance profiling simultaneously. A profiler operates by

intercepting calls to functions and injecting additional code to

capture performance metrics such as the duration or frequency

of a function call. Only if a function’s invocation count

reaches C or the time to execute a function call exceeds T
milliseconds, we consider the function to be ‘hot’, in other

words, a potential candidate for DSP offloading. In this paper,

we set the thresholds C and T to be 1000 and 10 respectively,

which are heuristic numbers adapted from previous research

papers [9], [10]. Noted that our framework only requires

fine-grained profiling information in the first few seconds

of program startup. Afterward, we can switch our profiler

to a low-overhead coarse-grained sampling profiler or just

disable profiling. Therefore, performance penalties induced by

profiling are nearly negligible.
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In the context of WebAssembly applications, we start

executing them in Chromium V8, the default web browser

engine in every Android device. V8 provides a built-in profiler,

which can collect sophisticated profiling information such

as memory footprint and network usage. However, most of

the information is unused by our framework and collecting

them comes at a price of a significant performance slowdown.

To avoid this issue, we implement an in-house lightweight

profiler by patching V8’s WebAssembly baseline compiler

Liftoff [11]. Specifically, we generate extra machine codes in

each function’s prologue and epilogue to collect its invocation

duration and count. The information is directly stored in the

main memory for post-processing. This technique imposes

minor performance penalties to programs because V8 will

gradually use its next-tier compiler Turbofan to recompile all

functions in background [12]. Once it is finished, the executing

binary will not contain any profiling instructions and run at

full speed.

IV. BYTECODE TRANSLATION

Once our system gathers sufficient profiling information, it

will proceed into the next mission: converting the bytecode

of candidate functions into efficient DSP machine code. This

is achieved using a three-stage compiler pipeline as shown

in Fig 2. In the first stage, the bytecode is translated into an

intermediate representation called LLVM IR [13]. The IR is

independent of any particular language but still capable of

representing the input without loss of information. In the next

phase, the LLVM optimizer takes the IR as input, conducts

various optimizations, and outputs the efficient IR. Finally, the

IR can be dispatched to LLVM backends to generate machine

instructions understood by the target DSP architectures.

This pipeline is highly modular and extensible. To support

a new programming language, we only need to implement a

bytecode translator for the first stage. Specifically, we first

use Flex and Bison [14] to generate a lexer and a parser.

They then enable us to build abstract syntax trees (ASTs) for

the input. By walking the trees, we can visit each bytecode

instruction and convert them to LLVM IR. The conversion

is generally not difficult since most low-level instructions in

the bytecode and LLVM IR are semantically similar. We need

to pay special attention to floating-point instructions, which

may not be supported by some low-end DSPs and need to be

emulated at a considerable performance cost. Even for high-

end DSPs, floating-point operations can sometimes degrade

performance since they are not likely to be vectorized by

compilers. In our implementation, we allow the pipeline to

transform floating-point operations into fixed-point operations.

Most DSPs possess intrinsic arithmetic instructions for fixed-

point data. They are significantly more power-efficient and can

be easily vectorized. Sometimes the fixed-point computation

may have higher round-off errors. Therefore, we keep the

transformation optional for users. Nevertheless, numerical

accuracy is not a concern for many real-world applications

such as video and audio processing.

Kotlin Bytecode 
Translator

Dart Bytecode 
Translator

WASM bytecode
Translator

V8 Bytecode 
Translator

Kotlin

Dart

Web
Assembly

Java
Script

Intermediate 
Representation

Optimizer

Hexagon DSP
Backend

TI DSP
Backend

MediaTek DSP
Backend

Hexagon 
Binary

TI
Binary

MediaTek
Binary

LLVM IR LLVM IR

Fig. 2. Three-stage Compiler Pipeline

In the context of WebAssembly, one implementation diffi-

culty is that LLVM IRs are register-based (i.e., operands and

results are stored in registers), while WebAssembly instruc-

tions are stack-based (i.e., pops operands from and pushes

results onto a stack). To conduct the conversion, we need

to maintain a stack structure to store the mapping between

the WebAssembly operands and LLVM registers. The stack

structure is only required during compilation (i.e., no runtime

overhead), because WebAssembly’s structured control flow

allows us to determine operand locations [15] statically. An-

other tricky issue stems from WebAssembly’s linear memory

model. Linear memory is a continuous byte-addressable buffer,

which spans from address 0 to a mutable amount of memory.

