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a b s t r a c t

Accurate Quality of Service (QoS) prediction of service is a key measure to accomplish successful
applications such as QoS-aware service recommendation and composition in Internet of Things (IoT)
environments. The key of this task is to consider contextual information like geographic location,
network address and type of service, since they have subtle but powerful effects on QoS of IoT services.
Recently proposed context-aware QoS prediction for IoT services follow two general paradigms:
clustering contextual information for calculating similarity between users and services or integrating
contextual information by extending latent factor models. However, the simple clustering contextual
information or learning the latent feature of contextual information do not go much further to discover
complex and intricate user–service interaction patterns. To this end, we propose a context-aware
feature interaction modeling (CFM) approach for IoT services to perform QoS prediction, considering
context as an additional feature similar to users and services and modeling their interactions.

The proposed method can capture both low-order and high-order feature interactions using
contextual information and user’s invoked records, which consists of three phases: (1) learn low-order
feature interactions by decomposing the sparse user–service QoS matrix with factorization machine;
(2) learn high-order feature interactions explicitly and implicitly with a multilayer perceptron and
deep cross network; (3) aggregate the output of low-order and high-order feature interactions with
a parametric-matrix-based fusion. Experimental results on a large-scale QoS dataset demonstrate that
the proposed method consistently outperforms state-of-the-art baselines in terms of various evaluation
metrics.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

As the fundamental building block of the Internet of Things
IoT), smart objects are defined as autonomous physical/digital
bjects augmented with sensing, processing and network capa-
ilities [1]. The IoT paradigm aims to integrate physical world
nd the cyber world by interconnecting a tremendous number
f smart objects [2] and facilitate numerous intelligent applica-
ions such as human activity and acoustic gesture recognition
3,4], context-aware workflowmanagement [5], WiFi-based group
etection [6,7], mobile crowdsensing [8] and blockchain-based
obile transaction databases [9,10]. How to effectively manage

hese massive and heterogeneous smart objects has become one
f the fundamental tasks of the IoT, which has also become
hot research issue in both academia and industry [11]. One
f the most promising technologies is service-oriented architec-
ure (SOA) since it can achieve IoT system interoperability [12].
ith the SOA-based service model, IoT applications can be im-
lemented by combining various services instead of managing
hanges in sensors and controllers. Given the rapidly increasing
umber of IoT services, how to quickly and effectively find the
ppropriate service that meets the needs of developers and users
rom such a large collection of IoT services has become a chal-
enging problem., To address this challenge, a few studies [13–15]
ropose service search or recommendation techniques to dis-
over the most suitable service among candidates with similar
r the same functions. Unfortunately, service selection or recom-
endation may fail to find services that meet user needs since

he Quality of Service (QoS) (e.g., response time and throughput)
hange frequently in IoT. Therefore, QoS prediction of IoT service
s the essential task for safely discovering services and objects
ased on users’ preference [9]. However, QoS prediction in IoT
nvironment is even more challenging and context dependent
ompared with traditional web QoS prediction due to some
nique characteristics of IoT service.

• Data sparsity due to few historical records of IoT service.
Users usually only invoke limited services in IoT environ-
ments, which results in high sparse user–service invocation
matrix. This can be always observed in QoS prediction, for
instance, the density for the well-known QoS dataset WS-
DREAM [16]. In addition, QoS invoked records between users
and services are difficult to collect due to privacy and secu-
rity issue. Given such an extreme sparsity user–service invo-
cation matrix, existing IoT QoS prediction methods are easily
over-fitted and suffer from high computational complexity.
• Contextual information plays an important role in QoS

prediction of IoT service. Several studies [17–19] demon-
strate context information has a great impact on IoT QoS
prediction. In general, users and services with similar latent
factors tend to receive a similar QoS, so jointly considering
contextual information of users and services is promising in
improving QoS prediction performance in IoT environment.
174
Recently, many QoS prediction methods aim to leverage user-
related and service-related contextual factors for QoS predic-
tion of IoT services can be mainly divided into two groups:
(1) Utilizing K-means or fuzzy clustering algorithm to cluster
contextual information for calculating user’s similarity to im-
prove collaborative filtering based QoS prediction model [19,20];
(2) Integrating contextual information by extending latent factor
models by regarding contexts as additional features of users and
services (e.g., matrix factorization (MF) [18,21–23] and factor-
ization machine (FM) [23].), which can capture the interaction
pattern between contexts and users/services. However, these
approaches suffer from a number of limitations, for example,
existing methods based on matrix factorization or factorization
machine perform low-order context feature interaction since
they are linear and have shallow structures, thus cannot learn
nonlinear and complex relationships within an extremely sparse
QoS data set in IoT environment, thus resulting in poor QoS
prediction performance. Another challenge of these methods is
the dimension of the input context features will increase ex-
ponentially when enumerating all the possible combinatorial
features, thus greatly increases model complexity and leads to
overfitting. To address these challenges, several deep learning
models [24,25] have been proposed for IoT QoS prediction in-
spired by the success of deep neural networks in computer
vision [26] and speech recognition [27]. In these deep learning
based models, raw datasets are directly fed to neural networks
to learn combinatorial features. Such kinds of methods will suffer
from two limitations: Firstly, most context factors in IoT QoS
prediction are multi-field and discrete categorical features, thus
leading combinatorial features space are more sparse than the
raw features; Secondly, training deep neural networks on such a
large feature space requires tuning a huge number of parameters,
which is difficult to learn them effectively.

