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A B S T R A C T   

Longan is a famous speciality fruit and cultivated medicinal plant that has important edible and medicinal value; 
how to improve productivity in harvest is an important issue. At present, longan is mainly planted in hilly areas. 
For complex site conditions and tall trees, the ground harvesting machineries cannot work normally. In this 
study, aiming at harvesting longan fruit using unmanned aerial vehicles, a method combining an improved 
YOLOv5s, improved DeepLabv3+ model and depth image information is proposed, which is used for the three- 
dimensional (3D) positioning of branch picking points in complex natural environments. First, the improved 
YOLOv5s model is used to quickly detect longan fruit skewers and the main fruit branches from a complex or-
chard environment. The correct main fruit branch is obtained according to its relative position relationship and is 
extracted as the input to the semantic segmentation model. Second, using the improved DeepLabv3+ model, the 
image extracted in the previous step is semantically segmented to obtain the 2D coordinate information of the 
main longan fruit branches. Finally, combined with the growth characteristics of a longan fruit string, RGB-D 
information fusion is carried out on the main fruit branches in 3D space to obtain the central axis and pose 
information of the main fruit branches, and the 3D coordinates of the picking points are calculated, which 
provides destination information for a longan harvesting drone. To verify the effectiveness of the proposed 
method, an experiment for identifying and locating the main fruit branches and picking points was carried out in 
a longan orchard. The experimental results show that the longan string fruit and main fruit branch detection 
accuracy is 85.50%, and the main fruit branch semantic segmentation accuracy is 94.52%. The whole algorithm 
takes 0.58 s in the actual scene and can quickly and accurately locate the picking points. In summary, this paper 
fully exploits the advantages of the combination of a convolutional neural network and RGB-D image infor-
mation, further improving the efficiency of longan harvesting drones in accurately positioning picking points in 
3D space.   

1. Introduction 

Longan is a famous specialty fruit and cultivated medicinal plant in 
tropical and subtropical areas, that has important edible and medicinal 
value and is widely planted in hilly areas of southern China (Lin et al., 
2020). However, longan trees are usually more than 10 m high and have 

a short maturity period, which requires considerable labour and high 
costs to harvest. At present, longan harvesting mainly adopts manual 
operation, which is low in automation, laborious and time-consuming. It 
is easy for longan pulp quality to deteriorate due to not harvested in 
time. Therefore, to reduce the harvesting cost of longan, it is necessary to 
develop an agricultural robot that can automatically harvest longan 
string fruits (Kang & Chen, 2020; Li et al., 2020; Zhang et al., 2020). 
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Especially considering the complex terrain conditions of mountain or-
chards and the growth characteristics of fruit clusters on tall longan 
trees, it is necessary to develop more suitable harvesting robots. 

The autumn tip of longan trees usually grows at the top of the pe-
riphery, which is an important fruiting branch. After flowering and fruit 
inoculation, with the increase in fruit weight, it gradually bends towards 
the ground (Pham et al., 2015). Longan, like litchi and grape, is a cluster 
fruit and the whole cluster needs to be picked. When picking longan fruit 
manually, it is necessary to find the main branch first, which is then cut 
with scissors at a distance of 2–5 cm from the last branch to prevent the 
fruit from being damaged. The growth characteristics and picking 
scheme of cluster fruit are shown in Fig. 1. For a machine to automati-
cally pick longan, it is necessary to imitate manual harvesting, first, 
accurately identifying and locating the main fruit branches and then 
finding the picking point. In a natural environment, the main longan 
fruit branches have complex distribution forms, which are easily shaded 
by leaves and branches and show different postures in different growing 
environments. Therefore, detecting the main longan fruit branches and 
the positioning results of picking points are difficulties in realizing 
automatic picking, which directly affects the accuracy and efficiency of 
longan picking. 

Some researchers have used traditional machine learning methods to 
identify string fruits. Jaisin et al. (2013) applied a HSB (hue, saturation 
and brightness) colour model to the images of longan fruits in bunches, 
including branches and leaves, to separate the objects of interest from 
the background. Xiong et al. (2018) proposed a method based on 
improved fuzzy clustering to separate litchi fruit and the main fruit- 

bearing branches and calculate the three-dimensional (3D) co-
ordinates of picking points with binocular vision. Zhuang et al. (2019) 
used the retinex algorithm to segment litchi’s main fruit bearing branch 
area and then used Harris corner points to determine the picking point. 
The colour space transformation, fuzzy clustering, threshold segmenta-
tion and other methods used in the above research are traditional image 
processing technologies. The image data used in the research are all 
collected under simple background conditions or indoor conditions and 
can only be used for image processing tasks with simple backgrounds. In 
an actual orchard scene, due to the influence of various factors in the 
natural environment, the fruit growing environment varies greatly, and 
the light intensity also varies with the weather conditions. The image 
data collected in these scenes not only have complicated backgrounds 
but also images, where light and dark often alternate, and the charac-
teristics of different fruits are obviously different. Therefore, these al-
gorithms have poor robustness and accuracy in complex orchard scenes. 

With their rapid development, deep convolutional neural networks 
have shown excellent learning ability in the feature extraction of com-
plex images. Therefore, an increasing number of deep learning (DL) 
algorithms are used to process image data collected in the agricultural 
field (da Silva et al., 2021; de Medeiros et al., 2021; Kamilaris & 
Prenafeta-Boldu, 2018), including fruit detection and counting (Bargoti 
& Underwood, 2016; Fu et al., 2020; Gao et al., 2020; Liu et al., 2020; 
Xiong et al., 2020), plant identification (Dyrmann et al., 2017; Flores 
et al., 2021), pest identification and diagnosis (Anagnostis et al., 2021; 
Ghosal et al., 2018; Singh et al., 2021), remote sensing area classifica-
tion and detection (Ma et al., 2019; Paoletti et al., 2019), fruit in vivo 
detection and product classification (Koirala et al., 2019), and animal 
identification and posture detection (Norouzzadeh et al., 2018). 
Compared with traditional image processing algorithms, the multilayer 
structure of a DL model forms abstract high-level representation attri-
bute categories or features by combining bottom features. It can solve 
complex nonlinear problems well, has strong robustness in agricultural 
applications and shows high performance in object recognition (LeCun 
et al., 2015). 

To realize the automatic picking of string fruits, researchers have 
attempted to apply DL methods to detecting and locating string fruits in 
recent years. Liang et al. (2020) used YOLOv3 and U-Net (Ronneberger 
et al., 2015) to detect and segment litchi fruit and the main fruit-bearing 
branches but did not further determine the actual picking point. Zhong 
et al. (2021) proposed a detection method based on YOLACT, which 
determines the angle of the main fruit-bearing branch in two- 
dimensional space through skeleton extraction and least squares 
fitting but did not propose a calculation method in 3D space. Li et al. 
(2021) proposed a scheme based on YOLOv4-MobileNet to quickly and 
accurately detect and locate suitable picking points of longan branches 
but did not further determine the position and posture information of 

Nomenclature 

UAV Unmanned Aerial Vehicle 
CNN Convolutional Neural Network 
RGB-D Red, Green, Blue and Depth 
YOLO You Only Look Once 
3D Three Dimensional 
HSB Hue, Saturation and Brightness 
YOLACT You Only Look At Coefficien Ts 
R-CNN Recursive Convolutional Neural Network 
ASPP Atrous Spatial Pyramid Pooling 
LoG Laplacian of Gaussian 
FPN Feature Pyramid Network 
SPP Spatial Pyramid Pooling 
PAN Path Aggregation Network 

P Precision 
R Recall 
AP Average Precision of a category 
mAP Average Precision of multiple categories 
FPS Frames Per Second 
IoU Intersection over Union 
TP True Positive 
FP False Positive 
TN True Negative 
FN False Negative 
P-R Precision-Recall 
PA Pixel Accuracy 
mPA mean Pixel Accuracy 
mIoU mean Intersection over Union  

Fig. 1. Growth characteristics and picking scheme of string fruits.  
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the main longan branches. 
With their rapid development, unmanned aerial vehicles (UAVs) 

have been gradually applied in agricultural production, including plant 
protection (Tetila et al., 2020; Zhou et al., 2020), crop monitoring (Feng 
et al., 2020a; Vanegas et al., 2018) and crop yield evaluation (Feng et al., 
2020b; Sumesh et al., 2021). Compared with ground harvesting robots, 
UAVs are more adaptable to the complex terrain of mountain orchards. 
Therefore, this study attempts to apply UAVs to picking tasks in un-
structured orchard environments. With the development of sensor 
integration, RGB-D cameras are more suitable for outdoor orchard en-
vironments because of their lightness, high precision and insensitivity to 
light, and they have become an effective tool for collecting 3D orchard 
information. At present, carrying a portable RGB-D camera on a UAV to 
collect images, accurately detecting the main longan branch and 
locating the picking point based on DL have become key problems for 
longan harvesting UAVs using vision to complete the picking task. 