In WebAssembly, each memory operation (e.g., ‘load’ and

‘store’) expects a linear memory address. For example, a

WebAssembly instruction ‘i32.load 100’ will load a 32-bit

integer located in linear memory locations 100-103. This is

very different from the memory model of real-world hardware,

where applications are randomly allocated in a high virtual

memory address space (e.g., 0xffffffff80000000). To bridge

the difference, our translator generates necessary instructions

to map each WebAssembly memory address to a valid memory

address in the OS. In detail, our translator first generates a

program initialization routine to obtain a contiguous memory

chunk from the underlying OS. The region’s address is then

recorded in a global variable linear mem. Afterward, the

compiler can offset each WebAssembly memory operation’s

parameter with the value of linear mem. For instance, the

WebAssembly instruction ‘i32.load 100’ will be translated into

the simplified LLVM IR as shown in Algorithm. 1. We also

inject bounds-checking instructions to ensure that all memory

operations are well-defined. If out-of-bound access is detected,

we can terminate the application immediately to ensure system

safety.

Algorithm 1 Transforming a WebAssembly address to a valid

OS address
1: %1 = load i8*, i8** linear mem

2: %transformed addr = getelementptr inbounds i8, i8* %1,

i64 100

3: call @bounds check(i8* %transformed addr)

4: %2 = bitcast i8* %transformed addr to i32*

5: %result = load i32, i32* %2
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V. PROFIT PREDICTION

Not every candidate function can benefit from offloading

due to potential mismatches between its workload patterns

and DSPs’ micro-architectures. In detail, modern DSPs adapt

a Very Long Instruction Word (VLIW) architecture, which

requires a program to explicitly specify multiple instructions

(i.e., an instruction group) to execute in each cycle. Any two

instructions in the same group are not allowed to have data

or control dependency. Usually, the compiler will search for

an optimal order of instructions to avoid the dependencies.

Sometimes, they are inevitable, especially when scheduling

branch control instructions. In that case, the compiler will

have to move the offending instruction into a new group and

replace the original slot with a NOP instruction. Constant NOP

replacement can result in significant performance degradation.

Therefore, DSPs generally perform poorly for control-heavy

tasks. Instead, DSP-friendly tasks have a high compute-control

ratio and a high level of data parallelism.

A. Problem Formulation

Our framework attempts to filter out the ill-suited functions

by solving a binary classification problem. Specifically, given

a function f , our objective is predicting its likelihood across

two labels: beneficial (1) or detrimental (−1). These labels are

defined using the following equation:

l(f) =

{
1 if Td

Tc
≤ R

−1 otherwise
(1)

Here, Tc and Td denote a function’s execution time on a

CPU and a DSP respectively. R is a constant and set to be
Fc

Fd
, where Fc and Fd are clock rates for the CPU and the

DSP correspondingly. We can consider R as an approximate

energy-efficient ratio, in other words, the DSP is R times more

power-efficient than the CPU for the same amount of working

time. This is a conservative approximation since DSPs’ VLIW

design usually provide higher instructions per cycle (IPC)

than CPUs. Nevertheless, we ignore the IPC differences for

model simplicity. Note that Fc is generally larger than Fd.

For example, Fc on a Snapdragon 855 SoC can reach up to

2.8 GHz, while its Fd is only approximately 1.0 GHz. Thus,

R is greater than or equal to 1. Intuitively speaking, a function

is beneficial if it satisfies one of the following conditions:

1) It takes less execution time on DSPs than on CPUs (i.e.,

performance-optimal)

2) It consumes less energy on DSPs despite slightly longer

execution time (i.e., power-performance optimal).

B. Feature Selection

To solve the above problem, we can build a binary classifi-

cation model. Before we can proceed, we notice that an input

function consists of a sequence of bytecode instructions. Due

to its unwieldy high-dimensional spaces, computing on it may

require an unreasonable amount of resources. Hence, we must

first create low-dimensional representations for the input. Like

many other machine learning applications, creating expressive

representation is the most challenging step since many domain

knowledge factors have to be taken into consideration. In

this paper, we address this challenge by exploiting internal

statistics from our previous compiler pipeline. The intuition is

that many compilers have deep domain knowledge of target

processors. They tend to apply as many as hardware-specific

transformations on source codes to exploit processor capacities

better. If many optimizations are successfully applied, we can

infer that the program has a matching workload pattern to

the target hardware. In our prototype, we exploit 17 types of

compiler statistics. We showcase several potentially expressive

features below.