1.2. Problem statement

In this subsection, we focus on the problem formulation of
context-aware QoS prediction of IoT service by firstly illustrating
a set of formal definitions.

Definition 1 (Service User). A service user can be described as a
two-tuple ⟨u, cu⟩, where u is the identity label of service user and
cu is the context factors set of user u (e.g., gender, country and
network).

Definition 2 (IoT Service). A IoT service can be described as ⟨s, cs⟩,
where s is the identifier of service and cs is the context factors set
of service s (e.g., location, service Provider and IP address).

Given a user set U = {u1, u2, . . . , uM} and a service set S =
{s1, s2, . . . , sN} contains M users and N services respectively. Each
ser may make calls to some of these services, resulting in a
ecord of real-world QoS evaluation results, such as response
ime, throughput, and failure rate. Let matrix RM×N denote the
QoS values generated by these M users call records for N services,
here the element r represents the QoS measurement when
ij
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ser ui invoke service sj. In a real scenario, a user will only access
few services, which leads to numerous missing values in the QoS
matrix R. The problem of QoS prediction in IoT aims to forecast
these missing QoS values RM×N , to facilitate service selection and
recommendation in IoT environment.

1.3. Our contributions

In light of the preceding challenges in existing IoT QoS pre-
diction methods, we present a context-aware prediction model
for IoT service by modeling both low-order context feature in-
teractions and high-order context feature interactions simulta-
neously. Firstly, our model learns low-order feature interactions
with FM, which can capture the linear and pairwise interac-
tions between features with addition and inner product opera-
tions. Secondly, our model learns high-order feature interactions
with a multilayer perceptron (MLP) [28] and deep cross net-
work (DCN) [29]. The MLP and DCN can model implicit and
explicit higher-order feature interactions respectively. For re-
ducing the dimension of raw input features, we firstly learn a
low-dimensional distributed representation of the input feature
with an embedding layer. Then, we feed the embedding vector
of sparse features into MLP and DCN to model high-order feature
interactions. The principle underlying our approach is to capture
both memorization and generalization by jointly considering low-
order feature interactions and high-order feature interactions.
Memorization means the capability of catching the direct features
from historical data and paying attention to the historical behav-
ior of the user, which is achieved by learning low-order feature
interactions. Meanwhile, generalization means the capability of
producing more general and abstract representations for users or
services without historical records, which is achieved by learning
high-order feature interactions. In a nutshell, our contributions
are three-fold.

– We propose a context-aware QoS prediction model for IoT
service with jointly modeling low-order and high-order con-
text feature interactions. The invocation interactions be-
tween users and services are seamlessly integrated into
factorization machine and deep neural network (i.e., DCN
and MLP), which can be used to characterize complex rela-
tions between users and services within an extremely sparse
interaction matrix.

– We co-train a factorization machine model and two deep
neural networks: multilayer perceptron and deep cross net-
work, to embed both implicit and explicit user/service fea-
tures and relations towards a comprehensive representation
of both low-order and high-order user–service interactions.

– We conduct a series of experiments using a large-scale QoS
dataset to evaluate the proposed approach. Experimental
results demonstrate that our approach can achieve better
QoS prediction performance in IoT environment than several
state-of-the-art methods.

The remainder of the paper is organized as follows: Section 2
surveys related work on QoS prediction of IoT services. Section 3
describes the proposed context-aware QoS prediction model for
IoT service in detail. Section 4 reports and discusses the exper-
imental results. Finally, we present our conclusion and future
work in Section 5.