To promote the application of UAVs in longan picking, this study 
proposes a scheme that combines a DL algorithm with an RGB-D camera 
to accurately detect and locate the main longan branch and determine 
the picking point. This scheme will help longan harvesting UAVs using 
vision improve the speed and accuracy of object location in natural 
environments. The contribution of this research can be summarized as 
follows: 

(A) At present, the general object detection model requires consid-
erable computation and running time. In this study, a dense cross- 
connection method is used to improve the YOLOv5s network 
performance so that the model can converge to the optimal so-
lution faster to obtain more target information and improve the 
accuracy of the model in the object detection task.  

(B) Directly using the semantic segmentation model to segment small 
targets in a large field of view images consumes considerable 
running time, and the accuracy is not high. This study proposes 
using object detection before semantic segmentation, which fully 
improves the performance of the whole algorithm, reduces the 
amount of calculation, parameters and running time of the 
model, and further improves the accuracy and efficiency of target 
positioning.  

(C) Given the large error of binocular vision in target positioning, a 
method fusing a convolutional neural network and depth infor-
mation is proposed in this study to estimate the pose of longan 

main fruit branches and accurately locate the picking points in 
three-dimensional space, which is expected to improve the 
robustness of UAVs to accurately perceive targets under complex 
and changing conditions.  

(D) The method of collecting RGB and depth images with RGB-D 
cameras on UAVs proposed in this study will help provide a 
large quantity of data for UAVs in any field to perform accurate 
object detection and semantic segmentation tasks. 

The article is organized as follows: the materials and methods are 
presented in Section 2, the model construction and 3D localization 
strategy are described in Section 3, the model experiment and results 
analysis are detailed in Section 4, and Section 5 concludes the paper. 

2. Materials and methods 

2.1. Overview of the 3D localization system 

To improve the speed and accuracy of locating the main longan fruit 
branches and picking points in 3D space, a system solution was devel-
oped, as shown in Fig. 2. The scheme provides a UAV image acquisition 
method and image preprocessing method, a scheme integrating target 
detection, a semantic segmentation model and depth image information 
for 3D positioning of longan main fruit branches and picking points in a 
complex natural environment. 

During image acquisition, the RGB-D camera on the UAV captures 
RGB and depth images from a distance of 1.5 m to 0.6 m from the longan 
fruit. The improved YOLOv5s object detection model is used to detect 
longan skewers and main fruit branches in a complex natural environ-
ment. The correct main fruit branch detection frame is obtained ac-
cording to its relative position relationship, and it is extracted as the 
input to the semantic segmentation model. An improved DeepLabv3 +
model is used to perform semantic segmentation on the image extracted 
in the previous step and obtain the 2D coordinate information of the 
longan main fruit branches. Finally, combined with the growth char-
acteristics of the longan fruit string, RGB-D information fusion is carried 
out on the main fruit branches in 3D space, and the pose information of 
the main fruit branches and the coordinate information of the picking 
points are determined, which provides destination information for the 
longan harvesting drone. 

Fig. 2. 3D positioning solution of the main longan branch.  
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2.2. Sensor system and image acquisition 

To develop and test the proposed algorithm, 450 and 360 valid 
longan images were acquired at the Longan Germplasm Resource 
Nursery of the Guangdong Academy of Agricultural Sciences in 
Guangzhou on July 1–17, 2020, and July 5–25, 2021, respectively, 
during three different time periods: morning (8:00–10:00), noon 
(12:00–14:00), and afternoon (15:00–17:00). An Intel RealSense D455, 
a lightweight, small and powerful RGB-D camera, was installed on a DJI 
Jingwei M600PRO UAV. The camera consisted of a colour camera and 
an infrared camera. The installation method and structure are shown in 
Fig. 3, and the resolution of the output RGB image and depth image was 
set to 1280 × 720 pixels. 

To enhance the generalization of the model, images of Shijie and 
Chuliang longan were collected. To fully reflect the real scene and the 
complexity of an orchard environment when picking longan strings by 
UAV, images collected in different scenes, such as sunny, backlit and 
cloudy in the natural state, were used as data sets, without artificial 
shadows or light interference. Examples of the images are shown in 
Fig. 4. The onboard computer consisted of two ARM v8 64-bit CPUs, one 
8 GB 128-bit LPDDR4 memory, one NVIDIA Pascal GPU architecture 
with 256 NVIDIA CUDA cores, and CUDA version 9.0. An Ubuntu 16.04 
LTS 64-bit system, based on Jetpack SDK 3.3, a PyTorch DL framework 
was built, and the image acquisition and data processing program was 
written in Python. The CNN model program was written on a Python 
platform to realize the object detection and semantic segmentation 
tasks. The data processing of the whole platform runs on an airborne 
microcomputer. 

2.3. Image preprocessing 

This study prepares training data and test data for target detection 
and semantic segmentation models respectively. Aiming at the RGB 
images collected by the UAV, blurred images are identified and cleared, 
the clear images are randomly cut and normalized, and the border boxes 
of the string fruit and the main fruit branches in each sample are 
manually marked. An initial data set for training and testing the 
improved YOLOv5s model is constructed. The trained improved 
YOLOv5s model is used to detect every image in the clear RGB image 
data set, and according to the position relationship between the string 
fruit and the main fruit branch, the correct main fruit branch image is 
extracted, and the position of the main fruit branch in each image is 
manually marked. Semantic segmentation of the data set is performed 
for training and testing the improved DeepLabv3 + model. The specific 
flow of the entire process is shown in Fig. 5. 

2.3.1. Fuzzy image recognition 
When collecting longan images in hilly orchards with complex 

terrain, a UAV needs to adjust its posture at any time according to the 
terrain changes and the shape of the fruit trees. At the same time, it is 
easily affected by local circulation and airflow in orchards, which will 
cause unstable posture in the air. Therefore, the collected longan images 
will inevitably be blurred. To improve the accuracy of object detection 
and positioning for a longan harvesting UAV, it is necessary to judge 
whether the collected images are clear in real time. In the early research 
of this project, the method of extracting edge features was used to judge 
the blurred image and remove the blurred image (Li et al., 2021). This 
method is used to process 910 collected images, 125 images are iden-
tified and removed, and the remaining 785 images are processed in the 
next step. 

2.3.2. Construction and annotation of the object detection data set 
In the process of building the target detection data set, 785 clear RGB 

images obtained in the previous step were expanded and normalized. To 
ensure the diversity of training samples, the longan image data were 
expanded by using the self-programming random clipping algorithm. A 
total of 1,070 longan images were obtained after the expansion of the 
initial dataset. To prevent the image size inconsistency from adversely 
affecting the training process of the object detection model, image 
normalization technology was used to preprocess the amplified image, 
and the size of 1280 × 1280 pixel standard image was obtained. 

In images collected by a UAV, the background is complicated. 
Because the string fruit is easier to accurately identify than the main fruit 
branch using the model, it is necessary to further judge whether the 
identified main fruit branch is correct according to the position infor-
mation of the string fruit detected by the model. Each of the 1,070 im-
ages was manually annotated. To draw the bounding boxes, we followed 
the guidelines of the reference challenge Pascal VOC 2010. Two classi-
fication labels were defined: ① string_fruit: a cluster of longan fruit from 
the first branch to the last branch on a fruiting parent branch; ② 
fruit_branch: the main fruit branch. 