1) Ratio of the instruction number to the instruction
group number. In a VLIW architecture, the compiler

is responsible for bundling instructions to instruction

groups. Instructions in the same group can be executed

simultaneously in one hardware cycle. Hence, a higher

ratio of the instruction number to the instruction group

number means better exploitation of instruction-level

parallelism in DSPs.

2) Single Instruction Multiple Data. DSPs can exploit the

Hexagon Vector eXtension (HVX) to accelerate vector

operations. Hence, the compiler will attempt to vectorize

input functions using various transformations. For exam-

ple, the SLP vectorizer merges multiple scalar operations

into vector instructions, while the Loop vectorizer widens

instructions in loops to operate on multiple consecutive

iterations. In our prototype, the count of vectorized code

segments and the number of HVX instructions are se-

lected as features.

3) Hardware loop utilization. DSPs provide hardware loop

instructions to perform loop branches with zero overhead.

Therefore, the compiler will make the best efforts to

transform each software loop into a hardware loop. This

transformation will only be carried out if a loop is regular

(i.e., countable, not deep-nested, and no function calls

inside). Hence, a function with a higher hardware loop

count tends to have a high compute-control ratio and can

better benefit from DSP execution.

4) Hardware Threading. Modern DSPs are multi-threaded.

An application’s workload can be split and executed in a

parallel manner. In our compiler pipeline, we implement

an optimization pass to parallelize hot loops automati-

cally. This optimization can only be carried out if a loop

is regular and has no dependent iteration. A function with

many multi-threaded loops is more likely to benefit from

DSP execution.

5) Peephole optimization. Peephole optimization is per-

formed on a small sequence of machine codes, which is

commonly referred to as peephole or window. It analyses

each window and attempts to replace it with shorter

and faster code without change in output. For example,

LLVM utilizes this optimization to remove redundant sign

extends instruction or redundant negation of predicates,

which subsequently opens up many dead code elimi-

nations opportunities. Therefore, the usage of peephole
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optimization can also serve as a feature.

It should be noted that most selected features are normalized

against runtime instruction counts, which can be obtained from

the profiler.

C. Online Learning

With the low-dimensional feature vectors, we can proceed

to train a classification model. To achieve a good performance,

we need to ensure that the training dataset is sufficiently large.

Moreover, the dataset should have an unbiased distribution

for real-world workload patterns. In practice, preparing such

a dataset can be very labor-intensive and complicated. In this

paper, we circumvent this issue by exploiting one observation:

we can measure the performance benefits or penalties soon

after we execute a function on DSPs or CPUs. This measure-

ment can serve as a feedback signal to constantly improve the

classification algorithm. Over time, the model will adapt to the

real-world data patterns and deliver acceptable performance.

To achieve this, we reformulate our classification problem

as a contextual multi-armed bandit problem (CMAB). Specif-

ically, for each round t ∈ {1, ..., T}, an agent can observe

a multi-dimensional context vector xt ∈ Rd. It then needs to

select an action at from a predefined action set {1, ..., J}. The

action will come with a reward rt,at
, which is unknown until

the action is carried out. We will assume that the expected

reward is a linear function of the context vector:

E[rt,at
|xt] = θTat

xt, (2)

where θa is initially unknown but can be gradually learned

through action. The goal of our agent is to find a strategy that

minimizes the expected regret:

R(T ) = E

[
T∑

t=1

(
rt,a∗

t
− rt,at

)]
, (3)

where a∗t denotes the action with maximum expected payoff

at time t.
In the context of our system, the agent needs to select one

action between (1) staying at CPUs and (2) offloading to DSPs.

The reward for staying at CPUs is 0. When a function f is

offloaded to DSPs, the payoff is 3 if it is a beneficial function

as explained in Equation 1. Otherwise, a negative payoff of −5
is incurred. Note that the negative payoff governs the trade-

off of exploration and exploitation. When the payoff is higher

(e.g., −1), the agent is more likely to move unseen functions

to DSPs and learn from the observation. In contrast, if the

payoff is lower (e.g., −10), the agent may only attempt DSPs

offloading if it is confident about getting a positive reward.

This CMAB problem can be solved in an iterative fashion,

as shown in Fig 2. The core of the algorithm lies in line 6. The

red part estimates the mean reward of each action, while the

blue part calculates the upper bound of the confidence interval.