2. Related work

QoS prediction in IoT environment has attracted an enormous
amount of research from both industry and academia, as its great
importance to successful recommendation and composition of

IoT services. The previous efforts to tackle IoT QoS prediction

175
problem can be mainly divided into two groups: (1) Memory-
based CF models and (2) Model-based CF models. This section
reviews these mainstream methods.

Collaborative filtering (CF) is the most commonly used method
in QoS prediction in IoT inspired from recommender systems
[17,21,22,30–32]. The rationale is that users or services with
similar context factors, such as geographic location and service
type, tend to observe similar quality scores on the same service.
Therefore, these CF-based QoS prediction methods can automat-
ically predict personalized QoS values for current users with
given active users and services. CF-based methods exploit crowd
intelligence to facilitate QoS prediction, which can save time and
effort for both service providers and users. Generally, existing
CF-based methods consist of memory-based CF and model-based
CF.

Memory-based CF methods use similar users or services to
predict target QoS values. It can be classified into three types,
user-based [30], service-based [17] and a combination of both [22]
depending on different similarity calculation perspectives. For
example, the work [17] presents a deviation-based neighborhood
model for context-aware IoT QoS prediction. Their
proposed method includes two phases: (1) Perform a baseline es-
timate for QoS prediction based on service’s and user’s deviations;
(2) Fine-grained adjustments of the predictions with item-based
CF. Specifically, the deviation-based model can efficiently opti-
mize global model parameters. In [31], the QoS of IoT service is
predicted by initially calculating user or edge server similarity
and selecting top-K most-similar neighbors. Since it is difficult
to find similar neighbors when user–service rating matrix is very
sparse, the study in [31] firstly utilizes user-mean method to
obtain essential prediction accuracy, then improves the QoS pre-
diction with considering the historical response time variation of
IoT services observed by different users. For finding the relevant
QoS values from similar users/services in known QoS invoked
records, the work [30] exploits Pearson Correlation Coefficient
(PCC) to calculate the user/service’s similarity. Then, using least
mean square algorithm to analyze the hidden relationships be-
tween all the known QoS data and corresponding QoS data with
the highest similarities, and finally predicting IoT QoS based on
the derived coefficients. For predicting response time of IoT ser-
vices, [33] proposed a new method to calculate service response
time similarity and adjust initial similarity values for selecting
similar neighbors based on a similarity threshold. Finally, the
proposed method predicts QoS values based on neighborhood-
based CF with a densified user–service rating matrix. Even though
neighborhood-based CF are simplicity and efficiency, it will suffer
from a few limitations, such as the large data set in the grading
matrix and the data sparsity problem, since the IoT QoS records
are usually sparse thus may lead to poor quality of similar
neighbors identification.

Model-based CF methods can effectively address the challenge
of sparse data that cannot be solved by neighbor-based CF for
IoT QoS prediction [18,21–23,32], which employs matrix factor-
ization to train a predefined model using historical user–service
rating datasets. Specifically, matrix factorization decomposes the
user–service rating matrix into the product of two lower dimen-
sionality rectangular matrices, which can alleviate the problem
of data sparsity. For instance, the work [21] exploits Pearson Cor-
relation Coefficient to calculate the similarities of latent features
for different users and services. The work [32] demonstrates
model-based CF can be used in a self-managing, goal-driven
service model for QoS prediction in the IoT. In [22], an ensemble
model that combines the model-based CF and neighborhood-
based CF are proposed, which consists of two stages: (1) utilizing
an improved auto-encoder to alleviate the cold-start problem by
pre-computing an estimate of the missing QoS values; (2) exploit-

ing a novel computation method based on Euclidean distance to
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Table 1
Notations used in the paper.
Symbol Description

U, S, R The set of users, services, QoS values
M,N The number of users and services
Xu,X s The one-hot encoding vector of user u and service s
rij The known quality-score observed by user ui on service sj
Θ The model parameters of factorization machine
K The size of embedding vector
P,Q The embedding matrix for users and services
Eu, Es The embedding vector of user u and service s
z0 The output of embedding and stacking layer
L1, L2 The network depth of MLP and DCN network
wm

i , bm
i , κ(·) The weight matrix, bias, activation function for the ith layer of MLP

wd
i , b

d
i The weight matrix and bias for the ith layer of DCN

hi, ci The output of the ith layer of MLP and DCN
πFM , πMLP , πDCN The weight vector of the pre-trained FM, MLP and DCN model
ΦFM , ΦMLP , ΦDCN The output of FM, MLP and DCN model
Iij An indication function that is equal to 1 if user ui invokes service sj
α1 , α3 , α3 The trade-off hyperparameters of FM, MLP and DCN model.
σ , π T The activation function and edge weights of the fusion layer.
yus The QoS prediction value when user u invokes service s
address the overestimation problem. The work [23] incorporates
user’s location to better fit the IoT mobile environments with
factorization machines. To exploit context factors for further im-
proving IoT QoS prediction, [18] firstly optimizes the SVM with
an improved artificial bee colony algorithm, then utilizes the
optimized SVM to predict the workload of IoT services. The above
literature show model-based CF methods can achieve higher per-
formance than memory-based CF methods in the case of high data
sparsity.

