2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) | 978-1-6654-8810-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/COMPSAC54236.2022.00108

2022 1IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)

DSPBooster: Offloading Unmodified Mobile
Applications to DSPs for Power-performance
Optimal Execution

Elliott Wen
The University of Auckland
jwen929 @aucklanduni.ac.nz

Abstract—Mobile cloud computing offloads intensive code to
remote servers to improve execution performance and battery
lifetime. Unfortunately, it is prone to data breaches and depen-
dent on network connectivity. In light of these issues, we explore
the potential of an under-utilized local computing resource:
Digital Signal Processors (DSPs). Programmable DSPs are widely
equipped in mobile devices and can conduct mathematical oper-
ations at high speed and low power. However, existing mobile ap-
plications rarely offload computation to DSPs due to two reasons.
Firstly, conventional DSP development requires high proficiency
in low-level programming languages. Secondly, DSP application
deployment involves many complex steps such as kernel memory
allocation and remote procedure calls. In this paper, we introduce
DSPBooster, a framework to facilitate application offloading
to DSPs for power-performance optimal execution. DSPBooster
supports unmodified applications implemented in various high-
level programming languages. It transparently deploys suitable
application functions to DSPs based on runtime measurement and
prediction. Implementing such a system entails many technical
challenges thanks to DSPs’ unique micro-architecture and inter-
processor communication mechanism. In this paper, we provide
workable solutions and a thorough system evaluation. We show
that DSPBooster can provide up to 11% performance gain and
3X power reduction.

I. INTRODUCTION

Mobile cloud computing aims to reduce battery consump-
tion and execution time by offloading intensive applications to
cloud servers. Unfortunately, this remote computing paradigm
is prone to data breaches and highly dependent on network
connectivity. In light of these issues, this paper explores
the potential of Digital Signal Processors (DSPs), a local
computing resource that can be found in nearly all mobile
devices.

DSPs can perform mathematical operations at high speed
and low power. They are responsible for many essential
functionalities of mobile devices such as wireless communi-
cation [1] and sensory data processing [2]. Note that early
generation DSPs were generally non-programmable and ded-
icated only to one task. Recent years have witnessed many
breakthrough technologies in DSP design such as Very Long
Instruction Word micro-architecture [3] and System Memory
Management Unit [4]. DSPs now can support general-purpose
programming languages and handle very versatile workloads.

fCorresponding author

978-1-6654-8810-5/22/$31.00 ©2022 IEEE
DOI 10.1109/COMPSAC54236.2022.00108

Jiaxing Shen’
The Hong Kong Polytechnic University
jiaxshen @polyu.edu.hk

Yet, despite these advances, DSPs are still an under-explored
resource in mobile computing. Mobile applications nowadays
(excluding those from device vendors) seldom offload com-
putation to DSPs. The reasons are two-folded. Firstly, DSP
software development requires a deep knowledge of low-
level programming languages (e.g., Assembly). Secondly, DSP
application deployment involves many complex procedures
such as loading firmware, allocating memory, and issuing
remote procedure calls. The high complexity of development
and deployment discourages developers from utilizing DSPs.
A recent research work [5] proposed an abstraction layer
to insulate mobile applications from DSPs-specific details.
However, it demands developers to refactor the entire codebase
using a particular programming paradigm. This is labor-
intensive and would be impossible without access to source
code.

In this work, we present DSPBooster, a novel framework to
offload mobile applications to DSPs for power-performance
optimal execution. DSPBooster supports mobile applications
written in various high-level programming languages (e.g.,
WebAssembly or Kotlin). It transparently deploys suitable
application functions to DSPs based on runtime measurement
and prediction. This process requires neither access nor mod-
ification to the application source code.

Implementing such a system entails many technical chal-
lenges. Firstly, before we can offload application code, we
first need to translate it into efficient machine instructions
understood by DSPs. This is difficult since an application can
be implemented in any high-level language and we do not
have access to the source code. Secondly, not every function
can benefit from offloading. DSPs’ unique micro-architecture
generally favors tasks with a high level of data parallelism
and a high compute-control ratio. Identifying these tasks
without manual analysis of source code can be challenging.
Thirdly, existing inter-processor communication mechanisms
only support function invocation from CPUs to DSPs, but not
vice versa. As a result, a considerable number of functions
are not directly offloadable since they contain calls to system
interfaces running in CPUs.

In this paper, we present practical solutions to cope with
the above challenges. We implement a compiler pipeline that
can directly ingest high-level language bytecode and generate

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

DSP machine instructions. The pipeline is extensible; new
bytecode can be supported by simply transforming it to a
language-independent intermediate representation. To identify
DSP-friendly tasks, we adopt an reinforcement learning model,
which analyses our compiler’s internal statistics and predicts
the benefits of offloading. The model also accepts the observed
performance gain/penalties as a feedback signal to constantly
fine-tune itself. To increase the offloading opportunities, we
emulate the missing DSP-to-CPU function call mechanism.
This is achieved by applying co-routine code transformations
on offloaded functions.

We consolidate the above techniques and implement a
prototype of DSPBooster on a vanilla Android 10 in a Google
Pixel 4 XL device. Our performance evaluation indicates that
DSPBooster achieves up to 11% performance speedup and 3 x
power saving.

The main contributions of this paper can be summarized as
follows:

« We propose a framework that allows Android applications
to be transparently offloaded into DSPs.

o« We present a reinforcement learning model to identify
functions that can benefit from DSP offloading.

o We enhance the existing inter-processor communication
mechanism to support function calls from DSPs to CPUs.

II. SYSTEM OVERVIEW

Figure 1 demonstrates the main workflow of our framework.
The initial stage is called ‘profiling’, where we start an unmod-
ified application and maintain an invocation counter for each
function. If this count exceeds a predefined limit, we mark the
function as a potential candidate for DSP offloading. Once a
satisfactory amount of profiling information is gathered, our
system proceeds into the next phase called ‘compilation’. An
LLVM-based compiler will take the bytecode of candidate
functions as input and emits machine instructions for DSPs.
Subsequently, the output binary and the compiler’s internal
statistics will be fed into a profit prediction component. In this
stage, a reinforcement learning model will predict whether it
is profitable to offload the function. If yes, the function will
be moved to DSPs for execution, otherwise it will continue
executing in CPUs. In the meantime, this model can take
the runtime performance measurement as a feedback signal
to constantly fine-tune itself.