Note that α is a hyperparameter and the higher α is, the

wider the confidence bound becomes. Intuitively speaking, the

algorithm explores actions that we have high uncertainty about

while exploiting actions that have superior average returns.

Algorithm 2 Solving CMAB using the LinUCB algo-

rithm [16]

1: A1, A2 ← Id (d-dimensional identity matrix)

2: b1, b2 ← 0d×1 (d-dimensional zero vector)

3: for t ∈ {1, ..., T} do
4: θ1 ← A−1

1 b1
5: θ2 ← A−1

2 b2

6: at ← argmaxa∈1,2

(
θTa xt + α

√
xT
t A

−1
a xt

)
7: Aat

← Aat
+ xtx

T
t

8: bat
← bat

+ rtxt

9: end for

VI. EXECUTION OFFLOADING.

We now can proceed to the last phase of our framework:

execution offloading. On the surface, this may seem to be a

straightforward mission because Qualcomm already provides

a mechanism called Fast Remote Procedure Call (FastRPC) to

enable function calls from CPUs to DSPs. FastRPC features

a typical proxy pattern as demonstrated in Fig 3.

1) The CPU process initiates the DSP function invocation

using an auto-generated stub.

2) The stub packs the function parameters into an RPC mes-

sage and sends it to the DSP RPC driver (/dev/cdsprpc-
smd) using the system call ioctl.

3) The kernel driver forwards the RPC message to the DSPs

through the Shared Memory Driver (SMD) channel and

then waits for the response.

4) The real-time OS running in DSPs dispatches the message

to an auto-generated skeleton library for processing.

5) The skeleton unmarshals parameters and calls the target

method implementation, i.e., the generated machine code

from Section IV.

6) Once the target method is finished, the reply traces the

same steps in the reverse direction.

These steps are designed to be synchronous to eliminate the

complexity of application implementation. From the applica-

tion’s perspective, a DSP function invocation looks identical

to a local call.

However, despite the FastRPC’s simplicity, a technical chal-

lenge occurs when an offloaded DSP function attempts to

invoke a function residing in a CPU. This kind of function

call is not yet supported by FastRPC and could happen in

two common scenarios. The first situation is that the target

function is not sitting on a hot code path. Take Algorithm 3

as an example. The function foo is offloaded and consists

of a branching instruction. Since the branching condition

is satisfied 99% of the time, the function bar is therefore

executed very often and likely to be offloaded as well. In

contrast, the function baz is seldom executed and thus not

considered for offloading. The second situation is that the

target function is a language runtime function (e.g., object

allocation in a managed heap) or a system interface function
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Fig. 3. Function calls from CPUs to DSPs using FastRPC.

(e.g., filesystem access). These functions reside in kernel space

and should not be moved out of CPUs for security reasons.

Algorithm 3 An example for DSP to CPU invocation

1: function FOO � Offloaded

2: if condition then � satisfied in 99% of the time

3: call bar � Hot path and offloaded.

4: else
5: call baz � Cold path and not offloaded.

6: end if
7: ...

8: end function

A naive approach to circumvent this challenge is to avoid

offloading functions that contain calls to non-offloadable func-

tions. Specifically, we first build a directed graph where each

node is a method and each edge is a method call directed

from the caller method (parent node) towards the callee

method (child node). We then scan each method and mark

it as non-offloadable if it contains system calls. Starting from

them, we iterate through their parents until we reach the root

and set the scanned nodes as non-offloadable. Meanwhile, to

prevent the cold path issue in Algorithm 3, when a function

is offloaded, all its descendants are forcibly offloaded as

well. Unfortunately, this approach incurs considerable CPU

overheads. Furthermore, this approach may not maximize the

offloading opportunities: a function with any system calls is

never offloaded, even if a significant proportion of the function

body can benefit from the DSP execution.

In this paper, we present an alternative approach: we im-

plement the missing DSP-to-CPU function call mechanism

based on the FastRPC framework. The main workflow is

demonstrated in Fig 4. As usual, a CPU utilizes FastRPC to

invoke a target DSP function. But this time, the target function

is pre-processed by a code transformation called Coroutine
Transformation. Every invocation to a non-offloadable func-

tion is now transformed into a suspend point. When the

suspend point is reached, the DSP execution is suspended, and

control is returned to the CPU along with a snapshot of stack

frames. This snapshot is commonly referred to as coroutine
context. From the CPU’s perspective, this operation is just an

ordinary FastRPC function call return. Afterward, the CPU

can execute the non-offloadble function on behalf of the DSP

function. Once finished, the CPU will again use FastRPC to

call the suspended DSP function but with the coroutine context

as an additional parameter. This will resume the DSP function

CPU Func. DSP Func.

