
Human-Intent-Driven Cellular Configuration
Generation Using Program Synthesis

Fuliang Li, Member, IEEE, Chenyang Hei, Jiaxing Shen, Member, IEEE, Qing Li, Xingwei Wang, Member, IEEE

Abstract—Cellular networks are vital for emerging applica-
tions like the Metaverse, which impose demanding quality and
quantity requirements. This necessitates frequent reconfiguration
of both new and existing base stations to balance network
service quality (e.g., ultra-low latency and high bandwidth)
and resource consumption. Existing data-driven configuration
methods learn from historical data, but have two key limitations.
First, they yield only approximate solutions, lacking precision.
Second, poor bootstrapping for new base stations with previously
unobserved attributes. In this paper, we pioneer intent-driven
configuration synthesis by designing an intent language and
utilizing satisfiability modulo theory (SMT) for cellular networks
to enable exact and precise solutions. We formulate synthesis as
an SMT problem, permitting verification of precision. First, we
cast configuration generation as a program synthesis problem via
novel modeling to bridge the intent-configuration gap. Second,
we extend SMT synthesis to scale to large networks. However,
vanilla SMT approaches have poor scalability. Hence, we propose
an optimization using sampling for constraint verification instead
of exhaustive forward solving. We also design a domain-specific
optimization to prune the sample space and improve efficiency.
Experiments on various network scales demonstrate the effective-
ness of our proposed SMT-based cellular network configuration
synthesis.

Index Terms—Intent-based network, Cellular configuration,
Program synthesis, Metaverse

I. INTRODUCTION

RECENT years have witnessed the rapid evolution of cel-
lular networks, which can now provide reliable services

for digital applications (e.g., the Metaverse) with demanding
requirements like high bandwidth, low latency, and high-speed
transmission. Cellular networks also feature robust mobility
support, enabling seamless handovers during user movement
and thereby facilitating an immersive user experience. How-
ever, ensuring the quality of service of cellular networks
necessitates deploying a massive number of base stations.
This poses a severe challenge for network engineers owing
to the configuration complexity involved. Cellular network
configuration encompasses various interdependent tasks like
wireless connection management, mobility management, and
radio resource management. The complex interplay between
configuration parameters and performance goals often ex-
ceeds human analytical capabilities, resulting in suboptimal

Fuliang Li, Chenyang Hei, Qing Li, and Xingwei Wang are with
the Northeastern University, Shenyang 110819, China. E-mail: he-
ichenyang429@163.com, lifuliang@cse.neu.edu.cn, george wxd@163.com,
wangxw@mail.neu.edu.cn.

Jiaxing Shen is with Lingnan University, Hong Kong, China. Email:
jiaxingshen@LN.edu.hk.

(Corresponding authors: Xingwei Wang.)

or incorrect configurations. Such improper configurations can
degrade network services and cause failures. Moreover, ren-
dering Metaverse environments demands extensive computing
and data acquisition, with dynamic and uncertain network
requirements as users move [1]. To deliver a seamless and
immersive Metaverse experience, cellular base stations need
adaptive configuration for guaranteed services like ultra-low
latency and high bandwidth amidst fluctuating demands.

To alleviate the complexity of network configuration while
enhancing the accuracy and efficiency of dynamic configura-
tion, it is imperative to implement a configuration synthesis
methodology. Configuration synthesis refers to a method that
can automatically generate accurate network configurations
aligned with operational management objectives. With con-
figuration synthesis, network configuration no longer relies on
manual mapping of high-level abstract policies to low-level
device configurations using rulebooks.

Existing approaches for automatic cellular network con-
figuration are largely data-driven [2]–[4]. These approaches
generate configurations by referring to similar historical cases
or using reinforcement learning to optimize configurations
based on network feedback. However, data-driven approaches
have limitations. First, they struggle with new configuration
scenarios with a different distribution from the training data,
especially under distribution uncertainty. Second, the high-
dimensional deep learning models provide poor interpretability
into the generated configurations. This impedes subsequent
maintenance and limits human experts’ ability to comprehend
and refine the configurations.

Intent-driven configuration synthesis offers a secure and
reliable alternative that enables operators to effectively “plan”
network configurations aligned with management objectives.
The intent-driven configuration synthesis problem is NP-hard
[5], [6], meaning exact solutions satisfying intent exist but
finding them is non-trivial. Intent-driven approaches have been
widely adopted in traditional networks [5]–[18] but not yet
extended to cellular networks. Moreover, modeling techniques
from existing work do not readily generalize. Graph algorithms
often lack granularity to represent low-level configurations.
This leaves a semantic gap between intent and configuration.
Formal modeling requires precise mathematical formulations,
making it difficult to capture the many interdependent cellular
network parameters. Additionally, these modeling approaches
lack generality and require significant reworking when ex-
tended to diverse cellular network functions.

In this paper, we propose Drone, an intent-driven frame-
work for cellular network configuration synthesis. Drone can
automatically derive high-level management intent written by

Contribution 1

Configuration Generation Problem

Program Synthesis Problem

Main Idea: Intent-Driven Configuration Synthesis for Cellular Networks

Network Management Intent Network configuration on distributed devices

Challenge 2: When the solution space is

large, the forward solver model cannot

solve the result.

Soulution for Challenge 1

Soulution for Challenge 2

Contribution 2

Convert

√
√

√

√
√

√

√
√

√

√
√

√

√
√

√

√
√

√

......

for

if

SKETCH Program

for

if

SKETCH Program

Generic Model Optimization algorithm

Fomal Constraint

Nor(c1→c2 ...)

$iN,

Fomal Constraint

Nor(c1→c2 ...)

$iN,

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Challenge 1: The program objective lacks

constraints and the solution model cannot

converge to the optimal solution.

Stability:…

Reachability:…

Convergence:…

...

Stability:…

Reachability:…

Convergence:…

...

GAPGAP
......

synthesis

constraint

verification

counterexample

Contribution 3

Pruning Algorithm

CEGIS Algorithm

Generic Model

Network management intents with

optimized properties added

Fig. 1. Illustration of Drone’s main idea, challenges, corresponding solutions,
and contributions.

operators into low-level device configurations. First, to flexibly
and accurately capture operating objectives, we design an
abstraction layer and propose the Cellular Network Intent
Language (CEL). CEL provides communication primitives to
abstract related parameters, simplifying policy writing. Sec-
ond, to bridge the semantic gap between intent and configura-
tion, we introduce a novel modeling approach using SKETCH
programs with “holes”. Third, to handle complex parameter
dependencies, we recast configuration generation as a program
synthesis problem and adopt a satisfiability modulo theory
(SMT)-based technique. The objective function formulated is
Consistency(INTENT, POs) rather than an optimization
over configurations. In contrast to data-driven approaches,
which yield probabilistic and approximate solutions, SMT-
based synthesis enables comprehensive and exact solutions
by encoding network behavior in first-order logic. Finally, we
build models over program objectives rather than parameters
directly. This increases the abstraction level and eases accurate
modeling.