This framework can benefit native or web-based mo-
bile applications implemented in various high-level program-
ming languages such as WebAssembly, Kotlin/Java, Dart and
JavaScript. In this paper, we mainly highlight the potential of
our framework for WebAssembly applications. Recently, they
have been widely adopted by the industry thanks to their high
portability and near-native performance [6], [7]. Despite the
focus, the following methodology sections are highly generic.
Key instructions to adapt our framework to other programming
languages are also provided in Section VIII-A. Another thing
to note is that our framework is compatible with mobile DSPs
from different vendors. In this paper, we use Qualcomm DSPs

615

Function
Start
Count >
hreshold2
Incr. Count
& Execute

Bytecode Binal

> Profit
Compilation | Statistics icti

Prediction

Fig. 1. System workflow

as the main experimentation platform. Qualcomm is one of the
dominant mobile processor producers. In the second quarter
of 2021, it leads the smartphone market with 35 percent of
revenue share [8].

III. PRELIMINARY PROFILING

Offloading programs to DSPs requires certain upfront per-
formance costs. The first overhead lies in converting program
bytecode to DSP machine code. It is achieved via a compiler
with a long optimization pipeline, which is generally memory
and computationally intensive. The second overhead derives
from CPU-DSP communication latency. CPUs communicate
with DSPs using asynchronous interrupt events. A CPU gener-
ates an interrupt to a DSP to signal that a task needs to be per-
formed. The DSP also raises an interrupt on the CPU upon task
completion. Under ideal conditions where CPU clock rates
are set to their maximum and power saving is disabled, the
overhead may be as low as 200 microseconds. Unfortunately,
these settings are not sustainable for mobile devices due to
high battery consumption. In a realistic condition, the CPU
clock rates are throttled according to thermal status. CPUs
also tend to go into a low-power state while awaiting DSP
responses. All these factors increase the round-trip latency up
to several milliseconds.

These overheads make us aware that, if a function is rarely
executed and each invocation only consumes a limited amount
of time, it is not worth offloading the function. Instead,
executing it on CPUs may take less energy and fewer CPU
cycles. To filter out this type of functions, our framework
initially executes applications entirely on CPUs and conducts
performance profiling simultaneously. A profiler operates by
intercepting calls to functions and injecting additional code to
capture performance metrics such as the duration or frequency
of a function call. Only if a function’s invocation count
reaches C' or the time to execute a function call exceeds 7T’
milliseconds, we consider the function to be ‘hot’, in other
words, a potential candidate for DSP offloading. In this paper,
we set the thresholds C' and 7T to be 1000 and 10 respectively,
which are heuristic numbers adapted from previous research
papers [9], [10]. Noted that our framework only requires
fine-grained profiling information in the first few seconds
of program startup. Afterward, we can switch our profiler
to a low-overhead coarse-grained sampling profiler or just
disable profiling. Therefore, performance penalties induced by
profiling are nearly negligible.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

In the context of WebAssembly applications, we start
executing them in Chromium VS8, the default web browser
engine in every Android device. V8 provides a built-in profiler,
which can collect sophisticated profiling information such
as memory footprint and network usage. However, most of
the information is unused by our framework and collecting
them comes at a price of a significant performance slowdown.
To avoid this issue, we implement an in-house lightweight
profiler by patching V8’s WebAssembly baseline compiler
Liftoff [11]. Specifically, we generate extra machine codes in
each function’s prologue and epilogue to collect its invocation
duration and count. The information is directly stored in the
main memory for post-processing. This technique imposes
minor performance penalties to programs because V8 will
gradually use its next-tier compiler Turbofan to recompile all
functions in background [12]. Once it is finished, the executing
binary will not contain any profiling instructions and run at
full speed.

IV. BYTECODE TRANSLATION

Once our system gathers sufficient profiling information, it
will proceed into the next mission: converting the bytecode
of candidate functions into efficient DSP machine code. This
is achieved using a three-stage compiler pipeline as shown
in Fig 2. In the first stage, the bytecode is translated into an
intermediate representation called LLVM IR [13]. The IR is
independent of any particular language but still capable of
representing the input without loss of information. In the next
phase, the LLVM optimizer takes the IR as input, conducts
various optimizations, and outputs the efficient IR. Finally, the
IR can be dispatched to LLVM backends to generate machine
instructions understood by the target DSP architectures.

This pipeline is highly modular and extensible. To support
a new programming language, we only need to implement a
bytecode translator for the first stage. Specifically, we first
use Flex and Bison [14] to generate a lexer and a parser.
They then enable us to build abstract syntax trees (ASTs) for
the input. By walking the trees, we can visit each bytecode
instruction and convert them to LLVM IR. The conversion
is generally not difficult since most low-level instructions in
the bytecode and LLVM IR are semantically similar. We need
to pay special attention to floating-point instructions, which
may not be supported by some low-end DSPs and need to be
emulated at a considerable performance cost. Even for high-
end DSPs, floating-point operations can sometimes degrade
performance since they are not likely to be vectorized by
compilers. In our implementation, we allow the pipeline to
transform floating-point operations into fixed-point operations.
Most DSPs possess intrinsic arithmetic instructions for fixed-
point data. They are significantly more power-efficient and can
be easily vectorized. Sometimes the fixed-point computation
may have higher round-off errors. Therefore, we keep the
transformation optional for users. Nevertheless, numerical
accuracy is not a concern for many real-world applications
such as video and audio processing.