Unfortunately, model-based CF methods can only generate
ow-order feature interaction between user’s latent features and
ervice’s latent features, and the inner product cannot model
igh-order feature interaction. Therefore, a few studies based on
eep neural networks have been proposed for QoS prediction in
oT by modeling high-order feature interaction [19,24,25], such
s auto-decoder [24] and neural collaborative filtering [19]. To
redict communication delay of IoT service, the work [25] adopts
deep neural network (DNN) to model the relationship between
iverse communication parameters (e.g., queue size, application
raffic rate and transmission power and delay). For reducing
raining and request time of QoS prediction, the study in [24]
resents a stacked auto-encoder with dropout on a deep edge
rchitecture. To leverage both local and global features for IoT QoS
rediction, the work [19] develops a holistic framework based on
eural collaborative filtering (NCF) and fuzzy clustering.
However, it is difficult to train large DNN models with nu-

erous parameters due to the exponential growth in the di-
ensionality of the combined features caused by the extreme
parsity and high-dimensional features of the IoT QoS dataset.
nspired by these studies, we propose a hybrid model for QoS
rediction in IoT by modeling both low-order and high-order
eature interactions simultaneously, which aims to combine the
emory ability of the linear model and the generalization ability
f the DNNmodel. For reducing the dimension of the raw datasets
nd making different types of features to interact with each other,
e learn low-dimensional distributed representation of the raw
parse datasets with an embedding layer.
Our proposed approach differs from the above-mentioned

orks in the following three aspects: (1) We investigate that the
ey challenge of addressing data sparsity of IoT QoS prediction
s to effectively model feature interactions. Then we propose a
ybrid model for QoS prediction in IoT by modeling both low-
rder and high-order feature interactions simultaneously, which
ims to combine the memory ability of the linear model and
he generalization ability of the DNN model; (2) For reducing
he dimension of the raw datasets and making different types of
176
features to interact with each other, we learn low-dimensional
distributed representation of the raw sparse datasets with an em-
bedding layer; (3) We generate a real-world benchmark dataset
for IoT QoS prediction by adding heterogeneous traffic data to the
public WSDream dataset with the HetHetNets traffic model.

3. The proposed QoS prediction model in IoT

In this section, we detail the proposed hybrid IoT QoS predic-
tion model. Fig. 1 shows a detailed workflow of the IoT service
QoS prediction process in our method, and the steps include:
(1) Collecting observed QoS data from user’s service invocation
records. When users invoke working services, we can collect their
QoS values by providing them from users, and keep this data
in reserve in our prediction server; (2) Feature representation
of target users and services. In most IoT QoS prediction tasks,
the context factors of users and services (such as user’s gender
and service’s provider) are collected in a multi-field categorical
form, so that each data instance is normally transformed into a
high-dimensional sparse (binary) vector via one-hot encoding, an
example is shown in Fig. 2; (3) Generate QoS prediction value
by the proposed hybrid model. As stated in Section 1, generating
new features from raw features helps improve the performance
of QoS prediction. To achieve this goal, the proposed hybrid
model designs a proper neural network structure and FM to
identify useful feature interactions then generate new features
automatically.

Specifically, the proposed hybrid model performs QoS predic-
tion by learning both low-order feature interactions and high-
order interactions, which includes three components (as shown
in Fig. 3): (1) the FM component learns a latent representa-
tion of users and services and models low-order interactions
between them by decomposing the user–service QoS matrix;
(2) the deep learning component models high-order interactions
between users and services by firstly learning low-dimensional
embedding representation of sparse user and service with an em-
bedding layer, followed by stacking the embedding representa-
tion of users and services into one vector, then feeds the concate-
nated vector into a multilayer perception and deep cross network
for learning high-order feature interactions; (3) to combine both
low-order and high-order feature interactions, the outputs of FM
component and deep learning component are aggregated with
a parametric-matrix-based fusion to generate the ultimate QoS
prediction. For ease of the following presentation, we define the
key data structures and notations used in the proposed method.