However, we encountered two key challenges in solving the
model: First, the lack of constraints on program objectives
prevents the solution from converging optimally. Second,
encoding all possible constraints scales poorly as network size
increases, hampering synthesis efficiency. To address the first
issue, we add network optimization constraints to the intent
specification. Program objectives then converge to satisfy these
constraints. For the second issue, we replace the forward syn-
thesis solver with a counterexample-guided inductive synthesis
(CEGIS) algorithm [19], [20]. This accelerates the synthesis
process. We also propose a domain-specific optimization to
prune the search space and further improve efficiency.

We extensively evaluated the efficiency and scalability of
configuration synthesis across network sizes. Experiments
demonstrate our approach can steadily synthesize configura-
tions within 1 second for small networks and 10 minutes
for large networks. These results validate the efficacy of
our method for improving management efficiency. We also
conducted comparison experiments to verify the optimization
algorithm. Results show the algorithm accelerated synthesis
speed by 3.83-485x, with 97.50x average improvement. Over-
all, the experiments prove the effectiveness of our approach in
enhancing configuration synthesis performance and scalability.

In summary, our contributions are as follows:
• We pioneer the application of intent-driven configuration

synthesis to cellular networks.
• Our core insight is introducing program synthesis tech-

niques to tackle the cellular network configuration prob-
lem.

• Experiments validate our approach can effectively en-
hance configuration efficiency, synthesizing configura-
tions within 1 second for small networks and 10 minutes
for large networks.

The remainder of this paper is organized as follows. Sec-
tion II presents background and motivation for this work.
Section III details the design of the abstraction layer, intent
representation language, and SKETCH program modeling in
our proposed synthesis framework. Section IV describes the
constraint encoding, program synthesis algorithm, and opti-
mization approach developed. Section V presents experiments
evaluating configuration synthesis efficiency and results. Sec-
tion VI discusses directions for future work. Finally, Section
VII concludes by summarizing this work.

II. BACKGROUND AND MOTIVATION

Cellular network function management includes wireless
access management, mobility management, wireless resource
management, etc. Some of these functions require parametric
precision, such as cellular network security, so we employ a
formal approach that can be verified to be completely accurate.
Such methods perform well in scenarios that require both
precision and completeness. In this paper, we focus on the
design of the configuration synthesis scheme, and take the
mobility management function as an example to illustrate,
in this section, we describe the basic protocol process of
the mobility management function, network failure caused
by the configuration error, our motivation for proposing the
configuration synthesis scheme, and research related to cellular
network configuration synthesis.

A. Mobility Management

Mobility management is a key mechanism for the cellular
network to provide seamless handover for mobile users. As the
core technology in mobility management, handover is mainly
divided into two categories, unconnected state handover, and
connected state handover. Next, we will introduce the basic
process of mobility handover from two perspectives of con-
nected state and unconnected state [21]:

1) Unconnected state handover: This process is also
known as cell selection and reselection. When the user equip-
ment (UE) is in the idle state or inactive state, it will select
a certain cell as the resident cell and continue to perform cell
reselection. The main purpose of this process is to balance
the random access load between different frequency points
and to enable the UE to obtain a better quality of service, it
is necessary to select a cell with better signal quality when
selecting the resident cell.

To perform cell selection/reselection, the UE needs to
perform cell measurement. To measure the signal quality of
the cell, the gNB needs to configure parameters for the cell,

②Measurements

④Decision

C1C1 C2C2

Fig. 2. The handover process of UE in inter-cell consists of five
steps: 1⃝configuration broadcast 2⃝UE measurement 3⃝measurement report
4⃝handover decision 5⃝handover execution.

such as cell priority, handover threshold, etc. The cell selection
process follows the S criterion:

Srxlev =Qrxlevmeas − (Qrxlevmin +Qrxlevminoffset)

− Pcompensation −Qoffsettemp

(1)

Squal =Qqualmeas − (Qqualmin +Qqualminoffset)

−Qoffsettemp

(2)

Srxlev > 0
∧

Squal > 0 (3)

where Srxlev and Squal are the cell selection reception and
quality values, Qrxlevmeas and Qqualmeas are the RSRP and
RSRQ values of the measuring cell, Qrxlevmin and Qqualmin

are the minimum reception strengths of RSRP and RSRQ
in the cell, and Qrxlevminoffset and Qqualminoffset are the
signal offsets.

The cell reselection process is divided into intra-frequency
cell reselection and inter-frequency cell reselection, wherein
intra-frequency cell reselection follows the R criterion:

Rs = Qmeas,s +Qhyst −Qoffsettemp (4)

Rn = Qmeas,n −Qoffset−Qoffsettemp (5)

where Rs and Rn represent the R-value of the serving cell
and the neighboring cell, Qhyst is the hysteresis value of the
sorting standard, and Qmeas denotes the cell RSRP value for
cell reselection.

The NR inter-frequency cell reselection process follows
the priority-based cell reselection process of LTE, and the
network realizes load balancing of different frequency points
by designing reasonable priority parameters.

2) Connected state handover: When the UE is in the con-
nected state, its mobility process is completely controlled by
the network. Handover may be triggered when the UE channel
conditions change and may also occur for load balancing.
The handover process includes a control plane process and
a data plane process. The handover process of the control
plane includes three stages: handover preparation stage (pa-
rameter transfer, handover decision), handover execution stage
(signaling generation, handover command transmission), and
handover completion stage (random access, path switching);
data plane handover process includes data forwarding, etc.,
and it happens simultaneously with the control plane handover
process.

The process of cell handover is graphically depicted in
Figure 2. The figure shows that the process is distributed
and there is no centralized node as the center for collecting
measurement results or making handover decisions. Each
decision is made by the local cell or UE, and the target cell is
selected by the decision made by the serving cell or UE. The
handover process includes the following five steps [22], [23]:
step 1⃝, the current serving cell sends a system broadcast to all
UEs it serves, the broadcast contains the configuration related
to handover and measurement; step 2⃝, the UE turns on the
radio signal quality measurement of adjacent cells according to
the received configuration. When the UE satisfies the handover
conditions in the configuration broadcast by the serving cell,
it triggers an “event”; step 3⃝, the UE sends a summary of
the event in the form of a measurement report to the serving
cell; step 4⃝, the serving cell makes a handover decision; step
5⃝, the target cell executes the handover decision (including

reserving radio resources for the accessing UE).

B. Configuration Failure

The above-mentioned handover process includes many in-
teractions between system configuration parameters and ter-
minal measurement values. Existing studies have shown that
uncoordinated handover parameter configurations will cause
the network to fall into an unstable state, such as handover
loops and handover oscillations [21]. Such instability will lead
to frequent handovers, which will generate a large amount of
control signaling, seriously occupying channel and network
bandwidth resources. In addition, when the cell configuration
is missing or is not coordinated with the operator’s service
mechanism, handovers cannot converge to the target cell [24].
In Sections III and IV, we further illustrate these misconfigu-
ration cases and the performance loss they cause and propose
corresponding constraints to solve such problems.