616

Web __ | WASM bytecode Hexagon DSP ., Hexagon

Assembly Translator Backend Binary
LLVM IR LLVM IR
Kotlin Bytecode
Kotlin—=| " Franslator Intermediate
. Tl DSP Tl
Representatlon
- Backend Binary
Dart Dart Bytecode Optimizer
art — Translator
Java V8 Bytecode MedlaTek DSP|_, MediaTek
Scrlpt Translator Backend Binary

Fig. 2. Three-stage Compiler Pipeline

In the context of WebAssembly, one implementation diffi-
culty is that LLVM IRs are register-based (i.e., operands and
results are stored in registers), while WebAssembly instruc-
tions are stack-based (i.e., pops operands from and pushes
results onto a stack). To conduct the conversion, we need
to maintain a stack structure to store the mapping between
the WebAssembly operands and LLVM registers. The stack
structure is only required during compilation (i.e., no runtime
overhead), because WebAssembly’s structured control flow
allows us to determine operand locations [15] statically. An-
other tricky issue stems from WebAssembly’s linear memory
model. Linear memory is a continuous byte-addressable buffer,
which spans from address O to a mutable amount of memory.
In WebAssembly, each memory operation (e.g., ‘load’ and
‘store’) expects a linear memory address. For example, a
WebAssembly instruction ‘i32.Joad 100” will load a 32-bit
integer located in linear memory locations 100-103. This is
very different from the memory model of real-world hardware,
where applications are randomly allocated in a high virtual
memory address space (e.g., Oxftffffff80000000). To bridge
the difference, our translator generates necessary instructions
to map each WebAssembly memory address to a valid memory
address in the OS. In detail, our translator first generates a
program initialization routine to obtain a contiguous memory
chunk from the underlying OS. The region’s address is then
recorded in a global variable linear_mem. Afterward, the
compiler can offset each WebAssembly memory operation’s
parameter with the value of linear_mem. For instance, the
WebAssembly instruction ‘i32.load 100’ will be translated into
the simplified LLVM IR as shown in Algorithm. 1. We also
inject bounds-checking instructions to ensure that all memory
operations are well-defined. If out-of-bound access is detected,
we can terminate the application immediately to ensure system
safety.

Algorithm 1 Transforming a WebAssembly address to a valid
OS address
1: %1 = load i8%*, i8** linear_mem
2: %transformed_addr = getelementptr inbounds i8, i8* %1,
164 100
: call @bounds_check(i8* %transformed_addr)
4: %2 = bitcast i8* %transformed_addr to i32*
5: Yoresult = load 132, 132* %2

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

V. PROFIT PREDICTION

Not every candidate function can benefit from offloading
due to potential mismatches between its workload patterns
and DSPs’ micro-architectures. In detail, modern DSPs adapt
a Very Long Instruction Word (VLIW) architecture, which
requires a program to explicitly specify multiple instructions
(i.e., an instruction group) to execute in each cycle. Any two
instructions in the same group are not allowed to have data
or control dependency. Usually, the compiler will search for
an optimal order of instructions to avoid the dependencies.
Sometimes, they are inevitable, especially when scheduling
branch control instructions. In that case, the compiler will
have to move the offending instruction into a new group and
replace the original slot with a NOP instruction. Constant NOP
replacement can result in significant performance degradation.
Therefore, DSPs generally perform poorly for control-heavy
tasks. Instead, DSP-friendly tasks have a high compute-control
ratio and a high level of data parallelism.

A. Problem Formulation

Our framework attempts to filter out the ill-suited functions
by solving a binary classification problem. Specifically, given
a function f, our objective is predicting its likelihood across
two labels: beneficial (1) or detrimental (—1). These labels are
defined using the following equation:

i ={)

otherwise
Here, T, and T, denote a function’s execution time on a
CPU and a DSP respectively. R is a constant and set to be
% where F,. and Fj are clock rates for the CPU and the
DSP correspondingly. We can consider 12 as an approximate
energy-efficient ratio, in other words, the DSP is R times more
power-efficient than the CPU for the same amount of working
time. This is a conservative approximation since DSPs” VLIW
design usually provide higher instructions per cycle (IPC)
than CPUs. Nevertheless, we ignore the IPC differences for
model simplicity. Note that F, is generally larger than Fj.
For example, F. on a Snapdragon 855 SoC can reach up to
2.8 GHz, while its Fy is only approximately 1.0 GHz. Thus,
R is greater than or equal to 1. Intuitively speaking, a function
is beneficial if it satisfies one of the following conditions:
1) It takes less execution time on DSPs than on CPUs (i.e.,
performance-optimal)
2) It consumes less energy on DSPs despite slightly longer
execution time (i.e., power-performance optimal).

€]

B. Feature Selection

To solve the above problem, we can build a binary classifi-
cation model. Before we can proceed, we notice that an input
function consists of a sequence of bytecode instructions. Due
to its unwieldy high-dimensional spaces, computing on it may
require an unreasonable amount of resources. Hence, we must
first create low-dimensional representations for the input. Like
many other machine learning applications, creating expressive
representation is the most challenging step since many domain

knowledge factors have to be taken into consideration. In
this paper, we address this challenge by exploiting internal
statistics from our previous compiler pipeline. The intuition is
that many compilers have deep domain knowledge of target
processors. They tend to apply as many as hardware-specific
transformations on source codes to exploit processor capacities
better. If many optimizations are successfully applied, we can
infer that the program has a matching workload pattern to
the target hardware. In our prototype, we exploit 17 types of
compiler statistics. We showcase several potentially expressive
features below.

1) Ratio of the instruction number to the instruction
group number. In a VLIW architecture, the compiler
is responsible for bundling instructions to instruction
groups. Instructions in the same group can be executed
simultaneously in one hardware cycle. Hence, a higher
ratio of the instruction number to the instruction group
number means better exploitation of instruction-level
parallelism in DSPs.

2) Single Instruction Multiple Data. DSPs can exploit the
Hexagon Vector eXtension (HVX) to accelerate vector
operations. Hence, the compiler will attempt to vectorize
input functions using various transformations. For exam-
ple, the SLP vectorizer merges multiple scalar operations
into vector instructions, while the Loop vectorizer widens
instructions in loops to operate on multiple consecutive
iterations. In our prototype, the count of vectorized code
segments and the number of HVX instructions are se-
lected as features.

3) Hardware loop utilization. DSPs provide hardware loop
instructions to perform loop branches with zero overhead.
Therefore, the compiler will make the best efforts to
transform each software loop into a hardware loop. This
transformation will only be carried out if a loop is regular
(i.e., countable, not deep-nested, and no function calls
inside). Hence, a function with a higher hardware loop
count tends to have a high compute-control ratio and can
better benefit from DSP execution.