LableImg software was used for manual annotation, and the anno-
tation information was saved in an XML file. Labelling information 
included image size, object category and specific location coordinate 
information of the object area, which was used as an information file to 
read object features during model training. For example, as shown in the 
image in the second column in Fig. 6, for the four scenes of A, B, C and D, 
string_fruit and fruit_branch are marked according to the following sit-
uations: ① when string_fruit and fruit_branch on the same fruit branch 
are both visible or partially occluded, marking the two kinds of objects 
at this time can calculate the reverse loss of model training, optimize the 
model parameters and evaluate the performance of the model; ② when 
string_fruit and fruit_branch on the same branch cannot be seen at the 
same time, it cannot be determined whether the positional relationship 
between string_fruit and fruit_branch is accurate, and the end effector 
cannot pick fruit, so it is not necessary to mark string_fruit and fruit_-
branch in this case. 

2.3.3. Construction and annotation of the semantic segmentation data set 
Since the semantic segmentation model used in this study does not 

require the size of the input image, the trained improved YOLOv5s 
model is used to detect each image in the initial data set, obtain the 
coordinate information of the main fruit branch image, and extract it 
directly from the original image. Lableme software is used to manually 
mark the position of the main fruit branches in each image to form a 
semantic segmentation data set for training and testing the improved 
DeepLabv3 + model. 

The sample and tag information of the semantic segmentation 
dataset are shown in the third column of the main fruit branch image 
and the fourth column of the semantic labels in Fig. 6. The semantic 
segmentation model is trained, and its performance is evaluated through 
the tag mask and tag. The initial dataset and the semantic segmentation Fig. 3. Installation method and structure of the Intel RealSense D455 camera.  
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dataset can be obtained from the RGB images collected by the UAV after 
image processing. The 1,070 images in the initial data set are divided 
into a training set, verification set and test set according to the ratio of 
3:1:1. Since the semantic segmentation model used in this study only 
needs a training set and test set, 818 images in the semantic segmen-
tation data set are divided into a training set and test set according to the 
ratio of 4:1. Table 1 lists the number of images and labelling information 
contained in the two datasets. 

3. Model construction and 3D localization strategy 

In this section, focusing on RGB and depth images collected by an 
RGB-D camera on a UAV, we propose a strategy for quickly and accu-
rately obtaining the position information of string_fruit and fruit_branch 
from RGB images, combining this with depth images, extracting the pose 
information of longan main fruit branches in 3D space and accurately 
positioning picking points. The specific scheme is shown in Fig. 7. First, 
RGB images are input to the trained improved YOLOv5s model for object 
detection, and the model outputs the coordinate information of 
string_fruit and fruit_branch in the RGB images. According to their 
relative position, the correct image of the main fruit branch is judged 
and extracted from the original image. This is input into the improved 
DeepLabv3 + model for semantic segmentation. The location informa-
tion of the main fruit branch in the original image is obtained, and the 

information in the depth image is fused to obtain the 3D coordinate 
information of the centroid of the local areas at both ends of the main 
fruit branch. Finally, according to the 3D space angle calculation 
method, the angle information between the central axis of the main fruit 
branch and the XOY, YOZ and XOZ planes is obtained, and the posi-
tioning information of the picking point in 3D space is obtained. In the 
following four parts, the object detection algorithm, semantic segmen-
tation model, judgement strategy of the main fruit branch position and 
precise positioning strategy of the picking points are introduced. 

3.1. YOLOv5 object detection algorithm 

To quickly and accurately detect the longan location and further 
reduce the number of calculations and parameters, it is necessary to 
optimize a CNN model suitable for deployment on the onboard UAV 
computer. At present, the main object detection networks include the R- 
CNN series (Girshick, 2015; Girshick et al., 2016; Ren et al., 2017) and 
YOLO series (Bochkovskiy et al., 2020; Redmon et al., 2016; Redmon & 
Farhadi, 2018). The R-CNN series has advantages in object detection 
with high precision, but in practical application scenarios, it cannot 
meet real-time requirements. YOLO series algorithms use the idea of 
regression and single-stage neural networks to directly detect and clas-
sify objects, which makes it easier to learn the generalized features of 
objects, thus improving the object detection speed. 

Fig. 4. Examples of longan images.  

Fig. 5. Diagram of the UAV image preprocessing flow.  
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YOLOv5s can be structurally divided into four parts: the input, 
backbone, neck and prediction. Its network structure is shown in Fig. 8. 
The input terminal is used to process the image to some extent. The 
backbone is used to downsample the input image five times to extract 
the features of the image. It includes four modules: Focus, CBH, CSP1_x 
and SPP (He et al., 2015). The neck network uses a ReLU activation 
function and adopts an FPN (Lin et al., 2017) + PAN (Liu et al., 2018) 
network structure. In the prediction, NMS performs nonmaximum sup-
pression processing on the last detection frame of the object to obtain the 
optimal object frame and provides three different detection scales (20 ×
20, 40 × 40 and 80 × 80). It can predict different sizes of longan fruit 
clusters and the main fruit branches. 

It can be seen in the structural diagram of YOLOv5s that there is one 
CSP1_1 and two CSP1_3 modules in the backbone, and these three re-
sidual components are connected by cross-connection, which easily 
leads to model gradient divergence in the training process, thus leading 

to the problem that the accuracy is not easy to improve. To further 
improve the detection accuracy of the model, this study uses a dense 
cross-connection to improve the performance of the YOLOv5s network. 
The structural improvement method is shown in Fig. 9. 

The improved CSP1_x residual component adds a cross-connection 
between each CBH module based on the original residual component 
so that the two CBH modules are closely connected. The specific process 
is as follows: (1) the input feature information (defined as A) in the first 
CBH module is convolved and the obtained feature information (defined 
as B) is fused with the original input information; (2) then the fused 
features in the second CBH module are convolved to obtain feature in-
formation (defined as C); and (3) the feature information A, B and C are 
fused and input into the next feature extraction structure. The improved 
CSP1_x residual component can prevent the gradient degradation of the 
YOLOv5s model during training so that the improved YOLOv5s model 
can converge to the optimal solution faster, thereby obtaining more 
object information and improving the accuracy of the model in the ob-
ject detection task. 

3.2. DeepLabv3 + semantic segmentation algorithm 

When a CNN is deployed on a UAV’s onboard computer to realize 
semantic segmentation tasks, it is necessary to reduce the number of 
calculations and parameters while ensuring high accuracy. Facing the 
problem of continuous pooling and downsampling of images, most se-
mantic segmentation algorithms adopt a method of atrous convolution, 
but this method cannot solve the problem of multiscale objects. The 

Fig. 6. Construction and annotation of the initial and semantic segmentation data sets.  

Table 1 
Details of the initial and semantic segmentation data sets.  

Initial data set Semantic segmentation data set 

Data set Images string_fruit fruit_branch Images fruit_branch 

All data set 1070 1573 1573 818 818 
Train data set 642 950 950 654 654 
Val data set 214 305 305 / / 
Test data set 214 318 318 164 164  
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DeepLabv3 + algorithm was developed based on DeepLabv1-3 and other 
algorithms (Baheti et al., 2020; Chen et al., 2018; Chen et al., 2017). 

To further improve the speed and accuracy of the DeepLabv3 +
model, this study uses MobileNetv2 as the feature extraction backbone 
network and optimizes the existing DeepLabv3 + model. This can not 
only greatly reduce the number of model parameters and realize light-
weight model design but also ensure that deep convolution can complete 
feature extraction in high dimensions and improve the calculation per-
formance of the model. The improved network structure is shown in 
Fig. 10. It is divided into an encoding layer and a decoding layer. 