C. Related Work

Configuration synthesis. The core idea of configuration
synthesis technology is to automatically derive low-level con-
figurations on distributed devices through the operator’s high-
level management intent. AED [6] proposes an incremental
synthesis and repair scheme that models configuration updates
as the addition/deletion of nodes on the configuration syntax
tree. It uses the MaxSMT constraint system to encode high-
level policies as soft constraints. Propane [9] synthesizes
BGP protocol configuration by proposing a high-level policy
compiler and modeling topology, routing policies, and fault
tolerance requirements into an intermediate representation.
Lucid [13] suggests an event-based high-level abstraction
language to reduce the difficulty of writing data plane ap-
plications. The language puts control functions into the data
plane while proposing a specific type-checking and syntax
system to prevent data plane state errors. Config2Spec [11]
mines the formal configuration specification of the network
according to the input network configuration and fault model.
This method mainly relies on the combined algorithm of data
plane analysis and control plane verification to synthesize
large-scale policies. All these research works mentioned above

Input

(i) Network configuration file

1 mac_cnfg =

2 {

3 phr_cnfg =

4 {

5 dl_pathloss_change = "dB3";

6 periodic_phr_timer = 50;

7 prohibit_phr_timer = 0;

8 };

9 ulsch_cnfg =

10 {

11 max_harq_tx = 4;

12 periodic_bsr_timer = 20; // in ms

13 retx_bsr_timer = 320; // in ms

14 };

15

16 time_alignment_timer = -1; // -1 is infinity

17 };

18 …

(e) Intent synax tree

Values rangeConfiguration parameters

(c) Pending configuration of network parameters

[-156,-44]

[0,60]

[0,15]

[1,10000]

...

qrxlevmin

pMax

 hysA3Offset

sFreqPrio

...

(b) New carrier addition scenario

(f) SKETCH program specifaction with holes

①

②

③ ④

1 for cell in neighbour_list:

2 if serv_cell['prefer'] < cell['prefer']:

3 if meas_c > :

4 target_cell_list.append(cell)

5 if serv_cell['prefer'] == cell['prefer']:

6 if meas_c > meas_serv + :

7 target_cell_list.append(cell)

8 if serv_cell['prefer'] > cell['prefer']:

9 if (meas_c >) & (meas_serv <):

10 target_cell_list.append(cell)

a

b

dc

(g) Program objective constraints

constraints:

Nor(c1 → c2 →  → cn) 

(($i  N, Pref(ci,i+1 > ci,i))  ("j  N, Pref(cj,j+1  cj,j) 

Pref(cn,n  cn,1)))

if Preferci > Prefercj: minci→ck(q)  q

else if Preferci < Prefercj: mincj→ck(q)  q

else: q + q  0

high
i,k

high
j,k

serv
j

serv
i

eq

j,i
eq
i,j

(a) Network management intent

1 define cellset = (cell1, cell2, cell3, cell4)

2 define stability = {cellset =>

3 [(prefer1>>prefer1),(prefer2>>prefer3),(perfer3==prefer4)]}

4 define reachably = {cellset => [(cell1->cell4),(cell2->cell1),

5 (cell3->cell4),(cell4->cell1)]}

Compile Synthesis Output

Verification
(h) CEGIS-based SKETCH

program synthesis

SKETCH

Counterexample

Synthesis

(d) CEL intent representation language

 def ::= prim id = stmt definition

prim ::= define primitive

stmt ::= cells cell set

 | cons constraint

cells ::= (name
+
) cell name

cons ::= {pol+} policy

 pol ::= name op name preference

 op ::= >> high

 | == equal

 | << low

 | → target

Network Manager

pol pol

cell

set
op cst

cell

set
op cst

def

Fig. 3. Overview of Drone. The inputs are: (a) the intent to manage the network, (b) the network configuration scenarios, and (c) the range of network
parameters. The framework abstraction layer includes: (d) intent compiler and (e) intent intermediate representation. The modeling and solution part includes:
(f) modeling of the SKETCH program with “holes”, (g) program objectives constraint modeling, and (h) counterexample-guided inductive synthesis solution
algorithm. The output is: (i) the configuration of the distributed target devices.

are configuration synthesis studies under wired networks such
as traditional networks, SDN networks, or programmable data
plane networks. The main research objectives are routing
control and data plane forwarding rules, and they do not extend
to cellular network scenarios or model the policy requirements
of cellular networks.

Cellular network configuration generation. The existing
research solutions are all based on the data-driven approach to
train a set of configuration parameters that enable the network
to perform relatively well. Chuai Jie et al. [4] proposed a multi-
cell data collaborative learning method to optimize cellular
network configuration parameters. This method combines con-
text bandit algorithm and transfer learning to improve learning
and decision-making efficiency and network performance.
Auric [2] is a scheme that uses learning algorithms and geo-
graphic proximity to generate recommended configurations for
newly added carriers. However, it cannot bootstrap configura-
tions, i.e., it can only recommend observed configurations with
similar attribute carriers. If there are unobserved attributes, its
recommended solution may not be optimal, and engineers are
still required to adjust these parameters using manual methods.
It does not allow for flexible configurations according to
management intent (for example, different parameters are
configured for similar carriers according to different policies).

III. CONFIGURATION ABSTRACTION LAYER AND
PROGRAM MODELING

In this section, we systematically introduce the overall
framework of Drone and present two important designs in
the Drone framework: 1) to address the problem of low
level of configuration abstraction, we propose a configuration
abstraction layer and design an intent representation language
and corresponding compiler (Section 3.1), and 2) to address
the problem of lack of configuration semantics, we propose a
configuration behavior program modeling (Section 3.2). Figure

3 shows an overview of Drone, and this work addresses the
automatic generation of cold start configurations for newly
added devices and the configuration updates according to
dynamically changing scenario requirements.

A. Overview of Drones

Drone is an intent-driven cellular network configuration
synthesis system. Its input is the operator’s high-level man-
agement intent (Figure 3 (a)), helping the operator to flexibly
manage the network configuration. At the same time, the input
of the system also includes network configuration scenarios
(Figure 3 (b)), including the cold start of newly added devices,
configuration update of existing devices, network topologies,
and parameter value ranges of network configuration (Figure
3 (c)), the value ranges of the parameters are used to add
constraints to the solver.

Drone contains an abstraction layer, which is mainly com-
posed of a compiler that can parse the input high-level
intent language (Figure 3 (d)), and the compiler converts the
intent language into an intermediate representation that can be
flexibly manipulated (Figure 3 (e)).

The synthesis part of Drone includes three key parts, the first
is general program modeling (Figure 3 (f)), the configuration is
modeled as a SKETCH program with a higher semantic level
and context, and the configuration parameters are modeled
as key nodes (’holes’ in the program). The second critical
step establishes the program objectives of the configuration
semantic program as formal constraints (Figure 3 (g)). Finally,
the formal constraints are solved by a counterexample-guided
inductive synthesis algorithm (Figure 3 (h)). Putting the solved
configuration parameters into the configuration template is the
final output configuration file of the system (Figure 3 (i)).