4) Hardware Threading. Modern DSPs are multi-threaded.
An application’s workload can be split and executed in a
parallel manner. In our compiler pipeline, we implement
an optimization pass to parallelize hot loops automati-
cally. This optimization can only be carried out if a loop
is regular and has no dependent iteration. A function with
many multi-threaded loops is more likely to benefit from
DSP execution.

5) Peephole optimization. Peephole optimization is per-
formed on a small sequence of machine codes, which is
commonly referred to as peephole or window. It analyses
each window and attempts to replace it with shorter
and faster code without change in output. For example,
LLVM utilizes this optimization to remove redundant sign
extends instruction or redundant negation of predicates,
which subsequently opens up many dead code elimi-
nations opportunities. Therefore, the usage of peephole

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

optimization can also serve as a feature.

It should be noted that most selected features are normalized
against runtime instruction counts, which can be obtained from
the profiler.

C. Online Learning

With the low-dimensional feature vectors, we can proceed
to train a classification model. To achieve a good performance,
we need to ensure that the training dataset is sufficiently large.
Moreover, the dataset should have an unbiased distribution
for real-world workload patterns. In practice, preparing such
a dataset can be very labor-intensive and complicated. In this
paper, we circumvent this issue by exploiting one observation:
we can measure the performance benefits or penalties soon
after we execute a function on DSPs or CPUs. This measure-
ment can serve as a feedback signal to constantly improve the
classification algorithm. Over time, the model will adapt to the
real-world data patterns and deliver acceptable performance.

To achieve this, we reformulate our classification problem
as a contextual multi-armed bandit problem (CMAB). Specif-
ically, for each round ¢ € {1,...,T}, an agent can observe
a multi-dimensional context vector z; € R®. It then needs to
select an action a; from a predefined action set {1, ..., J}. The
action will come with a reward r; ,,, which is unknown until
the action is carried out. We will assume that the expected
reward is a linear function of the context vector:

E[Tt.,at |CCt] = 92;.1},

2

where 6, is initially unknown but can be gradually learned
through action. The goal of our agent is to find a strategy that
minimizes the expected regret:

where a; denotes the action with maximum expected payoff
at time ¢.

In the context of our system, the agent needs to select one
action between (1) staying at CPUs and (2) offloading to DSPs.
The reward for staying at CPUs is 0. When a function f is
offloaded to DSPs, the payoff is 3 if it is a beneficial function
as explained in Equation 1. Otherwise, a negative payoff of —5
is incurred. Note that the negative payoff governs the trade-
off of exploration and exploitation. When the payoff is higher
(e.g., —1), the agent is more likely to move unseen functions
to DSPs and learn from the observation. In contrast, if the
payoff is lower (e.g., —10), the agent may only attempt DSPs
offloading if it is confident about getting a positive reward.

This CMAB problem can be solved in an iterative fashion,
as shown in Fig 2. The core of the algorithm lies in line 6. The
red part estimates the mean reward of each action, while the
blue part calculates the upper bound of the confidence interval.
Note that « is a hyperparameter and the higher « is, the
wider the confidence bound becomes. Intuitively speaking, the
algorithm explores actions that we have high uncertainty about
while exploiting actions that have superior average returns.

T

R(T)=E [Z (rt0; = Tta.)

t=1

3)

618

Algorithm 2 Solving CMAB using the LinUCB algo-
rithm [16]

1: Ay, Ay < I, (d-dimensional identity matrix)

2: by, by < 04%1 (d-dimensional zero vector)

3: for t € {1,...,T} do

4: 61 — A;lbl

5: 0y < A2_1b2

6: Gt — argmaxqei 2 (031} + a\/xtTAglﬂct>
7: Ag, — Ag, + w42l

8: bllc — bat + 1y

9: end for

VI. EXECUTION OFFLOADING.

We now can proceed to the last phase of our framework:
execution offloading. On the surface, this may seem to be a
straightforward mission because Qualcomm already provides
a mechanism called Fast Remote Procedure Call (FastRPC) to
enable function calls from CPUs to DSPs. FastRPC features
a typical proxy pattern as demonstrated in Fig 3.

1) The CPU process initiates the DSP function invocation
using an auto-generated stub.

The stub packs the function parameters into an RPC mes-
sage and sends it to the DSP RPC driver (/dev/cdsprpc-
smd) using the system call ioctl.

The kernel driver forwards the RPC message to the DSPs
through the Shared Memory Driver (SMD) channel and
then waits for the response.

The real-time OS running in DSPs dispatches the message
to an auto-generated skeleton library for processing.
The skeleton unmarshals parameters and calls the target
method implementation, i.e., the generated machine code
from Section IV.

Once the target method is finished, the reply traces the
same steps in the reverse direction.

2)

3)

4)

5)

6)

These steps are designed to be synchronous to eliminate the
complexity of application implementation. From the applica-
tion’s perspective, a DSP function invocation looks identical
to a local call.

However, despite the FastRPC’s simplicity, a technical chal-
lenge occurs when an offloaded DSP function attempts to
invoke a function residing in a CPU. This kind of function
call is not yet supported by FastRPC and could happen in
two common scenarios. The first situation is that the target
function is not sitting on a hot code path. Take Algorithm 3
as an example. The function foo is offloaded and consists
of a branching instruction. Since the branching condition
is satisfied 99% of the time, the function bar is therefore
executed very often and likely to be offloaded as well. In
contrast, the function baz is seldom executed and thus not
considered for offloading. The second situation is that the
target function is a language runtime function (e.g., object
allocation in a managed heap) or a system interface function

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

Dispatch

! i Unpackeq, |
Kernel |1 smp!| DSP Skel [p. t DSP ||
3 RPC Msg Driver | .«—i| RTOS Func. oMot code :

1 ! - i

Fig. 3. Function calls from CPUs to DSPs using FastRPC.

(e.g., filesystem access). These functions reside in kernel space
and should not be moved out of CPUs for security reasons.