Start Offload

RPC call

System call
suspend point

RPC ReturnSystem call 
helper RPC call

2
with Context

with Context

1

3
4 5

6

Fig. 4. Flow of execution for a DSP function with suspend points

from the last suspend point.

The key component of this architecture is the coroutine

transformation. Behind the scene, it splits a function into

a ‘ramp function’ and an arbitrary number of continuation

functions, one for each suspend point. The ramp function

serves as an initial entry point and executes until a suspend

point is first reached. It then returns a continuation function

pointer to indicate where to resume the execution. It is worth

mentioning that this code transformation comes at the cost

of larger binary sizes and memory footprint. This is mainly

attributed to the fact that every continuation function now has

a sophisticated prologue and epilogue to recover and generate

the coroutine context. Hence, we should avoid offloading a

DSP function with many suspend points. To achieve that

automatically, we make the number of suspend points as an

input feature for our adaptive machine learning model in

Section V.

VII. SYSTEM EVALUATION

In this section, we provide a system evaluation of DSP-

Booster. We are interested in one key question: how efficient

are DSP-offloaded mobile applications in terms of execution

time and power consumption? We use the following experi-

ment setups to answer this question.

A. Test Bed Configurations

Hardware. We conduct our experiments on an off-the-

shelf Google Pixel 4 smartphone. The device is equipped

with a Qualcomm SM8150 Snapdragon 855 chipset, which

contains an 8-core 2.8 GHz Kryo 485 CPU and 6 GB of

RAM. The chipset also possesses four different types of DSPs,

each devoted to a specific application space: sensor (sDSP),

modem (mDSP), audio (aDSP), and compute (cDSP). In this

paper, we mainly utilize the compute DSP for our experiments.

This choice is made to comply with the security policies in

DSPs. Specifically, Qualcomm incorporates a proprietary real-

time OS named QuRT to manage the DSPs. Every executable

binary wishing to run on that OS needs to be appropriately

signed using a developer certificate, to which only a small

number of mobile vendors have access. Our implementation

addresses this issue by exploiting a newly introduced sandbox

mode called the unsigned protection domain (PD). Unsigned
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TABLE I
BENCHMARK PROGRAMS

ID Benchmark Description
P1 N-body Model the orbits of 5000000 particles

using a symplectic-integrator.
P2 Merge-sort Sorts an array of 1000000 integer ele-

ments using the merge sort algorithm.
P3 Spectral-norm Calculate the spectral norm of an

5500× 5500 infinite matrix.
P4 Regex Locate sub-strings from 5000000 string

using regular expressions.
P5 Fasta Genome sequence similarity searching

on 2500000 sequences.
P6 Complement Compute the reverse complement of

a DNA sequence with 100000000
genomes.

P7 Integral Calculates the integral of an image with
a resolution of 7680× 4320.

P8 Thresholding Apply the adaptive-level thresholding to
each image pixel and transforms it into
a binary value.

P9 Colorspace Convert an image from one color space
to another (e.g., HSV to RGB).

P10 Convolution Convolve a 3× 3 kernel with an image.
Convolution is the key operation of dig-
ital image processing.

P11 MP3 Decoding Decode a MP3 audio file and output
pulse code modulation.

P12 H264 Decoding Decode H.264 video bitstream and out-
put bitmap for each frame.

PD allows for the execution of signature-free binaries with

limited access to underlying hardware resources (e.g., cam-

eras or microphones). This restriction does not impact our

framework since we only offload general-purpose computation

to DSPs. To enable the unsigned protected domain feature,

we need to insert extra system call sequences into stub

functions according to the Hexagon DSP documentation [17].

Currently, unsigned PD is only available in Compute DSPs of

particular high-tier SoCs. Nevertheless, the support is likely

to be extended to all types of SoC shortly, as suggested by

Qualcomm.

Software. Our Google Pixel 4 mobile device is running

a vanilla Android 11 operating system. To facilitate system

implementation and debugging, we obtain the root access

by unlocking the bootloader† and patching the boot image

partition. We also temporarily switch the Security-Enhanced

Linux (SELinux) mode from enforcing to permissive. This

step is solely intended for Google Pixel devices since they

enforce stringent SELinux policies and disallow third-party

applications to access DSP hardware.