1 define cellset = (cell1, cell2, cell3, cell4)

2 define stability = {cellset =>

3 [(prefer1>>prefer1),(prefer2>>prefer3),(perfer3==prefer4)]}

4 define reachably = {cellset => [(cell1->cell4),(cell2->cell1),

5 (cell3->cell4),(cell4->cell1)]}

3 phr_cnfg =

4 {

5 dl_pathloss_change = "dB3";

6 periodic_phr_timer = 50;

7 prohibit_phr_timer = 0;

8 };

9 …

a) high-level intent b) low-level configuration

GAP

Fig. 4. The gap between high-level intent and low-level configuration.

def ::= prim id = stmt definition

prim ::= define primitive

stmt ::= cells cell set

| cons constraint

cells ::= (name+) cell name

cons ::= {pol+} policy

pol ::= name op name preference

op ::= ≫ high

| == equal

| ≪ low

| → target

Fig. 5. The syntactic paradigm of the intent language in the Drone abstraction
layer.

B. Intent Language

Figure 4 shows the comparison between the high-level
intent language and the low-level configuration. It can be seen
that the high-level intent language has a structured format
and complete context, so it has higher-level semantics and
is easier for operators to understand. The configuration file
only contains the assignment relationship between parameter
names and parameter values, and it is not easy to see the
dependencies between parameters, and the semantic level is
low. For this purpose, we designed the CEL language, an
intent-based policy description language for cellular networks.
At the same time, we designed a series of primitives to support
the expression of cellular network policies to customize the
different management needs of network operators. Network
operators only need to design high-level intents and don’t have
to care about how the intents are implemented. And there is
no need to understand complex low-level configuration. So
they can easily deploy a network that meets performance
expectations. Figure 5 illustrates the syntactic paradigm of
Drone.

We designed the CEL language from scratch, including
designing its syntax paradigm and developing a language
compiler, making it a declarative domain-specific language
(DSL). The language implemented in this way is also called an
external DSL. In contrast, the internal DSL is implemented by

embedding an existing language. Generally speaking, the in-
ternal DSL can help operators quickly implement applications
and development, but the language implemented by it lacks
flexibility and cannot be directly analyzed for correctness.
And our custom compiler can ensure the correctness of the
written DSL through static analysis technology, and enhance
the flexibility of the DSL through the custom-designed syntax.

Policy Definition: The core abstraction of Drone for config-
uration is to describe globally uniform high-level deployment
policies through an intuitive syntax. Each policy consists of
four parts, including (1) the definition primitive (2) the policy
name (3) the deployment object (4) the policy body.

define stability ={cellset ⇒ [(prefer1 ≫ prefer2), (prefer2≪
prefer3),(prefer==prefer4), (prefer4 ≪ prefer1)]}

Since we need to verify program objectives in the program
synthesis algorithm part (Section 4.3), the program objectives
must converge. This makes it necessary to add network
optimization constraints to the intent. Our intent constraints
include stability constraints, convergence optimization con-
straints, etc.

The stability policy is proposed for the convergence problem
in the cell handover function. The operator needs to define
the priority relationship of each cell. The priority in the intent
is globally unified, which is the basic guarantee of handover
stability.

The convergence optimization policy needs to point out the
optimal target cell expected in the handover decision when
each cell serves as the serving cell.

define convergence = {cellset ⇒ [(cell1 → cell4),(cell2 →
cell3), (cell3 → cell4), (cell4 → cell1)]}

The intent language defines the serving cell and the target
cell that is expected to be converged during the execution of
the handover, such that there are no two types of problems
in which the handover does not converge to the desired
target cell: 1) due to lack of configuration, there is no path
from the serving cell to the target cell where convergence is
expected, and 2) there is an inconsistency between the first-
come-first-served (FCFS) response set by the operator and the
measurement order of the device. This leads to a situation
where early convergence prevents target handover decisions
[24].

Define the set of cells to deploy the policy: In addition
to defining the policy, the definition primitive can also define

the set of deployment objects, i.e., the set of cells.

define cellset = (cell1, cell2, cell3, cell4)

The definition of cell collection is a parameter aggregation
definition, which aggregates the basic parameters of cells,
including static attributes such as operating band, center fre-
quency, physical cell ID (PCI), public land mobile network
(PLMN), mobile country code (Mcc), mobile network code
(Mnc), etc. This definition can realize the automatic generation
of static parameters when triggered. Among them, the PCI
assignment has a global perspective, which can avoid the
problem of PCI assignment conflicts. The definition also
reflects the abstraction of the intent language, which can
configure the cells in the set to be neighbor cells to each other
and configure the handover rules and neighbor cell parameters
by simply putting the cells into the same set.

Parameter aggregation and abstract definition greatly im-
prove configuration efficiency, reduce the work difficulty of
network operation and maintenance personnel, and free them
from the complicated and cumbersome process of mapping
configuration manuals. The configuration process can avoid
configuration errors caused by human errors and reduce the
occurrence of catastrophic downtime events.

Intermediate representation: CEL models the operator
input intent as a syntax tree, which is encoded as the basis
for reasoning about constraints during program synthesis.

C. Configuration Semantic Modeling

Unlike traditional networks, cellular network configuration
parameters lack configuration semantics and are difficult to
model as high-level abstractions represented through data
structures (cost values in traditional network OSPF protocols
are modeled as weights on edges in a route propagation
graph). Therefore, we propose a program modeling approach
for cellular networks to increase the level of abstraction of
low-level configuration parameters. This approach models the
cellular network functions with configuration behavior as a
program to be filled, called SKETCH. A SKETCH program is
a program specification with “holes” (i.e., unknown variables
in the program), and we model configuration parameters as
“holes”. We fill the “holes” by solving for the accurate values
so that the program satisfies the target constraints.

Handover logic SKETCH program modeling: The
priority-based handover logic SKETCH program is shown in
Figure 6. This program performs the handover decision by
comparing the service cell with each eligible candidate cell
among neighbor cells. There are two types of configurable
parameters for the serving cell and each neighboring cell,
which are the priority of the cell and the signal quality
threshold for the handover decision.

The verdict of priority in the SKETCH program is input into
Drone by the network operator by writing the intent. Then we
need to solve the filling problem of the unknown variable (e.g.,
the a in Figure 6) based on the semantics. The filling problem
is modeled by us as an auto-completion synthesis problem
based on the desired objectives of the program. The unknown
variables in the SKETCH program simulate the signal quality

1 for cell in neighbour_list :

2 if serv_cell ['prefer'] < cell ['prefer'] :

3 if meas_c > :

4 target_cell_list.append (cell)

5 if serv_cell ['prefer'] == cell ['prefer'] :

6 if meas_c > meas_serv + :

7 target_cell_list.append (cell)

8 if serv_cell ['prefer'] > cell ['prefer']:

9 if (meas_c >) & (meas_serv <) :

10 target_cell_list.append (cell)

a

b

dc

Fig. 6. SKETCH program modeling of priority-based inter-frequency
handover behavior.

thresholds for handovers at different priority levels. The event-
based measurement logic is similar to it and can be easily
extended.