Algorithm 3 An example for DSP to CPU invocation
function FoO > Offloaded

1:

2 if condition then > satisfied in 99% of the time
3 call bar > Hot path and offloaded.
4 else

5: call baz > Cold path and not offloaded.
6 end if

7

8: end function

A naive approach to circumvent this challenge is to avoid
offloading functions that contain calls to non-offloadable func-
tions. Specifically, we first build a directed graph where each
node is a method and each edge is a method call directed
from the caller method (parent node) towards the callee
method (child node). We then scan each method and mark
it as non-offloadable if it contains system calls. Starting from
them, we iterate through their parents until we reach the root
and set the scanned nodes as non-offloadable. Meanwhile, to
prevent the cold path issue in Algorithm 3, when a function
is offloaded, all its descendants are forcibly offloaded as
well. Unfortunately, this approach incurs considerable CPU
overheads. Furthermore, this approach may not maximize the
offloading opportunities: a function with any system calls is
never offloaded, even if a significant proportion of the function
body can benefit from the DSP execution.

In this paper, we present an alternative approach: we im-
plement the missing DSP-to-CPU function call mechanism
based on the FastRPC framework. The main workflow is
demonstrated in Fig 4. As usual, a CPU utilizes FastRPC to
invoke a target DSP function. But this time, the target function
is pre-processed by a code transformation called Coroutine
Transformation. Every invocation to a non-offloadable func-
tion is now transformed into a suspend point. When the
suspend point is reached, the DSP execution is suspended, and
control is returned to the CPU along with a snapshot of stack
frames. This snapshot is commonly referred to as coroutine
context. From the CPU’s perspective, this operation is just an
ordinary FastRPC function call return. Afterward, the CPU
can execute the non-offloadble function on behalf of the DSP
function. Once finished, the CPU will again use FastRPC to
call the suspended DSP function but with the coroutine context
as an additional parameter. This will resume the DSP function

CPU Func. DSP Func.
T RPC cd
Start Offload @
. CReturn
System call With Coﬂtext 1]
& helper RPG System call
ith Call suspend point
Co”text
®
Y

Fig. 4. Flow of execution for a DSP function with suspend points

from the last suspend point.

The key component of this architecture is the coroutine
transformation. Behind the scene, it splits a function into
a ‘ramp function’ and an arbitrary number of continuation
functions, one for each suspend point. The ramp function
serves as an initial entry point and executes until a suspend
point is first reached. It then returns a continuation function
pointer to indicate where to resume the execution. It is worth
mentioning that this code transformation comes at the cost
of larger binary sizes and memory footprint. This is mainly
attributed to the fact that every continuation function now has
a sophisticated prologue and epilogue to recover and generate
the coroutine context. Hence, we should avoid offloading a
DSP function with many suspend points. To achieve that
automatically, we make the number of suspend points as an
input feature for our adaptive machine learning model in
Section V.

VII. SYSTEM EVALUATION

In this section, we provide a system evaluation of DSP-
Booster. We are interested in one key question: how efficient
are DSP-offloaded mobile applications in terms of execution
time and power consumption? We use the following experi-
ment setups to answer this question.

A. Test Bed Configurations

Hardware. We conduct our experiments on an off-the-
shelf Google Pixel 4 smartphone. The device is equipped
with a Qualcomm SM8150 Snapdragon 855 chipset, which
contains an 8-core 2.8 GHz Kryo 485 CPU and 6 GB of
RAM. The chipset also possesses four different types of DSPs,
each devoted to a specific application space: sensor (sDSP),
modem (mDSP), audio (aDSP), and compute (cDSP). In this
paper, we mainly utilize the compute DSP for our experiments.
This choice is made to comply with the security policies in
DSPs. Specifically, Qualcomm incorporates a proprietary real-
time OS named QuRT to manage the DSPs. Every executable
binary wishing to run on that OS needs to be appropriately
signed using a developer certificate, to which only a small
number of mobile vendors have access. Our implementation
addresses this issue by exploiting a newly introduced sandbox
mode called the unsigned protection domain (PD). Unsigned

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARK PROGRAMS

ID Benchmark Description

P1 N-body Model the orbits of 5000000 particles
using a symplectic-integrator.

P2 Merge-sort Sorts an array of 1000000 integer ele-
ments using the merge sort algorithm.

P3 Spectral-norm Calculate the spectral norm of an
5500 x 5500 infinite matrix.

P4 Regex Locate sub-strings from 5000000 string
using regular expressions.

P5 Fasta Genome sequence similarity searching
on 2500000 sequences.

P6 Complement Compute the reverse complement of
a DNA sequence with 100000000
genomes.

P7 Integral Calculates the integral of an image with
a resolution of 7680 x 4320.

P8 Thresholding Apply the adaptive-level thresholding to
each image pixel and transforms it into
a binary value.

Po Colorspace Convert an image from one color space
to another (e.g., HSV to RGB).

P10 Convolution Convolve a 3 X 3 kernel with an image.
Convolution is the key operation of dig-
ital image processing.

P11 MP3 Decoding | Decode a MP3 audio file and output
pulse code modulation.

P12 | H264 Decoding | Decode H.264 video bitstream and out-
put bitmap for each frame.

PD allows for the execution of signature-free binaries with
limited access to underlying hardware resources (e.g., cam-
eras or microphones). This restriction does not impact our
framework since we only offload general-purpose computation
to DSPs. To enable the unsigned protected domain feature,
we need to insert extra system call sequences into stub
functions according to the Hexagon DSP documentation [17].
Currently, unsigned PD is only available in Compute DSPs of
particular high-tier SoCs. Nevertheless, the support is likely
to be extended to all types of SoC shortly, as suggested by
Qualcomm.

Software. Our Google Pixel 4 mobile device is running
a vanilla Android 11 operating system. To facilitate system
implementation and debugging, we obtain the root access
by unlocking the bootloader” and patching the boot image
partition. We also temporarily switch the Security-Enhanced
Linux (SELinux) mode from enforcing to permissive. This
step is solely intended for Google Pixel devices since they
enforce stringent SELinux policies and disallow third-party
applications to access DSP hardware.

B. Performance Benchmarking

We benchmark the programs listed in Table I. Specifically,
P1 to P6 are adapted from established CPU benchmark suites
such as JetStream [18] and BenchmarkGames [19]. P7 to
P10 derive from the open-source computer vision library
OpenCV [20]. P11 and P12 are adapted from the open-source
multimedia processing library FFmpeg [21].