Table 1 lists the relevant notations used in this paper.



Y. Chen, P. Yu, Z. Zheng et al. Future Generation Computer Systems 137 (2022) 173–185

3
c

s
a
w
u
l
b
p
f

Fig. 1. The workflow of the proposed hybrid IoT QoS prediction model.
Fig. 2. An example of the proposed hybrid model for IoT QoS prediction.
.1. Modeling low-order feature interaction with factorization ma-
hine

A key factor of IoT QoS prediction is service’s QoS (e.g., re-
ponse time and throughput) depends heavily on feature inter-
ctions. Clearly, QoS depends not only on whom the user is and
hat the service is, but also on the interaction between the
ser and the service. For example, a service that tends to have
ow latency may give a high response time to a particular user
ecause the geographic distance between the user and the service
rovider is too far. For this reason, we focus on modeling pairwise
eature interactions with FM in this work.

Formally, let U and S denote the user set and service set, the
task of FM is to estimate a target function f : U × S ↦−→ R.
Each user–service interaction (u, s) ∈ U × S with a feature vector
X ∈ RG(i.e., G = M + N) with one-hot encoding, which indicates
which user invoked which service. For example, if user u has
invoked service s, the feature vector X is denoted as:

X = (0, . . . , 1, 0, . . . , 0  , 0, . . . , 1, . . . , 0, 0)  

user_id service_id

177
where non-zero elements in X are corresponding to IDs of user u
and service s.

Given an input tuple (X, y), X = (X1, . . . , XG) ∈ RG is a G-
dimensional feature vector and y is its corresponding QoS value.
FM learns a model based on the interaction between pairwise
features, as shown in Eq. (1).

f (X) = w0 +

G∑
i=1

wiXi +

G∑
i=1

G∑
j=i+1

wi,jXiXj (1)

where w0 is the global bias, wi and wi,j are 1-order interac-
tion parameters and 2-order factorized interaction parameters
respectively, with

wi,j = ⟨vi · vj⟩ =

k∑
p=1

vi,pvj,p

vi = (vi,1, . . . , vi,k) is k-dimensional factorized vector for feature
i.
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Fig. 3. The architecture of the proposed hybrid model for IoT QoS prediction.
The FM model can be computed in linear time by rewriting
q. (1) as follows:

(X) = w0 +

G∑
i=1

wiXi +

k∑
j=1

⎛⎝( G∑
i=1

vi,jXi

)2

−

G∑
i=1

v2
i,jX

2
i

⎞⎠ (2)

Given training dataset D, the model parameters of FM Θ =

{w0, w1, . . . , wG, v1,1, . . . , vG,k} can be learned by minimizing the
sum of loss function, we further add a regularization term to
avoid overfitting. The loss function Ψ is shown in Eq. (3):

Ψ (Θ) =
∑

(X,y)∈D

(f (X |Θ)− y)2 + R(Θ) (3)

The regularization term R(Θ) is defined as follows:

R(Θ) =
∑
θ∈Θ

λθθ
2 (4)

For learning model parameter θ ∈ Θ , we calculate the deriva-
tives of loss function, and the parameter optimization is achieved
via the stochastic gradient descent (SGD) algorithm with the
following update rule:

θ ←− θ − η

(
2 (f (X)− y)

∂ f (X)
∂θ
+ 2λθθ

)
(5)

where η is the learning rate to control the step of each iteration.
Once the model is learned when the whole SGD process achieves
the convergence state, the predicted QoS of FM can be inferred
using the model parameters.

3.2. Modeling high-order feature interaction with deep neural net-
work

Traditional QoS prediction methods in IoT are usually
neighborhood-based CF and model-based CF model, which ig-
nore high-order feature interactions between users and services.
Recently, enormous literature [34–36] demonstrate deep fea-
ture interactions are essential for good prediction performance
on sparse features. However, existing deep learning based IoT
QoS prediction methods usually treat one-hot encoding vector
of user u and service s as input features to predict the QoS
values, thus are easily over-fitted due to the extreme sparse
178
and high-dimension characteristics of raw IoT QoS dataset. An-
other limitation of existing DNN-based QoS prediction in IoT is
that the feature interactions learned by DNNs are implicit and
highly nonlinear. To overcome these limitations, we firstly learn
low-dimensional dense representation of raw QoS features in
continuous space, then model deep feature interactions explicitly
and implicitly between users and services with multilayer per-
ceptron and deep cross network for IoT QoS prediction. The deep
cross network consists of multiple layers and explicitly performs
feature crossing automatically.