IV. SKETCH PROGRAM SYNTHESIS

We use a counterexample-guided inductive synthesis algo-
rithm to synthesize the “holes” to be filled in the SKETCH
program. We remodel the parameter generation problem as a
program synthesis problem and formally model the program
objective instead of directly modeling complex parameters,
which reduces the difficulty of modeling and solving. How-
ever, the program objectives transformed from the basic intent
lack constraints. Therefore, we survey existing advanced cel-
lular network measurement efforts [22], [25]. Among them,
Li et al. proposed a very comprehensive study on cellular
network reliability analysis [25]. We refer to these efforts
and summarize the existing problems and potential demand
scenarios in current cellular networks, and design network op-
timization constraints to add to the intent. Then, we designed
the constraints for the counter-example verification part. We
design constraints on the quality of handover convergence for
the handover problem and prove the feasibility of the con-
straints. Meanwhile, we build an abstract model to simulate the
handover decision. This section will introduce the constraint
modeling process and the program synthesis algorithm flow in
detail.

A. SMT Encoding

First, we formulate the program auto-completion synthesis
problem as a constraint-solving problem. We encode the pri-
ority term and the target path term in the intent as constraints
in satisfiability modulo theory (SMT) and then encode the
holes in the SKETCH program as variables to be solved. The
specific representation is as follows:

Handover convergence quality constraint: The handover
convergence quality problem includes handover convergence

stability, handover convergence target reachability, and han-
dover convergence speed, as follows:

1) Handover convergence stability: The research by Li
et al. [21] reveals the handover misconfiguration problem in
cellular networks. This problem leads to a kind of persistent
cyclic handover, such as handover loops and handover oscilla-
tions. This often occurs when the cell handover configuration
is not coordinated. For the handover instability problem, we
construct the following formal constraints [21]:

¬


Nor(c1 → c2→ · · · → cn)⇒
(∃i ∈ N,Pref(ci,i+1 > ci,i))∧
(∀j ∈ N,Pref(cj,j+1 ⩾ cj,j)∧

Pref(cn,n ⩾ cn,1))

 (6)

if Preferci > Prefercj :

minci→ck(θ
high
i,k) ⩾ θservj

(7)

else if Preferci < Prefercj :

mincj→ck(θ
high
j,k) ≥ θservi

(8)

else : θeqi,j + θeqj,i ⩾ 0 (9)

Constraint (6) represents the cell priority constraint that
needs to be satisfied to avoid handover loops. Hard constraints
(7)-(9) represent the uncoordinated RSRP threshold avoidance
constraints at different priority levels when the cell priority
level satisfies global coordination.

Proof of constraints: Taking the stability constraints of two
cells as an example, when the signal quality of the serving
cell is lower than its pre-configured threshold, the serving
cell enters the handover process. If the priority of the serving
cell Celli is higher than the measured neighbor cell Cellj ,
the handover logic taken at this time should be low-priority
handover: measi < θservi ∩measj > θlowi,j . We assume that
the fluctuation of the signal quality measurement value of the
source cell Celli before and after the handover is negligible, to
make the handover converge rather than generate oscillations,
measi(the serving cell signal quality measurements) should
not be greater than the high priority handover threshold θhighi

configured for Cellj . No matter what value measi takes, it
should not be in the interval [θhighj,i , θservi], ie [θhighj,i , θservi] =

∅, so it follows that θhighj,i ⩾ θservi . The remaining constraints
are proved in the same way.

2) Handover convergence target reachability: The prob-
lem of suboptimal handover convergence quality occurs when
the converging cell is not the best target cell. Our common
sense is that the cell for handover convergence should be
the cell that can provide the best signal-quality service. The
target cell is evaluated by the operator in advance through the
customized evaluation metrics and input in the intent section.

3)Handover convergence speed: A large amount of control
signaling generated by frequent handover will cause serious
channel overhead, which will increase network latency, jitter,
and packet loss rate, resulting in the degradation of network
service. Therefore, to minimize the number of handovers from
the initial serving cell to the converging cell, we need to
construct soft constraints to limit the number of handovers.

B. Handover Path Modeling

We first model the handover between the initial cell and the
converged target cell in the stability constraint as the shortest
path problem (shown in Figure 7). Then we model the cell
priority and handover threshold as path weights. Finally, we
model the calculation process of the distributed, destination-
based hop-by-hop handover path as a centralized handover
path calculation with continuity between the initial serving
cell and the desired target cell. The premise of our model is
the low-speed handover scenario where the channel environ-
ment and user coordinates change slightly when the handover
occurs, i.e. the execution of the handover is instantaneous.

Finding the shortest path in our model is simple and should
be instructive by the fact that the smaller the number of
handovers the better. Our optimization goal is to set the
handover threshold and priority values (the weights of the
edges in the modeled handover graph) to make the number of
handovers reach the target cell as little as possible. However,
there is a limitation of this strategy: there cannot be a situation
where it is impossible to handover to an undesired target cell
even when the signal quality of the desired target cell is very
poor. At this time, the system should then make an alternative
plan in time to select one of the other candidates with good
signal quality as the handover target cell. In simple terms, the
intent is to set a tolerance range for signal quality.

The cell coverage is abstracted into the form of a cell
topology, the cell handover problem is transformed into the
shortest path roaming problem for the cell topology, and the
paths are pruned using stability constraints.

The stability constraint allows the handover graph to be
pruned, and the remaining possible handover paths after prun-
ing are (n−1)!. We need to set the optimal path as the shortest
path by setting the weight on each edge. After calculating
the weights a backward derivation is performed to derive the
corresponding handover threshold parameters.

We introduce the integer variable Ti,j to denote the han-
dover weight from Celli to Cellj . The handover weight of
the whole path is the sum of the handover weights of the
individual links along the path. For example, the handover
path shown in Figure 7(c), the handover weight of the path
Celli → Celll → Cellk → Cellj can be expressed as,
Threshold(i→ l→ k → j), which is equal to Ti,k+Tk,j . We
use Path(i, j) to denote the set of all handover paths between
two cells. We can encode the path Celli → Celll → Cellk →
Cellj to have the minimum handover weight among all other
paths by constraining it as follows:

∀X ∈ Path(i, j)\
S.Threshold(i→ l→ k → j) < Threshold(X),

where S = {i→ j, i→ k → j, i→ l→ j,

i→ k → l→ j, i→ l→ k → j}

(10)

The coding intent corresponding to this constraint is the
convergence optimization policy mentioned in Section 3.1.
The complete convergence optimization policy captures the
following constraints: 1) each (Celli → Cellj) represents the
best handover target cell for the serving cell, i.e. its handover
weight is lower than all other handover paths, 2) the overall

(c) handover path after pruning(b) handover path(a) topo

i

l

j k

jk

k

j l

jl

j

k l

kl

i

l

i j k

j lik lik lj

k

i j l

j kik lik lj

j

i k l

j kij lik lj

Cell i

Cell k

Cell j

Cell l

Fig. 7. Modeling of shortest handover paths. (a) is the network base station topology, (b) is all the paths where handover may occur, (c) is the handover
path after pruning with stability constraints, and the orange path is the optimal handover path.

handover still maintains a part of the distributed properties,
so that the entire convergence optimization constraint can be
connected into a handover path, and the connection path has
the lowest handover weight sum of all paths (which is certain
since it is the weighted sum of all desired handover).