In the encoding layer, the MobileNetv2 network and ASPP module 
are used to extract object features. The ASPP structure first performs 1 ×
1 convolution, 3 × 3 convolution with expansion rates of 6, 12 and 18, 

and global average pooling operation on the input feature map, then 
performs feature fusion on the feature information generated after 
parallel convolution, inputs the feature information into the 1 × 1 
convolution layer for compression, and outputs advanced semantic 
feature information. In this process, after the 1 × 1 convolution, the 
number of channels is compressed to 256, which is consistent with the 
low-level semantic information of the decoding layer. Finally, ASPP can 
extract and distinguish the feature information of objects of different 
scales and realize the segmentation of multiscale objects well. 

In the decoding layer, the low-level semantic information generated 
by the encoding layer is reduced in dimension by a 1 × 1 convolution, 
which makes the latter features have a strong emphasis on the features 
obtained by the encoder, that is, the 256 channels, and well preserves 

Fig. 7. 3D positioning strategy of the longan picking point.  

Fig. 8. YOLOv5s structure diagram.  

Fig. 9. CSP1_x residual component before and after improvement.  
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the high-level feature information to compensate for the loss of 
boundary information caused by downsampling. Low-level features 
contain rich resolution and rich spatial details, and feature fusion is 
carried out with the advanced semantic information after upsampling 4 
times. Finally, 3 × 3 convolution and 4 upsampling operations are 
carried out on the fused feature map to restore the spatial resolution of 
the image, and the object segmentation result is output after passing 
through a softmax layer. 

3.3. Judgement strategy of the main fruit branch position 

In this section, it is determined whether the position of the main 
longan branch that is output is accurate according to the object detec-
tion result chart. Usually, longan string fruit is vertical to the ground 
because of its heavy branches, and the main fruit branch is above the 
string fruit. Because of the large area of radiation from the fruit skewers, 
it is easier to accurately detect the specific location in both a distant view 
and close view. Therefore, it can be judged whether the detected main 
fruit branch is the real main fruit branch according to the position of the 
fruit string. 

As shown in Fig. 11, in the result chart predicted from the improved 
YOLOv5s model, the red box is the string fruit position of the model 
detection output, and the blue box is the main fruit branch position of 
the output. The coordinate information of the detection frame predicted 
by the model is calculated by taking the upper left corner of the image as 
the origin, and the unit is pixels. The numerical values of the coordinates 
of the upper left corner point and the lower right corner point of each 
detection frame are sequentially output from left to right and from top to 
bottom. To accurately judge whether the main fruit branch predicted by 
the model is the correct main fruit branch, a verification strategy is set: 
Xs1 < Xf1 < Xs2 and Xs1 < Xf2 < Xs2 and Yf1 < Ys1 and Yf2 < Ys2. 
According to this verification strategy, it can be easily judged that only 
blue box 1 in Fig. 11 is the correct main fruit branch, while neither blue 
box 2 nor blue box 3 is the correct main fruit branch, so only blue box 1 

needs to be extracted as the semantic segmentation image. 

3.4. Accurate picking point location strategy 

Longan fruit is usually harvested in clusters. When picking, it is 
necessary to first obtain the position information and picking point of 
the main longan branches. Under normal circumstances, the fruit 
stringing is under the main fruit branch, and the upper part of the main 
fruit branch is covered by leaves. The centre of the main fruit branch is 
selected as the picking point to avoid the end actuator touching the fruit 
or leaves when cutting the main fruit branch, thereby improving the 
picking success rate. 

Two pieces of information for the pose information of the main fruit 
branches and the location of picking points need to be acquired first, the 
two-dimensional coordinate information from the RGB image and the 
distance information from the depth image. The grey value of each pixel 
in the depth image is linearly related to the distance between the point 
and the camera, and the specific distance between the object and the 
camera can be extracted by picking up the grey value of a pixel at a 
specific position. The pose of the main fruit branch is defined using three 
angles, which are the angles between the main fruit branch and the XOY, 
YOZ and XOZ planes in 3D space. The picking point is defined as the 
central position of the central axis of the main fruit branch. Their spe-
cific calculation steps are described in steps 1–6. The steps of manually 
measuring the position and posture information of the main fruit branch 
and the position information of the picking point are described in steps 
7–8.  

(1) Step 1: As shown in Fig. 12, after the RGB image collected by the 
camera is predicted by the object detection algorithm, the coor-
dinate points of the upper left corner and the lower right corner of 
the bounding box of the main fruit branch in the RGB image can 
be obtained as (Xmin,Ymin) and (Xmax, Ymax), respectively. Ac-
cording to these two coordinates, the RGB image of the main fruit 
branch is extracted from the original image.  

(2) Step 2: After the RGB image obtained in the previous step is 
predicted by the semantic segmentation model, the segmentation 
result map of the main fruit branch in the RGB image is obtained, 
the result map is binarized so that the area with a pixel value of 
255 is the main fruit branch, and the area with a pixel value of 0 is 
the background.  

(3) Step 3: The upper and lower end regions of the main fruit branch 
obtained by semantic segmentation are usually irregular. To 
accurately obtain the pose information of the main fruit branch, 
the local regions of the upper and lower ends of the region with a 
pixel value of 255 are selected, and the coordinates of their 
centroids A (XcentA,YcentA) and B (XcentB,YcentB) are calculated. 
Then, the coordinates of centroids A and B of the local areas at the 
upper and lower ends of the main fruit branch in the two- 
dimensional space are (Xmin +XcentA,Ymin +YcentA) and (Xmin +

XcentB,Ymin + YcentB).  
(4) Step 4: As shown in Fig. 13, the numerical values in the parameter 

matrix of the Intel RealSense D455 camera fx, fy, ppx, ppy can be 
read directly, and the centroid coordinates in two-dimensional 
space (Xp,Yp) and depth values z can be obtained. After that, 
RGB-D information can be fused using the pinhole imaging 
principle, and the 3D coordinates of the centroid points in the real 
world can be obtained (Xt ,Yt ,Zt): 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xt =
z*(Xp − ppx)

fx

Yt =
z*(Yp − ppy)

fy

Zt = z

(1) 

According to this formula, the coordinate values of centroids A and B 

Fig. 10. Network structure diagram of the improved DeepLabv3+ model.  

Fig. 11. Coordinate information for each bounding box.  
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in 3D space can be calculated to be (X1,Y1, Z1) and (X2,Y2,Z2), respec-
tively. The line segment between points A and B is used to fit the central 
axis of the main fruit branch.  

(5) Step 5: As shown in Fig. 13, according to the 3D coordinates of 
points A and B, the angle between the main fruit branch and each 
plane can be calculated. When calculating, dx = |X2 − X1|, dy =

|Y2 − Y1|, dz = |Z2 − Z1| are first defined. The pose information of 
the main fruit branch is obtained as follows: 

Angle between the main fruit branch and the XOY plane: 

α = arctan[dz/sqrt(dx*dx+ dy*dy)] (2) 

Angle between the main fruit branch and the YOZ plane: 

β = arctan[dx/sqrt(dy*dy+ dz*dz)] (3) 

Angle between the main fruit branch and the XOZ plane: 

γ = arctan[dy/sqrt(dx*dx+ dz*dz)] (4)    

(6) Step 6: According to the 3D spatial coordinates of points A and B 
and the fitted central axis of the main fruit branch, the co-
ordinates of the central point O (X3,Y3,Z3) are calculated, where 
point O is the best picking point on the main longan branch.  

(7) Step 7: When manually measuring the α, β, γ with the help of a 
herringbone ladder, tripod with platform, level, white paper, 
square and two in one angle ruler. In the preparation stage of 
measurement, the researcher stood on a herringbone ladder and 

Fig. 12. Flow chart of obtaining coordinates of the centroid in two-dimensional space.  