(1) Embedding and stacking layer
As shown in Fig. 3, the identifiers of users and services are

firstly transformed into sparse binary vectors with one-hot en-
coding, denote as Xu and X s with sizes are M and N respec-
tively. Since the encoding vectors Xu and X s are high dimensional
and extreme sparse, we learn low-dimensional distributed rep-
resentation of these encoding vectors with an embedding layer.
Formally, let P ∈ RM×K and Q ∈ RN×K denote the embedding
matrix of encoding vectors Xu and X s respectively, and K denotes
the embedding size. The outputs of embedding layer can be
represented as Eu = P · Xu and Es = Q · X s, respectively.

To effectively learn the dense embedding vector of encoding
vectors, we initialize the embedding matrix with Probabilistic
Matrix Factorization (PMF) [37]. Let Pi and Qj denote the ith and
jth embedding vector of user ui and service sj, PMF supposes the
QoS value rij is a normal distribution with Gaussian noise:

p(R|P,Q , σ 2) =
N∏
i=1

M∏
j=1

[
N(rij|PT

i Qj, σ
2)
]Iij (6)

where Iij is an indication function, which means Iij = 1 if user ui
invokes service sj, otherwise it is 0.

Suppose the embedding matrix P and Q are normal distribu-
tion with Gaussian noise, as shown in Eqs. (7) and (8):

p(P|σP ) =
N∏
i=1

N(0, σ 2
P I) (7)

p(Q |σQ ) =
M∏

N(0, σ 2
Q I) (8)
i=1
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The posterior probability of P and Q can be represented as:

(P,Q |R, σ 2
P , σ 2

Q , σ 2) ∝ p(R|P,Q , σ 2)p(P|σ 2
P )p(Q |σ

2
Q ) (9)

After adding a regularization term to avoid over-fitting, the
oss function of posterior probability is shown in Eq. (10):

= −
1
2

N∑
i=1

M∑
j=1

Ii,j(Ri,j − PT
i Qj)2

−
λP

2

M∑
i=1

PT
i Pi −

λQ

2

N∑
j=1

Q T
i Qi

(10)

here λP = σ 2/σ 2
P and λQ = σ 2/σ 2

Q .
Based on loss function Γ , the parameter optimization is

chieved via the SGD algorithm with the following update rule:

i = Pi + η
[
(Ri,j − PT

i Qj)Qj − λPPi
]

(11)

j = Qj + η
[
(Ri,j − PT

i Qj)Pi − λQQj
]

(12)

here η is the learning rate.
The whole SGD process would achieve the convergence state

fter a considerable number of parameters updating iterations.
hen, we can obtain the initial value of embedding matrix P and
, and then jointly updated with other parts of the deep neural
etwork.
The overall new feature is generated by stacking the embed-

ing vectors of users and services, are formalized as:

0 = (Eu, Es) = (P · Xu,Q · X s) (13)

The output z0 of embedding and stacking layer is fed into
eep neural network for modeling high-order feature interaction,
hich will be elaborated in the next.
(2) Multilayer perceptron network
In this study, we utilize a multilayer perceptron (MLP) that

onsists of several full-connected hidden layers to implicitly
odel high-order feature interaction of QoS prediction in IoT,
s shown in Fig. 3. The hidden layers can learn combinatorial
eatures implicitly with some activation functions, such as ex-
onential linear unit (ELU), rectified linear unit (ReLU), s-shaped
ectified linear activation unit (SReLU) and logistic function. Note
hat the proposed method can model feature combinations in a
inear or non-linear way depending on using linear or non-linear
ctivation functions. Formally, let z0 as stated above denotes the
utput of embedding and stacking layer, which is fed into hidden
ayers of MLP and the forward process is as follows:

1 = κ(wm
1 z0 + bm

1 )

2 = κ(wm
2 h1 + bm

2 )
· · · · ·

L1 = κ(wm
L1hL1−1 + bm

L1 )

(14)

here L1 is the depth of hidden layers, wm
i , b

m
i , κ(·) and hi are the

model weight matrix, bias, activation function and output for the
ith layer, respectively.