C. Program Synthesis Algorithm

Forward solving: This approach requires all paths to be
encoded and then the correct path weights are found using
a constraint solver. The solution space of this solving model
is too large to be extended to large networks.

For this reason, this paper adopts the inductive synthesis
algorithm guided by counterexample as our program synthesis
algorithm (as shown in Figure 8). The main idea of the CEGIS
algorithm is to verify whether the constraints are satisfied by
sampling conditions and to design a set of counterexamples to
guide the synthesis. In practice, the counterexamples tend to
be small, which means that a small number of iterations are
needed to find the correct solution, and this method tends to
have better performance.

The CEGIS algorithm, given a set of cell topologies and a
set of target cell convergence intents, outputs handover signal
quality thresholds that enforce these requirements (subject to
satisfying different cell priorities).

The idea of program verification is introduced in the
counter-example-guided induction synthesis:

First, a SKETCH program with unknown variables (holes) is
given, and a candidate SKETCH is generated by synthetically
filling the unknown variables through the automatic solution
engine. Then, verify the consistency of intent and program
objectives (POs). The objective function is the consistency
function Consistency(INTENT, POs). Third, the problem
to be verified is encoded as SMT logic formulas (constraints).
Finally, the logic formula is proven to be correct or not. If it
is verified to be incorrect, a counterexample is generated, and
added to the counterexample set, leading to the synthesis of the
automatic solver, and the cycle is repeated until a satisfiable
solution is found (if any). Handover convergent optimization
problem amounts to finding a logically constrained model of
the form:

∃T.ENCODEHANDOFF (T, I, Path(I)) (11)

where T is the handover link weight, I is the intent, and
Path(I) is the set of all paths between the source cell and
the target cell provided in the intent. This formal constraint

Algorithm 1: CEGIS algorithm for synthesizing han-
dover path threshold weights concerning convergence
target intent.

input : Convergence Target Intent Intent = ∪ipi,
link weight variables T , path number n

output: Shortest handoff link weight

1 for p ∈ Intent do
2 Sp = ∅
3 while true do
4 φ = true
5 for p ∈ Intent do
6 Sp ← Sp∪ SAMPLEPATHS(p, n)
7 φp = ENCODEHANDOFF(T, I, Path(I))
8 φ = φ ∧ φp

9 if UNSAT(φ) then
10 return false

11 M ←MODEL(φ)
12 if CHECKINTENT(M, Intent) then
13 return M(T)

14 (p, path) ← COUNTEREXAPLE(M, Intent)
15 Sp ← Sp ∪ {path}

returns a logical formula that encodes the satisfiability of the
intent.

Algorithm 1 shows the main steps of counterexample-
guided inductive synthesis [8] in solving the threshold weight
on the shortest handover path. First, for each expected han-
dover path in the intention p ∈ Intent, we define a conver-
gence target set Sp. Then the algorithm enters a counterex-
ample iterative cycle. For the desired handover path p, the
algorithm samples n paths from the source to the target, adds
them to the set Sp and then encodes Sp to generate constraint
φ, returning “False” if it is unsatisfied, which means that the
intent cannot be satisfied. On the contrary, if it is satisfied, the
constraint model Model is obtained, which includes weights
on each link. Then verify whether the model satisfies the intent
and if so, return Model(T), i.e. the weights on all paths.
Otherwise, counterexamples are generated and added to the
set of counterexamples, which ensures that the counterexample
is avoided in the next iteration to guide the synthesis of the
automatic solver. These steps are repeated in a loop until
either a satisfiable solution is found (if any) or the intent is

(b) CEGIS-based SKETCH program synthesis

(c) Program objective constraints(a) SKETCH program specifaction with holes (d) SKETCH program to satisfy network objectives

Verification

SKETCH

Synthesis

Counterexample

1 for cell in neighbour_list:

2 if serv_cell['prefer'] < cell['prefer']:

3 if meas_c > :

4 target_cell_list.append(cell)

5 if serv_cell['prefer'] == cell['prefer']:

6 if meas_c > meas_serv + :

7 target_cell_list.append(cell)

8 if serv_cell['prefer'] > cell['prefer']:

9 if (meas_c >) & (meas_serv <):

10 target_cell_list.append(cell)

a

b

dc

1 for cell in neighbour_list:

2 if serv_cell['prefer'] < cell['prefer']:

3 if meas_c > :

4 target_cell_list.append(cell)

5 if serv_cell['prefer'] == cell['prefer']:

6 if meas_c > meas_serv + :

7 target_cell_list.append(cell)

8 if serv_cell['prefer'] > cell['prefer']:

9 if (meas_c >)) & (meas_serv <):

10 target_cell_list.append(cell)

-93

6

-82 -104

constraints:

Nor(c1 → c2 →  → cn) 

(($i  N, Pref(ci,i+1 > ci,i))  ("j  N, Pref(cj,j+1  cj,j)  Pref(cn,n  cn,1)))

if Preferci > Prefercj: minci→ck(q)  q

else if Preferci < Prefercj: mincj→ck(q)  q

else: q + q  0

constraints:

Nor(c1 → c2 →  → cn) 

(($i  N, Pref(ci,i+1 > ci,i))  ("j  N, Pref(cj,j+1  cj,j)  Pref(cn,n  cn,1)))

if Preferci > Prefercj: minci→ck(q)  q

else if Preferci < Prefercj: mincj→ck(q)  q

else: q + q  0

high
i,k

①

②

③

serv
j
serv
j

high
j,k
high
j,k

serv
i
serv
i

eq

j,i

eq

j,i

eq
i,j
eq
i,j

Fig. 8. The counterexample-guided inductive synthesis algorithm solution process. The input is: (a) a SKETCH program with “holes”. The CEGIS algorithm
solution process is (b), where SKETCH is first input to the synthesis system, and then (c) constraint verification is performed. If the verification synthesis
result does not satisfy the constraint, counterexamples are generated and iterated until (d), a program that satisfies the network intent management objective,
is generated.

considered unsatisfiable.

D. Domain-specific Optimization Algorithms

The topological complexity increases as the network size
grows. We can calculate the number of handover paths under
full base station coverage as

∑N−2
i=0 Ai

N−2, where N denotes
the total number of network nodes. Therefore when the scale
of the network topology nodes is large, the number of paths
involved in the synthesis will be very large. Due to our
initial random generation method, such large-scale paths can
seriously affect the efficiency of the parameter search, and the
results cannot be synthesized even for more than one day at
larger network sizes. We can reduce this effect by pruning
the parameter search space. According to actual operation
and maintenance experience, base stations with similar ge-
ographic locations or relatively close distances also maintain
similar operating configuration parameters (parameter values
are close). First, we propose a geographic location similarity-
based algorithm. We rank the base stations according to the
relevance of their static attribute parameters and elect the
set of base stations with the highest similarity to the new
base stations. Then we extract the maximum and minimum
values of each base station parameter from the elected similar
base stations, replace the search range in the solution model,
and complete the pruning of the synthesis search space. The
algorithm flow is shown in Algorithm 2.