B. Performance Benchmarking

We benchmark the programs listed in Table I. Specifically,

P1 to P6 are adapted from established CPU benchmark suites

such as JetStream [18] and BenchmarkGames [19]. P7 to

P10 derive from the open-source computer vision library

OpenCV [20]. P11 and P12 are adapted from the open-source

multimedia processing library FFmpeg [21].

†This can be achieved by accessing on-device developer options in Android.

These programs are written in portable high-level languages

(Rust or C++). They consist of an entry-point function and

a set of kernel functions for core computational logic. The

kernels are optimized to harness the SIMD capability of

modern CPUs. For example, they may arrange their internal

data structures in a particular alignment such that the com-

pilers’ auto-vectorization analysis can automatically convert

scalar code into vector code. They can also utilize some C

language directives (e.g., ‘OMP parallel’) to explicitly instruct

the compiler to vectorize the chosen code block.

We compile these programs to WebAssembly bytecode

using corresponding language toolchains (e.g., Emscripten

or RustC). Afterward, we run these executables in V8 We-

bAssembly runtime 50 times with and without our proposed

framework. We measure their average execution time (i.e., Td

and Tc) and battery percentage consumption (i.e., Pd and Pc).

To eliminate the potential influence of disk I/O, we preload

all input files to the main memory. To obtain more accurate

power consumption results, we turn the phone into airplane

mode, reduce the backlight brightness to 10%, and shut down

other background activities. We also cool down the phones

before each test to ensure that the CPUs and DSPs can keep

working at a stable frequency during the experiment.

Figure 5 demonstrates the relative execution time Td/Tc

and power consumption Pd/Pc. What stands out are P4 and

P7. They run up to 11% faster in DSPs than in CPUs while

achieving almost 3× energy reduction. Similarly, P2, P9, and

P10 deliver a relative execution time slightly above 1 (i.e.,

achieve comparable performance in DSPs and CPUs) and

conserve 50% battery on average. We pay special attention to

P10 since Hexagon DSP SDK provides an alternative imple-

mentation in a low-level assembly language. Our preliminary

experiment shows that it performs approximately 1.7× faster

than our benchmark. This result is not surprising since the

assembly version evenly splits the application workload and

fully leverages the dynamic hardware threading capacity. In

contrast, our compiler pipeline can only parallelize partial

workload (i.e., loops without dependent iterations) in the

benchmark program. A further refinement of the compiler

pipeline is warranted.

We use a horizontal line to reference the beneficial criterion

R as discussed in Section V. It can be observed that P1 and

P12 are both above the reference line, indicating they may not

benefit from DSP offloading due to a potential mismatch be-

tween workload pattern and DSPs’ micro-architecture. Specif-

ically, P1 runs about 4× slower in DSPs than in CPUs and

consumes 36% more energy. P12 performs approximately 3×
slower and only reduces 2% power consumption. Note that our

profit predictor successfully identifies these two benchmarks

as non-beneficial, but we forcibly offload them to DSPs just

for performance evaluation. We conduct a preliminary inves-

tigation on the two programs and notice that their generated

DSP binaries contain limited SIMD instructions. One potential

culprit is that their kernel functions contain irregular nested

loops, which cannot be automatically unrolled and vectorized

by compilers. Another interesting observation is that P12,
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Fig. 5. Comparison of Execution Speed and Power Consumption

despite being classified as non-beneficial, still manages to

conserve a small amount of battery. This indicates that our

choice of the beneficial criterion R (i.e., the ratio of CPU

frequency to DSP frequency) is conservative.

C. System Overhead

Memory Overhead. Our system requires extra memory

space for DSP binary compilation and bookkeeping. In this

experiment, we select five benchmark programs from the

previous experiment and report their memory overhead in

Fig 6 (a). It can be seen that the average memory overhead

is approximately 80 MB. This overhead is almost negligible

in modern smart devices considering they usually possess

gigabytes of memory space. We further examine the programs’

memory map information using the pmap command. We

observe that the compiler component accounts for most of the

memory overhead (74 MB). This finding remains somewhat

consistent across various programs. Meanwhile, we realize that

the remaining overhead lies in storing the compiled binaries

and increases proportionally to the number of offloaded func-

tions. To estimate this overhead in a complex program, we

duplicate the kennel function in the benchmark program P8

for 10000 times and compile them. As expected, the overhead

now reaches 192 MB, which is still moderate.