Fig. 13. Flow chart of obtaining the picking point coordinates in 3D space.  
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placed the level near the lower end of the main fruit branch on the 
platform supported by the tripod. A piece of white paper was 
posted on the platform. The platform was adjusted to be in the 
horizontal position by the level. With the help of a square, the 
projection of the upper and lower points of the appropriate cut-
ting area on the main fruit branch on the horizontal plane was 
drawn on white paper on the platform. Additionally, the BCDE 
rectangle in Fig. 13 was drawn on the white paper and the line 
segment between the two points B and D was drawn as the 
auxiliary measuring line of the two in one angle ruler. The 
measure is as follows:  
(a) Close the rotation centre of the two in one angle ruler to point 

A in Fig. 13. Stick the bottom edge of the ruler with a digital 
display on the angle ruler to the AE line and the side edge to 
the BE line. Turn the other ruler on the angle ruler until its 
bottom edge is attached to the AB line. Read the angle value 
on the digital display as the α value.  

(b) Close the rotation centre of the two in one angle ruler to point 
An in Fig. 13. Stick the bottom edge of the ruler with a digital 
display on the angle ruler to the AC line and the side edge to 
the BC line. Turn the other ruler on the angle ruler until its 
bottom edge is attached to the AB line. Read the angle value 
on the digital display as the β value.  

(c) Close the rotation centre of the two in one angle ruler to point 
B in Fig. 13. Stick the bottom edge of the ruler with a digital 
display on the angle ruler to the BD line and the side edge to 
the AD line. Turn the other ruler on the angle ruler until its 
bottom edge is attached to the BA line. Read the angle value 
on the digital display is the γ value.  

(8) Step 8: When manually measuring the coordinates of the best 
picking point on the main fruit branch in 3D space, first use a 
ruler to measure the distance between two points A and B in 
Fig. 13, and calculate the centre point O of the two points A and B. 
Use a square to obtain the intersection M between the plane 
where point O is located and the vertical line where the camera 
centre point is located, and use a ruler to measure the distance Z4 
between point M and the camera centre point. Use a ruler to 
measure the distance X4 between point M and point O in the X- 
axis direction. Distance Y4 between point M and point O in the Y- 
axis direction. The coordinates of the best picking point on the 
main fruit branch in 3D space are (X4,Y4,Z4). 

4. Model experiment and results analysis 

The focus of this section analyses the performance of the models in 
combination with the experimental results. The following will shows the 
model training and parameter design, model evaluation indicators, the 
results and discussion of the object detection task, the best segmentation 
result of the main fruit branch, and the results of the extraction and 
location of picking points in real orchard scenes. 

4.1. Model training and parameter design 

4.1.1. Object detection algorithm training and parameter design 
The training and testing process of the object detection model is 

realized on a workstation with the Ubuntu 16.04 LTS operating system. 
The CNN model is built using the Python programming language on the 
Python DL framework, and the image size of the training data is 1280 ×
1280 pixels. In terms of parameter settings, the intersection over union 
(IoU) is set to 0.5, the initial learning rate is 0.0001, the learning rate at 
the end of training is set to 0.00001, and 90–10 training verification data 
set splitting is used. A total of 300 epoch iterative trainings are con-
ducted. To enable the model to detect multiple objects at multiple scales 
in one window, it is necessary to set anchor boxes with different aspect 
ratios and sizes. By analysing the initial data set, the size distribution 
map and k-means clustering result map of all object bounding boxes are 

obtained. In the left figure of Fig. 14, the red rectangular boxes corre-
spond to the string_fruit bounding boxes in the dataset. The blue rect-
angular boxes correspond to the fruit_branch bounding boxes in the 
dataset. As seen in the figure, the size of fruit_branch is generally small. 
The horizontal and vertical coordinates of the blue dots on the right 
figure of Fig. 14 represent the width and height of each object bounding 
box. The darker the colour, the more objects of this size there are. In 
other words, this map can reflect the complexity of an object to be 
inspected in an orchard scene to a certain extent. 

According to the size characteristics of the object bounding boxes in 
the initial dataset, it is determined that the anchor boxes suitable for 
training the improved YOLOv5s model are [6,14, 8,33, 13,20, 17,43, 
35,60, 59,88, 89,137, 148,214, 293,339]. 

4.1.2. Semantic segmentation algorithm training and parameter design 
The training and testing hardware configuration of the semantic 

segmentation model is as follows: Ubuntu 16.04 LTS is the operating 
system, an Intel Core i7-10700 k @ 3.00 GHz is the CPU, there are 512 
GB of memory, and an NVIDIA GTX2070 Super is the GPU. The semantic 
segmentation model is built using the Python programming language on 
the PyTorch DL framework. In addition, the semantic segmentation 
model runs on the GPU configured with the CUDA 10.0 parallel pro-
gramming platform and the cuDNN 7.1 acceleration package. To avoid 
the possible influence of different parameter settings on the experi-
mental results, the optimal parameters are obtained through repeated 
experiments, and then the parameters of each network are configured 
consistently. In the freeze phase, the learning rate is 5e-4, and 200 
epochs are trained. In the unfreeze phase, the learning rate is 5e-5, and 
300 epochs are trained. The number of iterations of each epoch is 164, 
and the batch size is 4. 

4.2. Model evaluation indicators 

4.2.1. Evaluation index of the object detection algorithm 
The commonly used algorithm evaluation indicators in object 

detection tasks include the precision (P), recall (R), F1 score, average 
precision of a category (AP), average precision of multiple categories 
(mAP), and frames per second (FPS). For binary classification problems, 
samples can be divided into true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN) according to the combination of 
their true categories and the learner prediction categories. In four cases, 
let TP, FP, TN, and FN denote the corresponding number of samples. 
Obviously, TP + FP + TN + FN = the total number of samples. 

The precision, which means how many of the positive examples are 
true examples, is based on the prediction results. The recall, which in-
dicates how many positive examples in the sample are predicted to be 
correct, refers to the original sample. The F1 score indicates the har-
monic mean of P and R when λ = 0.5. The methods for calculating the 
precision, recall and F1 score are shown in formulas (5), (6) and (7). 

P =
TP

TP + FP
(5)  

R =
TP

TP + FN
(6)  

F1 score =
2*P*R
P + R

(7) 

In the formula, TP, FP, TN, and FN represent true cases, false positive 
cases, true negative cases, and false negative cases, respectively. 

The AP and mAP are comprehensive evaluation indicators that are 
proposed to solve the single-point value limitation of indicators such as 
the precision and recall. They are indicators that can reflect the global 
performance of the model. AP is the average accuracy rate, and is the 
integral of the P index to the R index, that is, the area under the P–R 
curve. After calculating the AP value, the average value of all APs can be 
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obtained to obtain the mAP value. They are defined as follows: 

AP =

∫ 1

0
P(R)dR (8)  

mAP =
1
N

∑N

i=1
AP(i) (9)  

where N is the number of categories. 

4.2.2. Evaluation index of the semantic segmentation algorithm 
The indexes commonly used to measure the accuracy of algorithms 

in image semantic segmentation include the pixel accuracy (PA), mean 
pixel accuracy (mPA) and mean intersection over union (mIoU). For 
convenience of explanation, assume the following: k+1 classes (from L0 
to Lk, which contain an empty class or background), pij represents the 
number of pixels that belong to class i but are predicted as class j; that 
is, pii represents the real quantity, and pij pji represent a false positive and 
false negative, respectively. 

The pixel accuracy is the proportion of correctly marked pixels to 
total pixels; that is, the main longan branch obtained by model seg-
mentation is compared pixel-by-pixel with the standard main longan 
branch obtained by manual labelling and the PA is calculated. The mean 
pixel accuracy is the proportion of correctly classified pixels in each 
class, and then the average of all classes is calculated. The mean inter-
section over union is used to calculate the ratio of the intersection and 
union of two sets, which are the ground truth and the predicted seg-
mentation from semantic segmentation. This ratio can be transformed 
into the sum of true positives over true positives, false negatives and 
false positives. IoU is calculated for each class, and then all classes are 
averaged. The F1 score indicates the harmonic mean of P and R when λ 
= 0.5. The F1 score formula is shown in (7). The PA, mPA and mIoU 
formulas are shown in (10), (11) and (12), respectively: 

PA =

∑k
i=0pii

∑k
i=0

∑k
j=0pij

(10)  

mPA =
1

k + 1
∑k

i=0

pii
∑k

j=0pij
(11)  

mIoU =
1

k + 1
∑k

i=0

pii
∑k

j=0pij +
∑k

j=0pji − pii
(12)  

where k is the total number of categories (k+1 when including the 
background), pij represents the total number of i pixels that are predicted 
as j pixels, and pii represents the total number of i pixels that are pre-
dicted as i pixels. Since the first stage aims to segment leaves from the 
background, k = 1. 