V. EXPERIMENTAL EVALUATION

A. Program Synthesis Time at Different Topology Sizes

We design a synthesis efficiency experiment at different
network sizes, simulating an open scenario with few base
stations (e.g., suburban areas far from the city) and a scenario
with dense deployment of base stations with high human traffic
(e.g., transportation hubs, urban commercial centers, etc.).
Our parameters are initially set using a random Dijkstra path
generation scheme, with weights simulating the gap between
the handover threshold and the signal strength of different
UEs, and the random generation scheme is used because of
the random nature of user mobility.

Algorithm 2: Geographical Similarity Pruning Algo-
rithm
input : Collection of Base Stations BS, Base station

configuration parameter set P
output: Range of parameters after pruning

[Smin, Smax]

1 for p ∈ P do
2 for b ∈ BS do
3 maxp = max(maxp, pb)
4 minp = min(minp, pb)

5 Smax ← Smax ∪maxp

6 Smin ← Smin ∪minp

Our experimental results prove that the synthesis efficiency
of the system is very high, and the parameter synthesis can
be completed within 50ms for all small-scale (less than 13
base station nodes) scale scenarios. Figure 9(a) and 9(b) show
the results of our synthesis efficiency experiments. When
we expand the size of the base station node to 200 base
stations, the average synthesis time is still only 500.7s. It can
be concluded that the configuration efficiency of our Drone
system for large-scale networks is extremely high, which
greatly reduces the tedious and repeated operation of network
operation and maintenance personnel, and can greatly reduce
the risk caused by human configuration errors.

At the same time, to prove that our experimental results
were not accidental, we conducted system stability experi-
ments with more than one hundred experiments at different
scales. The results are shown in Figure 9(c) and 9(d), which
demonstrate the stability of our system and again prove our
extremely high synthesis efficiency, with synthesis times of
up to 1s for small-scale scenarios and up to 10min for
large-scale scenarios. Then we calculated the mean value and
confidence interval of the synthesis time of the more than one
hundred stability experiments under different topologies, and
the experimental results are shown in Figure 10.

3 4 5 6 7 8 9 10 11 12 13
Network Scale

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Sy
nt

he
si

s
Ti

m
e(

s)

Synthesis efficiency under different network scales

(a)

25 50 100 200
Network Scale

0

10
0

10
1

10
2

10
3

Sy
nt

he
si

s
Ti

m
e(

s)

0.2

2.3

31.9

479.9

Synthesis efficiency under different network scales

(b)

3 4 5 6 7 8 9 10 11 12 13
Network Scale

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sy
nt

he
si

s
Ti

m
e(

s)

Synthesis efficiency stability verification

(c)

25 50 100 200
Network Scale

0

10
0

10
1

10
2

10
3

Sy
nt

he
si

s
Ti

m
e(

s)

Synthesis efficiency stability verification

(d)
Fig. 9. Experimental results for synthesis time across various network scales and synthesis stability at different network topology scales, with over one
hundred experiments conducted at each scale.

TABLE I
COMPARING THE SYNTHESIS TIME WITH AND WITHOUT THE OPTIMIZATION ALGORITHM

network scale 3 4 5 6 7 8 9 10 11 12 13

with optimization 0.006s 0.005s 0.005s 0.007s 0.008s 0.009s 0.014s 0.016s 0.022s 0.025s 0.031s

w/o optimization 0.023s 0.023s 0.022s 0.134s 3.88s >24h >24h >24h >24h >24h >24h

4 6 8 10 12
Network Scale

0.005

0.010

0.015

0.020

0.025

0.030

Sy
nt

he
si

s
Ti

m
e(

s)

Mean and Confidence Intervals for Synthesis Time
Average Synthesis Time
Confidence Interval

25 50 75 100 125 150 175 200
Network Scale

0

100

200

300

400

500

Sy
nt

he
si

s
Ti

m
e(

s)

Mean and Confidence Intervals for Synthesis Time
Average Synthesis Time
Confidence Interval

Fig. 10. Experimental results of the mean value and confidence interval of
configuration synthesis time at different network topology scales.

4 6 8 10 12
Network Scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sy
nt

he
si

s
Ti

m
e(

s)

Synthesis efficiency with and without optimization algorithm

After optimization
Before optimization

Fig. 11. The results of the experiments compare the synthesis efficiency by
adding the optimization algorithm and not adding the optimization algorithm.

B. Optimized Algorithm Verification Experiment

To verify the effectiveness of our proposed optimization
algorithm, we compare the basic CEGIS algorithm with the
CEGIS algorithm after adding the optimization algorithm for
experiments. The experimental results show that the CEGIS
algorithm without adding the optimization has a larger param-
eter search space and can cause a serious impact of random
factors on the path search during the initial path generation,

which often fails to synthesize the results for more than one
day when the network size is large.

From Table 1, we can calculate that the synthesis efficiency
of the method is significantly improved by adding the opti-
mization algorithm to the small-scale network (3 to 7 base
station nodes), and the synthesis speed is improved by 3.83x
to 485x, respectively, with an average improvement of 97.50x.
The method without optimization cannot solve the results in
less than 24h for more than 7 base station nodes. It can be
more intuitively seen from Figure 11 that the optimization
algorithm brings significant performance improvement to the
CEGIS method.

VI. FUTURE WORK

1) Online parameter optimization: This work addresses
the issue of cold start configuration deployment for newly
added devices. Future online partial tuning of cellular param-
eters is a direction worth exploring, such as incremental con-
figuration updates. Dynamic, sequential, and runtime updates
will be serious challenges.

2) Functional expansion: This work currently only models
configuration semantics programs for a few basic functional
modules. Future expansion to full-featured program model-
ing would be a very interesting task, such as extending to
uplink power control in radio resource management, cellular
networks security features, etc. This work aims to propose a
new approach to solve complex cellular network parameter
configuration problems, so the above function expansion will
be our main research work in the future.

VII. CONCLUSION

We present Drone, the first work extending intent-driven
configuration synthesis to cellular networks. Drone introduces
a novel general methodology for modeling and solving the
cellular network configuration problem using program syn-
thesis techniques. This work provides a detailed semantic
modeling scheme for cellular network function configurations.
Drone encodes program objectives into SMT-based constraints

and proposes an efficient counterexample-guided inductive
synthesis algorithm. Compared to existing solutions, Drone
offers an intent syntax enabling operators to customize high-
level management goals and addresses modeling challenges for
low-level parameters with complex dependencies. We demon-
strate the feasibility and effectiveness of Drone, including
the optimization algorithm, through extensive experiments.
Overall, Drone pioneers intent-driven configuration synthesis
in cellular networks via principled program synthesis.