(3) Deep cross network
The MLP can automatically learn deep feature interaction im-

plicitly based on the powerful learning capabilities of neural
networks, but still bring two challenges: (1) the unexplainability
brought by implicitly learning feature combinations and (2) the
inefficient parameters learning since not all feature combinations
are useful. To address these challenges, we exploit DCN for learn-
ing deep feature interactions explicitly, which is a state-of-art
approach described in [29] due to its high performance. The DCN
model performs feature interactions at each layer with crossover
 i

179
Fig. 4. The cross layer for QoS prediction in IoT.

networks. Formally, for input z0, the calculation procedure of the
th in Fig. 4 is as follows:

l+1 = z0cTl wd
l + bd

l + c l = φ(c l, wd
l , b

d
l )+ c l (15)

And the overall calculation process is given in the following
quation:

1 = z0zT0wd
0 + bd

0 + z0
2 = z0cT1wd

1 + bd
1 + c1

· · · · ·

L2 = z0cTL2−1w
d
L2−1 + bd

L2−1 + cL2−1

(16)

here L2 is the number of layers, wd
i and bd

i denote the weight
arameters and bias parameters of the ith layer, respectively.
As seen in Eqs. (14) and (16), for an input z0 of dimension K ,

he number of parameters of the cross network is K × L2 × 2;
hile for MLP, its number of parameters is K × m + m + (m2

+

) × (L1 − 1), where m is the number of neurons per layer. The
odel parameters of DCN are almost an order of magnitude less

han MLP. Additionally, the network structure of DCN is simple
nd efficient, since its complexity is determined by the depth of
etwork layers.

.3. QoS prediction with parametric-matrix-based fusion

Since our model adopts two pathways to model low-order
nd high-order feature interaction between users and services:
1) utilizing FM to model linear feature interactions of users and
ervices; (2) adopting MLP and DCN to model non-linear feature
nteractions of both users and services. We generate the ultimate
oS prediction yus by concatenating the output of FM, MLP and
CN and feed into a standard output layer.

us = σ (πT
[ΦFM , ΦMLP , ΦDCN

]
T ) (17)

here σ and πT are the activation function and weights of the
utput layer. ΦFM , ΦMLP and ΦDCN are the outputs of FM, MLP
nd DCN, respectively, calculated by Eq. (2), (14) and (16).
The proposed QoS prediction model in IoT captures user–

ervice latent interactions by fusing the linearity of FM and non-
inearity of MLP and DCN. Obviously, the model parameters can
e inferred with back-propagation algorithm. However, gradient-
ased optimization methods only find locally-optimal parameters
ue to the non-convexity of the proposed model’s objective func-
ion. The parameter initialization is essential for the convergence
nd performance of deep neutral network, we initialize the model
arameters with pre-trained models of FM, MLP and DCN. We
irst train FM with via stochastic gradient descent algorithm as
hown in Eq. (5), then train the model parameters of MLP and
CN with back-propagation algorithm until convergence. Then,
he corresponding parts of the proposed model parameters are

nitialized with these pre-trained model parameters of FM, MLP
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nd DCN. Finally, we concatenate weights of the three models as
utput with the following Equation:

←−

⎡⎣ α1π
FM

α2π
MLP

α3π
DCN

⎤⎦ , α1 + α2 + α3 = 1 (18)

here πFM , πMLP and πDCN denote the weight vector of the pre-
rained FM, MLP and DCN model, respectively; α1, α3 and α3 are
yper-parameters to determine the trade-off between the three
re-trained models.
The whole procedure of our proposed method can be seen in

lgorithm 1. First, as shown in Line 1, we encode user ID and
ervice ID with one-hot encoding and stack them as intersection
eature. Then, as seen in Line 2 to 5, we train FM model until con-
erged. Next, as depicted in Line 6 to 10, we initial the parameters
f embedding layer and update them until converged. Finally,
e embed the sparse vector into dense vector, and optimize
arameters of MLP and DCN until converged in Line 11 to 17.

Algorithm 1 The algorithm for training parameters of the hybrid
IoT QoS prediction model
Input: User set U , service set S and QoS matrix R

Model parameters {P,Q , π FM , πMLP , πDCN
}

1: One hot code the user ID and service ID, stack them as
intersection feature X

2: while not converged do
3: Predict QoS value according to Equation (1)
4: Update π FM according Equation (5)
5: end while
6: Initial embedding matrix P and Q according to Equation (7)

and (8)
7: while not converged do
8: Predict QoS value according to Equation (10)
9: Update P and Q according Equation (11) and (12)

10: end while
11: Embed sparse vector X to dense vector z0
12: while not converged do
13: Calculate low-order feature interaction ΦFM according to

Equation (1)
14: Calculate high-order feature interaction ΦMLP and ΦDCN

according to Equation (14) and (16)
15: Predict QoS value according to Equation (17)
16: Update parameters πMLP and πDCN

7: end while
8: return {P,Q , π FM , πMLP , πDCN

}

4. Experiment evaluation

In this section, we report the results of a series of experi-
ents conducted to evaluate the performance of the proposed

oT QoS prediction model. To make a fair comparison between
he proposed model and comparative methods, we first describe
he settings of experiments including QoS datasets, comparative
ethods and evaluation metrics. Then, we report and discuss the
xperimental results.