4.3. Results and discussion of the object detection task 

4.3.1. Comparison of object detection task results 
To fully evaluate the performance of the improved YOLOv5s model, 

first, the identification performance of the four versions of the YOLOv5 
model and the improved YOLOv5s model is compared and analysed 
using the evaluation index in Section 4.2.1. By default, the same training 
parameters are set for the five models, and the files with the best training 
effect in each model are saved as weight files and then used for testing. 
When testing the five models, 82 test images randomly divided from the 
initial data set are input into the five models, and the detection result 
maps of each model are obtained. Finally, the models are comprehen-
sively evaluated based on the AP, mAP, FPS, F1 score, weight file size, 
training time, etc., and the object detection model that is most suitable 
for the UAV onboard processor is selected. 

The P-R curves and F1 score changes of the five models on the same 
test dataset for the detection of two types of objects, string_fruit and 
fruit_branch, are shown in Fig. 15. The area of the area enclosed by the 
P-R curve and the two coordinate axes is the AP value of the corre-
sponding classification. According to Table 2, the AP values of the five 
models on the test set for string_fruit are all above 86%, and the P-R 
curve basically covers the entire coordinate system. The F1 score 
changes slightly with the increase in the confidence value at first and 
suddenly decreases sharply when the confidence value is greater than 
0.85. Therefore, it is usually sufficient to set this parameter to 0.5 in the 
model training stage. According to the distribution of object size in the 
dataset, the size of fruit_branch is generally small. However, the F1 score 
of the five models on string_fruit is only slightly larger than that on 
fruit_branch. This shows that YOLOv5 also has good detection perfor-
mance for small objects. 

The comparison results are shown in Table 2. The data in the table 
shows that the improved YOLOv5s has a better recognition result than 
other networks, except that the recognition accuracy of fruit_branch is 
lower than that of YOLOv5l. In particular, compared with the original 
YOLOv5s, the recognition accuracy of string_fruit is 7.5% higher, 
reaching 94%, and the map is 5.3% higher. The improved YOLOv5s only 
takes 17 ms to detect an image on average, and its detection speed is 

Fig. 14. Visualization result diagram of object bounding box features in the initial data set.  
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more than twice that of YOLOv5m, more than four times that of 
YOLOv5l and more than eight times that of YOLOv5x. It can greatly 
improve the detection efficiency of longan harvesting by UAVs and meet 
the needs of real-time detection. 

The F1 score of the improved YOLOv5s is slightly lower than that of 
YOLOv5l, but its weight file size is only one-seventh of that of YOLOv5l. 
The improved YOLOv5s is used to identify longan fruit, and it can 
greatly reduce the number of calculations and parameters in the 

Fig. 15. P-R curves and F1 score for different detection methods.  
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detection process and further reduce the energy consumption of the 
microcomputer carried on the UAV. In addition, when training 300 
epochs on the training data set, the training time of the improved 
YOLOv5s model is only one quarter of that of YOLOv5x, which is 
beneficial to saving time in the training phase of the model. In summary, 
in this study, the improved YOLOv5s is deployed to the UAV airborne 
microcomputer to perform the object detection task. 

4.3.2. Detection effects of the improved YOLOv5s in real scenes and on 
different varieties 

To further evaluate the performance of the improved YOLOv5s 
model in detecting longan stringing and main fruit branches in a real and 
complicated mountain orchard environment, this section selects longan 
orchard images with different illumination, different scales and different 
densities and tests the trained improved YOLOv5s model. Four examples 
in each environment are selected for illustration. Fig. 16A and B show 
the detection results under sunny conditions. Whether on a large or 
small scale, detection is accurate. Fig. 16C and D show the detection 
results under cloudy conditions. Whether in sunny or cloudy weather, 
string_fruit and fruit_branch are accurately detected. It is not difficult to 
see from the figure that each object in an image is accurately detected 
under different illumination conditions and different scales. The detec-
tion results show that the improved YOLOv5s model has good feature 
extraction performance, is not easily disturbed by uneven light in a real 
orchard environment, has strong generalization, and has a good detec-
tion effect on small objects. It is suitable for object detection in longan 
picking. 

There are many varieties of longan, and new varieties have appeared 
in recent years. To verify that the improved YOLOv5s model can realize 
robust detection of different longan varieties in real orchards, especially 

different varieties and sizes of longan in the same scene, Fig. 17A and B 
show the detection results of Chuliang longan and Fig. 17C and D show 
the detection results of Shixia longan. There are great differences in fruit 
colour and fruit shape and size between the two kinds of longan, which 
show different lustres at different distances and under different illumi-
nation. It can be seen in the test result chart that both string_fruit and 
fruit_branch are accurately detected. This shows that the improved 
YOLOv5s model has strong generalization to different varieties of 
longan. 

4.4. The best segmentation result of the main fruit branch 

Because the bearing weight of longan harvesting UAVs is limited, it is 
necessary to further reduce the number of calculations, number of pa-
rameters and energy consumption of the airborne processor while 
ensuring object positioning accuracy. Therefore, aiming at the task of 
semantic segmentation of main fruit branches, this study proposes to 
improve DeepLabv3 + and adopts MobileNetv2 as the backbone 
network of the DeepLabv3 + model for feature extraction. To verify the 
performance of the improved model in semantic segmentation of the 
main fruit branches, the experimental results are compared with the 
PSPNet (MobileNet and ResNet-50 are used as the backbone networks 
for feature extraction), UNet and DeepLabv3 + before improving clas-
sical semantic segmentation networks. The five models are compre-
hensively evaluated from the aspects of the mPA, mIoU, FPS, weight file 
size, and F1 score. The comparison results are shown in Table 3. The 
results of semantic segmentation of the main fruit branches by the five 
models in real orchard scenes are shown in Fig. 18. The red area is the 
main fruit branch, and the black area is the background. A, B, C and D in 
the figure are the results of semantic segmentation of the main fruit 

Table 2 
Evaluation index results of the test set using different YOLOv5 models.  

Model AP (%) mAP (%) FPS F1 score Weight file size (MB) Training time (h) 

string_fruit fruit_branch 

YOLOv5x  93.00  73.9  83.40  7.36  0.85  175.20  14.903 
YOLOv5l  92.7  81.00  86.8  13.33  0.89  94.00  8.983 
YOLOv5m  91.8  75.6  83.7  23.81  0.87  42.70  6.103 
YOLOv5s  86.50  74.00  80.20  55.62  0.82  14.60  3.205 
Improved 

YOLOv5s  
94.00  76.90  85.50  58.82  0.88  14.60  3.205  

Fig. 16. Detection results under different scenes.  
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branches in different light intensity scenes, and the light intensity 
gradually weakens. 

Table 3 and Fig. 18 show that the improved DeepLabv3 + model and 
the other four models can realize segmentation of the main fruit 
branches, but there are great differences among the models. Among the 
recognition results of the PSPNet (MobileNet), PSPNet (ResNet-50) and 
UNet models, the PSPNet (MobileNet) model has the fastest recognition 
speed and the smallest weight file size, but its recognition accuracy is the 
lowest. There is a large gap between the predicted effect picture and the 
original picture, and there are many recognition errors. 