This can be achieved by accessing on-device developer options in Android.

620

These programs are written in portable high-level languages
(Rust or C++). They consist of an entry-point function and
a set of kernel functions for core computational logic. The
kernels are optimized to harness the SIMD capability of
modern CPUs. For example, they may arrange their internal
data structures in a particular alignment such that the com-
pilers’ auto-vectorization analysis can automatically convert
scalar code into vector code. They can also utilize some C
language directives (e.g., ‘OMP parallel’) to explicitly instruct
the compiler to vectorize the chosen code block.

We compile these programs to WebAssembly bytecode
using corresponding language toolchains (e.g., Emscripten
or RustC). Afterward, we run these executables in V8 We-
bAssembly runtime 50 times with and without our proposed
framework. We measure their average execution time (i.e., Ty
and T.) and battery percentage consumption (i.e., Py and P,).
To eliminate the potential influence of disk I/O, we preload
all input files to the main memory. To obtain more accurate
power consumption results, we turn the phone into airplane
mode, reduce the backlight brightness to 10%, and shut down
other background activities. We also cool down the phones
before each test to ensure that the CPUs and DSPs can keep
working at a stable frequency during the experiment.

Figure 5 demonstrates the relative execution time 7T,;/T,
and power consumption P;/P.. What stands out are P4 and
P7. They run up to 11% faster in DSPs than in CPUs while
achieving almost 3x energy reduction. Similarly, P2, P9, and
P10 deliver a relative execution time slightly above 1 (ie.,
achieve comparable performance in DSPs and CPUs) and
conserve 50% battery on average. We pay special attention to
P10 since Hexagon DSP SDK provides an alternative imple-
mentation in a low-level assembly language. Our preliminary
experiment shows that it performs approximately 1.7x faster
than our benchmark. This result is not surprising since the
assembly version evenly splits the application workload and
fully leverages the dynamic hardware threading capacity. In
contrast, our compiler pipeline can only parallelize partial
workload (i.e., loops without dependent iterations) in the
benchmark program. A further refinement of the compiler
pipeline is warranted.

We use a horizontal line to reference the beneficial criterion
R as discussed in Section V. It can be observed that P1 and
P12 are both above the reference line, indicating they may not
benefit from DSP offloading due to a potential mismatch be-
tween workload pattern and DSPs’ micro-architecture. Specif-
ically, P1 runs about 4x slower in DSPs than in CPUs and
consumes 36% more energy. P12 performs approximately 3 x
slower and only reduces 2% power consumption. Note that our
profit predictor successfully identifies these two benchmarks
as non-beneficial, but we forcibly offload them to DSPs just
for performance evaluation. We conduct a preliminary inves-
tigation on the two programs and notice that their generated
DSP binaries contain limited SIMD instructions. One potential
culprit is that their kernel functions contain irregular nested
loops, which cannot be automatically unrolled and vectorized
by compilers. Another interesting observation is that P12,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

Relative Performance
=N N W
w o w o

g
=)

o
5

0.0

P8

P9 P10 P11 P12

Fig. 5. Comparison of Execution Speed and Power Consumption

despite being classified as non-beneficial, still manages to
conserve a small amount of battery. This indicates that our
choice of the beneficial criterion R (i.e., the ratio of CPU
frequency to DSP frequency) is conservative.

C. System Overhead

Memory Overhead. Our system requires extra memory
space for DSP binary compilation and bookkeeping. In this
experiment, we select five benchmark programs from the
previous experiment and report their memory overhead in
Fig 6 (a). It can be seen that the average memory overhead
is approximately 80 MB. This overhead is almost negligible
in modern smart devices considering they usually possess
gigabytes of memory space. We further examine the programs’
memory map information using the pmap command. We
observe that the compiler component accounts for most of the
memory overhead (74 MB). This finding remains somewhat
consistent across various programs. Meanwhile, we realize that
the remaining overhead lies in storing the compiled binaries
and increases proportionally to the number of offloaded func-
tions. To estimate this overhead in a complex program, we
duplicate the kennel function in the benchmark program PS8
for 10000 times and compile them. As expected, the overhead
now reaches 192 MB, which is still moderate.

CPU Overhead. Our system consumes extra CPU resources
in several intermediate procedures such as bytecode compila-
tion and profit prediction. In this experiment, we reuse the five
benchmark programs above and report the CPU overhead. We
conduct the measurement with the help of the time command.
This command provides three performance metrics for a given
task, including elapsed time (i.e., how long the task takes to
run), user time (i.e., CPU time spent in user mode), and kernel
time (i.e., CPU time spent in kernel mode). For typical CPU
programs, the elapsed time approximately equals the sum of
user time and system time. However, this is not the case for
our benchmark programs since their core computational logic
is now done in DSPs. As a result, CPUs will mostly stay at a
sleep state and only wake up shortly for the intermediate tasks
mentioned above. In other words, the sum of user time and

621

(b)

Bmm User time
Bmm System time

Memory Overhead (MB)
5
CPU Overhead (%)

Compilation
Bookkeeping

P2 P4 P7) P10

Fig. 6. Memory overhead and CPU overhead

system time now reflects the CPU overhead of our framework.
Figure. 6 (b) demonstrates the user time and system time as a
percentage of the elapsed time for all the benchmark programs.
The average value is merely 7%, indicating that our framework
overhead barely impacts the overall system performance.

VIII. SYSTEM EXTENSIONS

DSPBooster is still a research prototype and has room for
improvement. In this section, we suggest several potential
research directions.

A. Accelerating Different Types of Applications.

In this paper, we demonstrate the potential of DSPs mainly
using WebAssembly-based mobile applications. Nevertheless,
our methodology can be easily adapted to mobile applications
written in various programming languages. We can reuse
most system components (e.g., performance profiler, profit
predictor, and function offloader) and only need to implement
corresponding bytecode translators.