CPU Overhead. Our system consumes extra CPU resources

in several intermediate procedures such as bytecode compila-

tion and profit prediction. In this experiment, we reuse the five

benchmark programs above and report the CPU overhead. We

conduct the measurement with the help of the time command.

This command provides three performance metrics for a given

task, including elapsed time (i.e., how long the task takes to

run), user time (i.e., CPU time spent in user mode), and kernel

time (i.e., CPU time spent in kernel mode). For typical CPU

programs, the elapsed time approximately equals the sum of

user time and system time. However, this is not the case for

our benchmark programs since their core computational logic

is now done in DSPs. As a result, CPUs will mostly stay at a

sleep state and only wake up shortly for the intermediate tasks

mentioned above. In other words, the sum of user time and

Fig. 6. Memory overhead and CPU overhead

system time now reflects the CPU overhead of our framework.

Figure. 6 (b) demonstrates the user time and system time as a

percentage of the elapsed time for all the benchmark programs.

The average value is merely 7%, indicating that our framework

overhead barely impacts the overall system performance.

VIII. SYSTEM EXTENSIONS

DSPBooster is still a research prototype and has room for

improvement. In this section, we suggest several potential

research directions.

A. Accelerating Different Types of Applications.

In this paper, we demonstrate the potential of DSPs mainly

using WebAssembly-based mobile applications. Nevertheless,

our methodology can be easily adapted to mobile applications

written in various programming languages. We can reuse

most system components (e.g., performance profiler, profit

predictor, and function offloader) and only need to implement

corresponding bytecode translators.

Kotlin: Kotlin is a modern statically typed programming

language. It can fully interoperate with Java bytecode and

provides a more concise syntax using type inference. Recently,

Kotlin has become Google’s preferred programming language

for developing native Android applications. To implement a

translator for Kotlin, we adapt a compiler component from

the Android Runtime [22], which provides support for pars-

ing Java bytecode and emitting LLVM IR. We then can

directly feed the resulting IR into LLVM backends to generate

DSP machine code. Currently, we are still addressing one

performance issue. Specifically, a considerable number of

Java functions depend on runtime function calls (mainly for

managed heap object manipulation). As we have discussed

in Section VI, these functions would require sophisticated

coroutine transformations. As a result, the overall system

performance is negatively impacted.

Dart: Dart is another Google’s recommended programming

language for native Android applications. Dart supports many

modern high-level language features such as object-oriented

programing paradigms and automatic garbage collection. To

achieve native performance, Dart directly compiles to machine

code. Our preliminary experiment found it tricky to translate
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the machine code to LLVM IR since it is an open research

issue called static binary translation. We need to overcome

several technical challenges such as code discovery (i.e., dis-

tinguishing data from instructions) and indirect branching (i.e.,

the jump destination address must be mapped to an address in

the translated code). Currently, we are still experimenting with

two potential workarounds. Firstly, we are planning to enhance

the Dart compiler to embed Dart IR as an auxiliary section in

output files. In this case, we only need to implement a Dart IR

to LLVM IR translator. Alternatively, we can request the Dart

compiler to generate a WebAssembly binary, which can be

fed into our WebAssembly bytecode translator. However, this

WebAssembly generation feature is still highly experimental

and may fail to compile certain source code.

JavaScript: JavaScript is frequently used in Web-based mo-

bile application development. However, JavaScript is generally

too slow for compute-intensive tasks [23]. It is mainly used

in low-compute scenarios, especially user interface design.

As a result, the benefit of DSP offloading may be reduced.

Meanwhile, building a bytecode compiler for JavaScript is

very challenging due to a lack of typing information. Common

runtimes (e.g., V8) essentially bypass this challenge by using

interpreters to execute most JavaScript functions. They only

compile frequently executed functions using a technique called

Speculative Compilation. The main idea is to use profiling to

infer types dynamically. With the information, the runtimes

can generate a statically typed IR (e.g., TurboFan IR in V8)

of the dynamically typed program. The generated code needs

to place guarding conditions to validate whether the runtime

types match the profiling types. If not, it has to throw out the

machine code and fall back to interpreter execution. In our

prototype, we utilize the result of speculative compilation and

implement a translator to convert Turbo Fan IR into LLVM IR.