As an ideal model for semantic segmentation of uncooperative fruit 
branches, the PSPNet (ResNet-50) model has a relatively balanced 
index, which can realize the identification of main fruit branches, but 
there are still a few obvious errors, so the main fruit branches in some 
scenes with weak light are identified as the background. UNet has high 
recognition accuracy, which can recognize main fruit branches, but its 
recognition speed is the slowest, and the weight file size is larger. 
Compared with the DeepLabv3 + model, the improved DeepLabv3 +
model has higher recognition accuracy, and the recognition speed is 
three times that of the original model, but the weight file size is only one- 
ninth of that of the original model, and the F1 score is the highest. 
Comparing the prediction map with the annotation map, the improved 
model can better segment the main fruit branches in different light in-
tensities and scenes. However, the original model has some recognition 
errors in weak light intensity. Overall, the mPA and mIoU of the 
improved DeepLabv3 + model are better than those of the other network 
structures, and it has the best effect on the main fruit branch segmen-
tation, showing good generalization ability, faster feature extraction, 
smooth edge processing of the prediction map and better detail 

processing. Therefore, the improved DeepLabv3 + model is incorpo-
rated into the airborne processor, not only improving the accuracy and 
recognition efficiency of longan harvesting UAV object location but also 
reducing the number of calculations and parameters of the airborne 
processor and the energy consumption of the UAV, which has strong 
economic value. 

4.5. The results of extraction and picking point locations in real orchard 
scenes 

In a real orchard scene, longan fruit grows on a branch of the main 
fruit branch, which is a longan cluster composed of several small 
branches. In the process of longan ripening, as the fruit becomes heavier, 
eventually the fruit branches will hang downwards in the outer canopy. 
Based on this growth feature, the advantages of the combination of a 
CNN and RGB-D camera are fully exploited, and picking point locations 
in 3D space are obtained. The following aspects are discussed from the 
best positioning result of the central axis of the main fruit branch, the 
estimation result of the position and posture of the main fruit branch, the 
positioning result of the picking point and the experimental results of the 
full pipeline. 

4.5.1. The best location result of the central axis of the main fruit branch 
Usually, the main longan branch in an orchard is not a straight cyl-

inder due to the influence of natural external forces, fruit gravity and the 
mutual interference of branches and leaves. When the camera collects an 
image of the main fruit branch, the main fruit branch will be partially 
blocked by other branches and leaves. In summary, the influence of the 
above factors and the semantic segmentation results of the main fruit 
branches obtained using semantic segmentation are usually irregular. 
When determining the centroid of the upper and lower ends of a suitable 
shearing area on the main fruit branch, to obtain the best positioning 
result, according to steps 3 and 4 in Section 3.4, when selecting the local 
areas of the upper and lower ends of the main fruit branch, 5 rows of 
pixels, 10 rows of pixels, 15 rows of pixels and 20 rows of pixels are 
selected as local areas at the upper and lower ends from the top and the 
lowest end, respectively. The corresponding centroid coordinates are 
calculated, and the two centroids are connected with line segments to 
compare which line segment has the best fitting effect with the actual 
axis of the main fruit branch. 

According to the above method, the main longan branches in 
different scenes in an orchard were selected, and the centroids of their 

Fig. 17. Detection results of different varieties of longan.  

Table 3 
Evaluation index results on the test set using different semantic segmentation 
models.  

Model mPA 
(%) 

mIoU 
(%) 

FPS F1 
score 

Weight file 
size (MB) 

PSPNet (MobileNet)  74.91  61.36  102.70  0.72  9.25 
PSPNet (ResNet-50)  86.70  78.21  39.10  0.79  178.00 
UNet  91.02  84.36  18.27  0.81  94.90 
DeepLabv3+ 91.64  85.11  23.54  0.83  209.00 
DeepLabv3+

(MobileNetv2)  
94.52  89.69  71.51  0.88  22.40  
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upper and lower ends and the connecting line segments were obtained, 
which were compared with the true central axes of the main branches. 
As shown in Fig. 19, A, B, C and D are the main longan fruit branches in 
different scenes, and the blue line is the central axis of each main fruit 
branch. The red area is the semantic segmentation area corresponding to 
the main fruit branch. The centroids of the upper and lower ends ob-
tained through calculation are represented by green dots, and the 
connection between two green dots is the predicted central axis of the 
main fruit branch. The obtained centroid and central axis are mapped to 
the original image, which are represented by red dots and red line 
segments, respectively. As seen in the figure, with the increase in the 
number of pixels in the upper and lower end areas, the error between the 
true central axis of each main fruit branch and the predicted axis de-
creases. In the B and C scenes, the two axes completely coincide. When 
20 rows of pixels are selected as the local areas at the upper and lower 
ends in the A and D scenes, the error between them is also very small. 
Therefore, when predicting the central axis of the main fruit branch, 20 
rows of pixels are selected as local areas at the upper and lower ends of 

the main fruit branch, and the best positioning result of the main fruit 
branch can be obtained. 

4.5.2. Position and pose estimation results of the main fruit branches 
The estimation result of the position and posture of the main fruit 

branch directly determines the picking angle and the accurate posi-
tioning result of the picking point. Based on the centroid coordinates of 
the local areas at the upper and lower ends of the main fruit branch and 
the central axis of the main fruit branch obtained in the previous section, 
the included angles α, β and γ between the main fruit branch and the 
XOY, YOZ and XOZ planes can be calculated according to step 5 in 
Section 3.4. To verify the effectiveness of this research method, 10 main 
fruit branches were randomly selected from real orchards and their 
predicted values of α, β, and γ. At the same time, according to the step 7 
method in Section 3.4, the researchers calculated the actual measured 
values of α, β, and γ. The specific statistical results and their error data 
are shown in Fig. 20. 

As seen in Fig. 20, angles α and β between the main fruit branches 

Fig. 18. Semantic segmentation results of the five models in different scenes.  
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and XOY and YOZ planes are all below 22◦, and some are below 10◦, 
while the angles γ between the main fruit branches and XOZ planes are 
basically above 63◦. This is because longan string fruit is subject to 
gravity, showing growth characteristics towards the ground. There are 
two main reasons for the error between the measured value and the 
predicted value. On the one hand, there is natural wind interference in 
an orchard, which causes the main fruit branches to swing slightly. On 
the other hand, the distance information between the RGB-D camera and 
the main fruit branch is obtained by reading the depth image, and the 
depth image is calculated using the phase difference between the 
infrared transmitter and receiver of the RGB-D camera, which may be 
disturbed by the natural environment in an orchard. It can be seen from 
the data in the error column in the figure that the error between the 
measured value and the predicted value is generally small, basically 
within 1.5◦. This shows that the angle between the main fruit branches 
and the XOY, YOZ and XOZ planes predicted using this research method 
is relatively accurate, which can provide accurate data for the pose 
adjustment of longan harvesting UAVs. 

4.5.3. Location results of picking points 
The location result of the picking point directly determines the path 

planning of the longan harvesting UAV and the efficiency of the picking 
operation. According to the best method determined in Section 4.5.1 and 
step 6 in Section 3.4, the coordinate information of the picking point can 
be obtained. To verify the effectiveness of this research method, sixteen 
longan main fruit branches in real orchards with different lighting 
conditions, different shading environments and different sizes of main 
fruit branches were selected. The semantic segmentation result diagram 
of the main fruit branches was obtained using the improved semantic 
segmentation method. Twenty rows of pixels were selected as local areas 
at the upper and lower ends of the main fruit branches, and their 
centroid coordinates were obtained. Then, the central axis and picking 
point coordinates of each main fruit branch were calculated. 

According to the above method, the location results of the centroid, 
central axis and picking point of local areas at the upper and lower ends 
of each main fruit branch are shown in Fig. 21. The red area in the image 
is the semantic segmentation result of each main fruit branch, and the 
adjacent image is its original image. In the semantic segmentation result 
image, the green points at the upper and lower ends are the centroids of 

Fig. 19. The location results of the central axis of the main fruit branch in different scenes.  
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the local areas at the upper and lower ends of the main fruit branch, the 
green line segment is the central axis of the main fruit branch, and the 
green point in the middle is the picking point. Red dots and lines are 
used to map the above information to the original image. It can be seen 
in the figure that the location results of picking points are very accurate 
in any scene. This shows that the research method proposed in this paper 
can provide accurate picking point coordinates for longan harvesting 
UAVs. 