Kotlin: Kotlin is a modern statically typed programming
language. It can fully interoperate with Java bytecode and
provides a more concise syntax using type inference. Recently,
Kotlin has become Google’s preferred programming language
for developing native Android applications. To implement a
translator for Kotlin, we adapt a compiler component from
the Android Runtime [22], which provides support for pars-
ing Java bytecode and emitting LLVM IR. We then can
directly feed the resulting IR into LLVM backends to generate
DSP machine code. Currently, we are still addressing one
performance issue. Specifically, a considerable number of
Java functions depend on runtime function calls (mainly for
managed heap object manipulation). As we have discussed
in Section VI, these functions would require sophisticated
coroutine transformations. As a result, the overall system
performance is negatively impacted.

Dart: Dart is another Google’s recommended programming
language for native Android applications. Dart supports many
modern high-level language features such as object-oriented
programing paradigms and automatic garbage collection. To
achieve native performance, Dart directly compiles to machine
code. Our preliminary experiment found it tricky to translate

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

the machine code to LLVM IR since it is an open research
issue called static binary translation. We need to overcome
several technical challenges such as code discovery (i.e., dis-
tinguishing data from instructions) and indirect branching (i.e.,
the jump destination address must be mapped to an address in
the translated code). Currently, we are still experimenting with
two potential workarounds. Firstly, we are planning to enhance
the Dart compiler to embed Dart IR as an auxiliary section in
output files. In this case, we only need to implement a Dart IR
to LLVM IR translator. Alternatively, we can request the Dart
compiler to generate a WebAssembly binary, which can be
fed into our WebAssembly bytecode translator. However, this
WebAssembly generation feature is still highly experimental
and may fail to compile certain source code.

JavaScript: JavaScript is frequently used in Web-based mo-
bile application development. However, JavaScript is generally
too slow for compute-intensive tasks [23]. It is mainly used
in low-compute scenarios, especially user interface design.
As a result, the benefit of DSP offloading may be reduced.
Meanwhile, building a bytecode compiler for JavaScript is
very challenging due to a lack of typing information. Common
runtimes (e.g., V8) essentially bypass this challenge by using
interpreters to execute most JavaScript functions. They only
compile frequently executed functions using a technique called
Speculative Compilation. The main idea is to use profiling to
infer types dynamically. With the information, the runtimes
can generate a statically typed IR (e.g., TurboFan IR in V8)
of the dynamically typed program. The generated code needs
to place guarding conditions to validate whether the runtime
types match the profiling types. If not, it has to throw out the
machine code and fall back to interpreter execution. In our
prototype, we utilize the result of speculative compilation and
implement a translator to convert Turbo Fan IR into LLVM IR.
The resulting IR can then be used to generate DSP machine
code. Currently, the translator can only process a small subset
of Turbo Fan IR. More implementation effort is warranted.

B. Experimenting with Different Types of DSPs

Many premium-tier devices (e.g., Pixel 4XL and XiaoMi 9)
can possess different types of DSPs. As we have mentioned
in Section VII-A, we only conducted experiments on compute
DSPs to comply with the signature verification rule. Recently,
we discovered a workaround; if we disable the secure boot
mechanism’, we then can sign executables using a debug
certificate to bypass the verification. This trick allows us to
explore the potential of other types of DSPs.

Our preliminary study reveals that compute DSPs possess
a more advanced MMU compared with other types of DSPs.
This leads to differences in the amount of memory data we
can share between CPUs and DSPs. Specifically, compute
DSPs can access virtually contiguous memory pages, which
are not necessarily physically contiguous. Such memory can
be easily obtained with the help of the Android generalized

fSecure boot ensures the integrity of firmware and software running on a
platform. Disabling secure boot is only possible in a Qualcomm development
kit.

622

memory manager (i.e., ION [24]). Similar to the dynamic
memory allocation ‘malloc’ in C, the allocation will always
succeed if there is sufficient physical memory. In contrast, non-
compute DSPs demand the memory pages to be physically
contiguous. Such memory can only be allocated using the
system call ‘kzalloc’. When requesting a sizable chunk of
memory (e.g., more than 4 MB), this system call is prone
to failure due to the memory defragmentation issue [25]. As a
result, functions running in non-compute DSPs can only share
a limited amount of memory data with CPUs. This limitation
significantly lowers the number of functions offloadable to
non-compute DSPs. To identify these offloadable functions,
we need to adopt a static code analysis technique called
‘Pointer Analysis’. It is designed to examine which pointers
can point to which variables or storage locations. A function
is offloadable to non-compute DSPs only if all pointers insides
refer to the small sharable memory or local stack variables.

C. Tracing Offloading

By default, DSPBooster compiles and offloads code at the
function level. Alternatively, DSPBooster can be tuned to work
at the tracing level. In this setting, DSPBooster can identify
the frequently executed parts inside a function and selectively
compiles those structures for the balance of compilation time
and memory usage. However, this also significantly increases
the implementation complexity of our compiler pipeline. For
example, our compiler now has to provide an on-stack replace-
ment (OSR) mechanism, which allows a running function to
transfer control to the newly compiled DSP code using the
same stack frame. This can be challenging as CPUs and DSPs
arrange stack contents in a different layout. We plan to keep
improving the stability of tracing offloading.

IX. RELATED WORK

Smartphone vendors have devoted significant research ef-
forts to DSPs. They initially adopted DSPs in the modem,
a wireless communication component that continuously pro-
cesses analog radio signals in real-time. These operations
would run notably slower and drain far more energy on
CPUs [26], [1], [27]. Later, mobile manufacturers have found
DSPs’ use in sensory data processing [28], [29], [30]. A
typical example is wake-up words for virtual assistants (e.g.,
Hey Google or Hi Siri). To implement this functionality, a
device needs to monitor a microphone’s input continuously.
For this task, DSPs are shown to be approximately ten times
more energy-efficient than CPUs [2]. Recently, edge artificial
intelligence (edge Al) is becoming a hot research topic. A
considerable amount of Al computation can now potentially
be offloaded from cloud data centers to mobile devices.
To prepare for this transition, several mobile manufacturers
have proposed Al compute engines specifically optimized for
DSPs [31], [32], [33]. Despite the applications outlined above,
DSPs are still an under-utilized resource in mobile devices.
The high complexity in DSP development and deployment
deters developers from utilizing DSPs. Recently, one research

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

work [5] proposed abstraction layers to conceals most working
details of DSPs. However, they demand developers to follow
a particular programming paradigm and use a specific set
of application program interfaces. As a result, many existing
applications have to be refactored, which may be impractical
without access to source code.