The resulting IR can then be used to generate DSP machine

code. Currently, the translator can only process a small subset

of Turbo Fan IR. More implementation effort is warranted.

B. Experimenting with Different Types of DSPs

Many premium-tier devices (e.g., Pixel 4XL and XiaoMi 9)

can possess different types of DSPs. As we have mentioned

in Section VII-A, we only conducted experiments on compute

DSPs to comply with the signature verification rule. Recently,

we discovered a workaround; if we disable the secure boot

mechanism†, we then can sign executables using a debug

certificate to bypass the verification. This trick allows us to

explore the potential of other types of DSPs.

Our preliminary study reveals that compute DSPs possess

a more advanced MMU compared with other types of DSPs.

This leads to differences in the amount of memory data we

can share between CPUs and DSPs. Specifically, compute

DSPs can access virtually contiguous memory pages, which

are not necessarily physically contiguous. Such memory can

be easily obtained with the help of the Android generalized

†Secure boot ensures the integrity of firmware and software running on a
platform. Disabling secure boot is only possible in a Qualcomm development
kit.

memory manager (i.e., ION [24]). Similar to the dynamic

memory allocation ‘malloc’ in C, the allocation will always

succeed if there is sufficient physical memory. In contrast, non-

compute DSPs demand the memory pages to be physically

contiguous. Such memory can only be allocated using the

system call ‘kzalloc’. When requesting a sizable chunk of

memory (e.g., more than 4 MB), this system call is prone

to failure due to the memory defragmentation issue [25]. As a

result, functions running in non-compute DSPs can only share

a limited amount of memory data with CPUs. This limitation

significantly lowers the number of functions offloadable to

non-compute DSPs. To identify these offloadable functions,

we need to adopt a static code analysis technique called

‘Pointer Analysis’. It is designed to examine which pointers

can point to which variables or storage locations. A function

is offloadable to non-compute DSPs only if all pointers insides

refer to the small sharable memory or local stack variables.

C. Tracing Offloading

By default, DSPBooster compiles and offloads code at the

function level. Alternatively, DSPBooster can be tuned to work

at the tracing level. In this setting, DSPBooster can identify

the frequently executed parts inside a function and selectively

compiles those structures for the balance of compilation time

and memory usage. However, this also significantly increases

the implementation complexity of our compiler pipeline. For

example, our compiler now has to provide an on-stack replace-

ment (OSR) mechanism, which allows a running function to

transfer control to the newly compiled DSP code using the

same stack frame. This can be challenging as CPUs and DSPs

arrange stack contents in a different layout. We plan to keep

improving the stability of tracing offloading.

IX. RELATED WORK

Smartphone vendors have devoted significant research ef-

forts to DSPs. They initially adopted DSPs in the modem,

a wireless communication component that continuously pro-

cesses analog radio signals in real-time. These operations

would run notably slower and drain far more energy on

CPUs [26], [1], [27]. Later, mobile manufacturers have found

DSPs’ use in sensory data processing [28], [29], [30]. A

typical example is wake-up words for virtual assistants (e.g.,

Hey Google or Hi Siri). To implement this functionality, a

device needs to monitor a microphone’s input continuously.

For this task, DSPs are shown to be approximately ten times

more energy-efficient than CPUs [2]. Recently, edge artificial

intelligence (edge AI) is becoming a hot research topic. A

considerable amount of AI computation can now potentially

be offloaded from cloud data centers to mobile devices.

To prepare for this transition, several mobile manufacturers

have proposed AI compute engines specifically optimized for

DSPs [31], [32], [33]. Despite the applications outlined above,

DSPs are still an under-utilized resource in mobile devices.

The high complexity in DSP development and deployment

deters developers from utilizing DSPs. Recently, one research
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work [5] proposed abstraction layers to conceals most working

details of DSPs. However, they demand developers to follow

a particular programming paradigm and use a specific set

of application program interfaces. As a result, many existing

applications have to be refactored, which may be impractical

without access to source code.

X. CONCLUSION

This paper presents DSPBooster, a framework that offloads

mobile applications to DSPs to pursue higher execution speed

and lower power consumption. DSPBooster can offload appli-

cations written in various high-level programming languages.

It transparently selects suitable application functions to offload

using a reinforcement learning model. DSPBooster requires

neither access nor modification to application source code.

We conduct a performance evaluation of our prototype. Our

experiment results show that DSPBooster achieves up to 11%

performance speedup and 3× power saving.
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