4.5.4. Experimental results of the full pipeline 
To further evaluate the performance of the full pipeline in the actual 

harvest scenario, relevant experiments were carried out in longan or-
chards. The specific process is shown in Fig. 22. Select the scene where 
the RGB-D camera is 1.5 m to 0.6 m away from the longan fruit, collect 
RGB images and depth images, and obtain clear RGB images and depth 
images after removing the blurred images. This process takes 0.16 s. 

In each scene, the improved YOLOv5s model is used to obtain the 
pixel coordinates of the string fruit and the main fruit branch on the RGB 
image, and the image area of the main fruit branch is extracted 

Fig. 20. Statistical results of α, β, γ and error in different scenes.  
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according to the pixel coordinates. This process takes 0.13 s. After the 
main fruit branch image is input into the improved DeepLabv3 + model, 
the semantic segmentation result is obtained, and the result is mapped to 
the original image. This process takes 0.08 s. According to the Step 3 and 
Step 4 methods in Section 3.4, the centroid coordinates of the local areas 
at the upper and lower ends of the main fruit branch are fused with the 
depth information to obtain the coordinates of the centroid in the 3D 
space. This process takes 0.15 s. According to the step 5 and step 6 
methods in Section 3.4, the position and posture information of the main 
fruit branch and the 3D spatial coordinates of the picking point are 
obtained. This process takes 0.06 s. 

Additionally, according to the step 8 method in Section 3.4, the re-
searchers counted the actual measured values of the mass centres of the 
upper and lower ends of the main fruit branches and the coordinates of 
the picking points in 3D space in different distance scenes. The mea-
surement results of the researcher and the positioning results predicted 
by the whole algorithm and their error data are shown in Table 4. 

According to the statistical data in Fig. 22 and Table 4, the accuracy 
of object detection is above 0.9 in all scenarios, and the accuracy of 
semantic segmentation is generally high. With the decrease in the dis-
tance between the camera and the longan fruit cluster, the proportion of 

the main fruit branch in the image pixels increases, the accuracy of 
object detection and semantic segmentation also increases, and the 
positioning error of the picking point in the 3D space decreases. The 
error between the researchers’ measurement results and the positioning 
results predicted by the whole algorithm is generally small, which shows 
that the whole algorithm is effective in positioning the main fruit 
branches and picking points and can provide an accurate destination for 
the longan picking UAV. The whole algorithm takes 0.58 s in the actual 
scene. It can quickly obtain the picking point coordinate information, 
quickly input the destination to the UAV flight control system, and 
provide information for flight path planning. 

5. Conclusion 

In a complex orchard environment, the longan picking point is on the 
main fruit branch, which is more difficult to locate than a picking point 
in the geometric centre of the fruit. Therefore, the rapid and accurate 
positioning scheme of picking point selection proposed in this paper is of 
great significance and can provide a pair of eyes for fruit harvesting 
drones. In this paper, a lightweight RGB-D camera is mounted on a 
longan harvesting UAV and used to collect images of longan orchards. 

Fig. 21. The location results of picking points in different scenes.  
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To locate picking points from these images, a scheme of quickly locating 
picking points based on DL is proposed. 

First, the collected longan images are processed by image pre-
processing methods such as image cropping and image normalization, 
and the initial and semantic segmentation longan datasets are con-
structed. Second, to reduce the computations, memory occupation and 
detection time of the airborne microprocessor, the performance of five 
object detection models is compared. It is determined that the improved 
YOLOv5s model can quickly and accurately detect the string fruit and 
the main fruit branch. Additionally, to improve the efficiency and ac-
curacy of semantic segmentation, the main fruit branch is extracted as 

the input image for semantic segmentation. Then, the lightweight 
MobileNetv2 is used as the backbone network to improve the Deep-
Labv3 + model, which not only reduces the number of calculations and 
identification time of the model but also improves the semantic seg-
mentation precision. Finally, combining the semantic segmentation re-
sults with the depth image, a scheme of estimating the position and 
posture of the main fruit branches in 3D space and accurately locating 
the picking points is developed, and the positioning results of the picking 
points are analysed. In summary, this paper fully exploits the advantages 
of the combination of a CNN and RGB-D camera. It is more suitable for 
performing object detection, semantic segmentation and 3D positioning 

Fig. 22. Experimental results of the overall algorithm in different distance scenes.  

Table 4 
Statistical results of 3D localization and error in different distance scenes.  

Distance 1.5 m 1.2 m 0.9 m 0.6 m 

The upper (mm) Measured value (− 251.3,− 291.1,1395.8) 
(43.2,− 231.2,1503.6) 

(− 575.7,− 16.0,1042.0) 
(− 129.5,− 15.9,1198.7) 

(− 646.9,259.6,766.6) 
(− 123.8,139.5,927.4) 

(− 245.9,493.1,627.4) 

Predicted value (− 253.8,− 293.5,1389.4) 
(41.9,− 232.8,1496.8) 

(− 573.6,− 14.9,1046.3) 
(− 128.4,− 15.1,1203.5) 

(− 648.4,258.5,763.8) 
(− 124.6,138.7,923.8) 

(− 246.3,492.5,626.1) 

Error (2.5,2.4,6.4) 
(1.3,1.6,6.8 

(2.1,1.1,4.3) 
(1.1,0.8,5.2) 

(1.5,1.1,2.8) 
(0.8,0.8,3.6) 

(0.4,0.6,1.3) 

The lower (mm) Measured value (− 284.4,− 354.7,1336.4) 
(61.1,− 294.0,1419.1) 

(− 650.5,− 163.2,980.0) 
(− 86.2,− 87.6,1181.1) 

(− 862.8,24.2,695.4) 
(− 82.6,46.0,856.9) 

(− 163.6,294.6,605.5) 

Predicted value (− 281.6,− 352.1,1342.7) 
(59.6,− 296.3,1412.6) 

(− 648.1,− 161.7,983.6) 
(− 85.4,− 86.5,1185.7) 

(− 864.7,23.6,692.9) 
(− 83.2,45.3,853.6) 

(− 163.8,294.2,604.7) 

Error (2.8,2.6,6.3) 
(1.5,2.3,6.5) 

(2.4,1.5,3.6) 
(0.8,1.1,4.6) 

(1.9,0.6,2.5) 
(0.6,0.7,3.3) 

(0.2,0.4,0.8) 

The center (mm) Measured value (− 271.0,− 327.4,1358.4) 
(52.2,− 262.2,1464.1) 

(− 606.2,− 88.6,1011.5) 
(− 104.7,− 47.1,1187.9) 

(− 751.6,148.9,728.1) 
(− 100.6,91.4,901.9) 

(− 205.6,390.1,620.5) 

Predicted value (− 268.4,− 324.9,1364.8) 
(50.8,− 264.1,1457.4) 

(− 603.9,− 87.3,1015.7) 
(− 103.8,− 46.2,1192.6) 

(− 753.2,147.8,725.4) 
(− 101.3,90.6,898.4) 

(− 205.9,389.6,619.4) 

Error (2.6,2.5,6.4) 
(1.4,1.9,6.7) 

(2.3,1.3,4.2) 
(0.9,0.9,4.7) 

(1.6,1.1,2.7) 
(0.7,0.8,3.5) 

(0.3,0.5,1.1)  
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tasks on the onboard microprocessor of longan harvesting UAVs and 
improves the speed and accuracy of picking point positioning of longan 
harvesting UAVs based on visual perception. The research in this paper 
can apply UAV migration to harvesting string fruits such as grapes, 
Cerasus pseudocerasus and Lycopersicon esculentum. Additionally, the 
object positioning method based on a convolutional neural network and 
RGB-D camera proposed in this research will further provide guidance 
for developing intelligent harvesting robots in the agricultural field and 
promote developing intelligent agriculture and unmanned farms. 

Considering the complexity of dynamic changes in longan orchard 
scenes and the influence of abnormal weather conditions, there are still 
some limitations in this work, and the ability of the object detection, 
semantic segmentation and 3D positioning schemes to resist environ-
mental interference needs to be further improved. In future work, we 
will continue to optimize the details of the solution and promote the 
intelligence of longan harvesting drones. 
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