X. CONCLUSION

This paper presents DSPBooster, a framework that offloads
mobile applications to DSPs to pursue higher execution speed
and lower power consumption. DSPBooster can offload appli-
cations written in various high-level programming languages.
It transparently selects suitable application functions to offload
using a reinforcement learning model. DSPBooster requires
neither access nor modification to application source code.
We conduct a performance evaluation of our prototype. Our
experiment results show that DSPBooster achieves up to 11%
performance speedup and 3x power saving.

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

REFERENCES

H. Yan, S. Zhou, Z. J. Shi, and B. Li, “A dsp implementation of ofdm
acoustic modem,” in Proceedings of the second workshop on Underwater
networks, 2007, pp. 89-92.

P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Dsp.
ear: Leveraging co-processor support for continuous audio sensing on
smartphones,” in Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, 2014, pp. 295-309.

J. A. Fisher, “Very long instruction word architectures and the eli-512,”
in Proceedings of the 10th annual international symposium on Computer
architecture, 1983, pp. 140-150.

L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke,
C. Koob, A. Ingle, C. Tabony, and R. Maule, “Hexagon dsp: An
architecture optimized for mobile multimedia and communications,”
IEEE Micro, vol. 34, no. 2, pp. 34-43, 2014.

C. Hsieh, A. A. Sani, and N. Dutt, “Surf: Self-aware unified runtime
framework for parallel programs on heterogeneous mobile architectures,”
in 2019 IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC). 1EEE, 2019, pp. 136-141.

T. Zohud and S. Zein, “Cross-platform mobile app development in
industry: A multiple case-study,” International Journal of Computing,
pp. 46-54, 2021.

A. Hilbig, D. Lehmann, and M. Pradel, “An empirical study of real-
world webassembly binaries: Security, languages, use cases,” in Pro-
ceedings of the Web Conference 2021, 2021, pp. 2696-2708.

“Global smartphone application processor (ap) market share: By quar-
ter.”” [Online]. Available: https://www.counterpointresearch.com/global-
smartphone-ap-market-share/

P. A. Kulkarni, “Jit compilation policy for modern machines,” in Pro-
ceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications, 2011, pp. 773-788.
X. Xu, K. Cooper, J. Brock, Y. Zhang, and H. Ye, “Sharejit: Jit
code cache sharing across processes and its practical implementation,”
Proceedings of the ACM on Programming Languages, vol. 2, no.
OOPSLA, pp. 1-23, 2018.

“Liftoff: a new baseline compiler for webassembly in v8.” [Online].
Available: https://v8.dev/blog/liftoff
“Turbofan: ~ V8’s optimizing
https://v8.dev/docs/turbofan

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. 1EEE, 2004,
pp. 75-86.

J. Levine, Flex & Bison: Text Processing Tools.
Inc.”, 2009.

compiler”” [Online]. Available:

” O’Reilly Media,

623

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in ACM SIGPLAN Notices, vol. 52, no. 6.
ACM, 2017, pp. 185-200.

W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 2011, pp. 208-214.

“Hexagon dsp documentation.” [Online]. Available:
https://developer.qualcomm.com/software/hexagon-dsp-sdk/tools
“Jetstream browser benchmark suite”” [Online]. Available:

https://browserbench.org/JetStream/

“The computer language benchmarks game.” [Online]. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

G. Bradski and A. Kaehler, “Opencv,” Dr. Dobb’s journal of software
tools, vol. 3, 2000.

“Ffmpeg: A complete, cross-platform solution to record, convert and
stream audio and video.” [Online]. Available: https://www.ffmpeg.org/

“Android runtime (art) and dalvik” [Online]. Available:
https://bit.ly/3zhs2vH

S. Amatya and A. Kurti, “Cross-platform mobile development: chal-
lenges and opportunities,” in International Conference on ICT Innova-
tions. Springer, 2013, pp. 219-229.

H. Zhang, D. She, and Z. Qian, “Android ion hazard: The curse of
customizable memory management system,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 1663-1674.

B. Bromstrup and A. Koglin, “Memory subsystem and data types in the
linux kernel,” 2015.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile
fronthaul via dsp-based channel aggregation,” Journal of Lightwave
Technology, vol. 34, no. 6, pp. 1556-1564, 2015.

Y.-W. Chen, S. Shen, Q. Zhou, S. Yao, R. Zhang, S. Omar, and G.-
K. Chang, “A reliable ofdm-based mmw mobile fronthaul with dsp-
aided sub-band spreading and time-confined windowing,” Journal of
Lightwave Technology, vol. 37, no. 13, pp. 3236-3243, 2019.

P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Leo:
Scheduling sensor inference algorithms across heterogeneous mobile
processors and network resources,” in Proceedings of the 22nd Annual
International Conference on Mobile Computing and Networking, 2016,
pp. 320-333.

J.-M. Valin, “A hybrid dsp/deep learning approach to real-time full-
band speech enhancement,” in 2018 IEEE 20th international workshop
on multimedia signal processing (MMSP). IEEE, 2018, pp. 1-5.

R. Chen, Y. Chen, L. Pei, W. Chen, J. Liu, H. Kuusniemi, H. Leppikoski,
and J. Takala, “A dsp-based multi-sensor multi-network positioning
platform,” in proceedings of the 22nd international technical meeting
of the satellite division of the Institute of Navigation (ION GNSS 2009),
2009, pp. 615-621.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar, “Deepx: A software accelerator for low-power
deep learning inference on mobile devices,” in 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2016, pp. 1-12.

C. Yang, S. Chen, J. Zhang, Z. Lv, and Z. Wang, “A novel dsp
architecture for scientific computing and deep learning,” IEEE Access,
vol. 7, pp. 36413-36425, 2019.

S. Jagannathan, M. Mody, and M. Mathew, “Optimizing convolutional
neural network on dsp,” in 2016 IEEE International Conference on
Consumer Electronics (ICCE). IEEE, 2016, pp. 371-372.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:43:53 UTC from IEEE Xplore. Restrictions apply.