ACKNOWLEDGMENT

We would like to express our gratitude to the editors and
reviewers of the IEEE JSAC special issue on Human-Centric
Communication and Networking for Metaverse over 5G and
Beyond Networks for their review work and valuable feedback.
This work is supported by the National Natural Science
Foundation of China under Grant Nos. 62072091, 62032013,
U22B2005, and 92267206, and the financial support of Ling-
nan University (LU) (DB23A9) and Lam Woo Research Fund
at LU (871236).

REFERENCES

[1] N. H. Chu, D. T. Hoang, D. N. Nguyen, K. T. Phan, and E. Dutkiewicz,
“Metaslicing: A novel resource allocation framework for metaverse,”
arXiv preprint arXiv:2205.11087, 2022.

[2] A. Mahimkar, A. Sivakumar, Z. Ge, S. Pathak, and K. Biswas, “Auric:
using data-driven recommendation to automatically generate cellular
configuration,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 807–820.

[3] A. Mahimkar, Z. Ge, X. Liu, Y. Shaqalle, Y. Xiang, J. Yates, S. Pathak,
and R. Reichel, “Aurora: conformity-based configuration recommenda-
tion to improve lte/5g service,” in Proceedings of the 22nd ACM Internet
Measurement Conference, 2022, pp. 83–97.

[4] J. Chuai, Z. Chen, G. Liu, X. Guo, X. Wang, X. Liu, C. Zhu, and F. Shen,
“A collaborative learning based approach for parameter configuration
of cellular networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1396–1404.

[5] K. Subramanian, L. D’Antoni, and A. Akella, “Synthesis of fault-
tolerant distributed router configurations,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 2, no. 1, pp.
1–26, 2018.

[6] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Aed: Incre-
mentally synthesizing policy-compliant and manageable configurations,”
in Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies, 2020, pp. 482–495.

[7] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-
wide configuration synthesis,” in Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II 30. Springer, 2017, pp. 261–281.

[8] El-Hassany, Ahmed and Tsankov, Petar and Vanbever, Laurent and
Vechev, Martin, “Netcomplete: Practical network-wide configuration
synthesis with autocompletion,” in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18), 2018, pp.
579–594.

[9] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 328–341.

[10] Beckett, Ryan and Mahajan, Ratul and Millstein, Todd and Padhye,
Jitendra and Walker, David, “Network configuration synthesis with ab-
stract topologies,” in Proceedings of the 38th ACM SIGPLAN conference
on programming language design and implementation, 2017, pp. 437–
451.

[11] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. T. Vechev, “Con-
fig2spec: Mining network specifications from network configurations.”
in NSDI, 2020, pp. 969–984.

[12] K. Subramanian, L. D’Antoni, and A. Akella, “Genesis: Synthesizing
forwarding tables in multi-tenant networks,” in Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
2017, pp. 572–585.

[13] J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A language
for control in the data plane,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 731–747.

[14] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma, P. G.
Kannan, A. Sivaraman, S. Narayana, and A. Gupta, “Switch code gener-
ation using program synthesis,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 44–61.

[15] H. Zhao, B. Yang, J. Cui, Q. Xing, J. Shen, F. Zhu, and J. Cao,
“Effective fault scenario identification for communication networks via
knowledge-enhanced graph neural networks,” IEEE Transactions on
Mobile Computing, 2023.

[16] H. Dai, X. Wang, X. Lin, R. Gu, S. Shi, Y. Liu, W. Dou, and G. Chen,
“Placing wireless chargers with limited mobility,” IEEE Transactions on
Mobile Computing, 2021.

[17] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang, et al., “Safely and automatically updating in-network
acl configurations with intent language,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 214–226.

[18] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.

[19] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, 2006, pp. 404–415.

[20] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent
data structures,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2008, pp. 136–
148.

[21] Y. Li, H. Deng, J. Li, C. Peng, and S. Lu, “Instability in distributed
mobility management: Revisiting configuration management in 3g/4g
mobile networks,” in Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science, 2016, pp. 261–272.

[22] A. Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu, S. Jin, J. Carpenter,
Z. M. Mao, F. Qian, and Z.-L. Zhang, “Vivisecting mobility management
in 5g cellular networks,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 86–100.

[23] Q. Li and C. Peng, “Reconfiguring cell selection in 4g/5g networks,” in
2021 IEEE 29th International Conference on Network Protocols (ICNP).
IEEE, 2021, pp. 1–11.

[24] C. Peng and Y. Li, “Demystify undesired handoff in cellular networks,”
in 2016 25th International Conference on Computer Communication
and Networks (ICCCN). IEEE, 2016, pp. 1–9.

[25] Y. Li, H. Lin, Z. Li, Y. Liu, F. Qian, L. Gong, X. Xin, and T. Xu,
“A nationwide study on cellular reliability: measurement, analysis, and
enhancements,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 597–609.

Fuliang Li (Member, IEEE) received the BSc degree
in computer science from Northeastern University,
China in 2009, and the PhD degree in computer sci-
ence from the Tsinghua University, China in 2015.
He is currently an associate professor at the School
of Computer Science and Engineering, Northeastern
University, China. He has published more than 50
Journal/conference papers. His research interests in-
clude network management and measurement, cloud
computing, and network security.

Chenyang Hei received his BS degree in Intel-
ligence Science and Technology from Northeast
Electric Power University, Jilin, China in 2021, and
is currently pursuing a Ph.D. degree at the School
of Computer Science and Technology, Northeastern
University, Shenyang, China. His research interests
include network configuration synthesis, SmartNIC,
and distributed training networks.

Jiaxing Shen (Member, IEEE) received the B.E.
degree in Software Engineering from Jilin University
in 2014, and the Ph.D. degree in Computer Sci-
ence from the Hong Kong Polytechnic University
in 2019. He was a visiting scholar at the Media
Lab, Massachusetts Institute of Technology in 2017.
His research interests include mobile computing,
data mining, and IoT systems. He has published in
various top-tier journals including IEEE TMC, ACM
TOIS, ACM IMWUT, and IEEE TKDE. He has re-
ceived two best paper awards at leading conferences,

including IEEE INFOCOM.

Qing Li is pursuing the M.S. degree in computer
science and technology with the Department of
Computer Science and Engineering, Northeastern
University, Shenyang. She received the B.S. degree
in computer science and technology from Northeast-
ern University (Qinhuangdao) in 2021. Her research
interests include network management, cellular net-
work configuration, and intent-based network.

Xingwei Wang (Member, IEEE) received the BS,
MS, and PhD degrees in computer science from
Northeastern University, Shenyang, China, in 1989,
1992, and 1998, respectively. He is currently a
professor with the College of Computer Science and
Engineering, Northeastern University, Shenyang,
China. He has authored or coauthored more than
100 journal articles, books and book chapters, and
refereed conference papers. His research interests
include cloud computing and future Internet. He was
the recipient of several best paper awards.