.1. Experimental settings

.1.1. QoS Dataset in IoT
Currently, as there is no public dataset for IoT QoS prediction,

lmost all research literature on IoT QoS prediction published
n reputable journals and conference (such as TSC [18,38,39],
GCS [17], IoT-J [19] and Percom [24]) use the dataset released by
heng et al. [40] to perform experiment analysis, which consists
f a matrix of the response time and throughput of 339 users for
,825 web services. Therefore, we follow these work to measure
180
the performance of the proposed method with this dataset, which
can be freely downloaded from the website.1 The reasons for
the use of a public dataset instead of a testbed or simulation
are: (1) the dataset contains more users and services to be eval-
uated than available testbeds; (2) a public dataset allows the
proposed model can be compared to existing state-of-the-art.
The WSDream dataset contains 339 users and 5,825 services, and
the number of service invocation records is 1,974,675; (3) the
method would be evaluated using different values generated by
simulation experiments, since the QoS value may change due
to congestion on the network, which make future algorithms
difficult to compare with the existing baselines.

There are two types of QoS properties in this dataset, i.e., re-
sponse time and throughput. Response time denotes the total
time between a request for service and the fulfillment of that
request, while throughput stands for the data transmission rate
(e.g., kbps) when a user invoking a service. In this study, we
evaluated the proposed QoS prediction model in both response
time property and throughput property. In addition, this dataset
is high-sparse as the sparsity ratio (i.e., the number of missing
QoS values in user–service QoS matrix) is about 26%.

According to [41], the values of response time are between 0
and 20 s, and 91% of response time values are less than 2 s in
this dataset. Obviously, such QoS indicators are unlikely to be pro-
vided by IoT devices with limited resource and energy. To make
the dataset better meet the IoT scenario, we add heterogeneous
traffic data to the existing dataset using the HetHetNets traffic
model [42]. The model provides a realistic and manageable traffic
model which can be applied to heterogeneous wireless cellular
networks with heterogeneous traffic distributions, such as WiFi
and wireless sensor network. And the parameter λ of this model
is set to 2, because this is the standard practice for modeling
network traffic in IoT scenarios [21]. The user–service QoS matrix
derived from user’s invocation records is usually highly sparse
in the real-world IoT environment, since a user usually invokes
a few services due to a finite amount of resources. Therefore,
we randomly select a part of QoS records in the dataset as the
training set, and utilizes the remaining QoS records as the test
set.

4.1.2. Baseline methods
To verify the efficiency of the proposed QoS prediction tech-

nique in IoT, we compare the proposed method with the follow-
ing state-of-the-art competitors, where the first two competitors
are neighborhood-based CF methods for QoS prediction in IoT, the
next four competitors are well-known model-based CF methods
for QoS prediction in IoT, the last two competitors are deep
neutral network based methods for QoS prediction in IoT. We
detail these competitors as following.

• User-based Collaborative Filtering for QoS Prediction
(UPCC). UPCC [43] is a collaborative filtering algorithm by
using the Persons Correlation Coefficient to calculate user’s
similarity, and performs QoS prediction based on neighbor-
ing user’s QoS value.
• Hybrid Collaborative Filtering for QoS Prediction (UIPCC).

This approach [44] firstly predicts IoT QoS value with User-
based and Item-based collaborative filtering (IPCC) respec-
tively, then obtains the ultimate QoS prediction by fusing
the QoS prediction values of UPCC and IPCC.
• Collaborative QoS Prediction in IoT (IoTPredict). Since

UIPCC [44] utilizes Persons Correlation Coefficient to calcu-
late the similarity between users and services, but a number
of assumptions of UIPCC are not satisfied, such as having

1 https://github.com/wsdream/wsdream-dataset

https://github.com/wsdream/wsdream-dataset
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no outliers and the variables being approximately normally
distributed. To address these challenges, IoTPredict [21] ex-
ploits an alternative non-parametric similarity computation
mechanism (i.e., Kendall’s Tau) to calculate the similarity be-
tween users and services, then generates IoT QoS predictions
for the missing values by using the top-K largest tau values
of the users and services.
• Non-negative Matrix Factorization based QoS Prediction

(NMF). This approach [45] is matrix factorization-based
method for QoS prediction with the property that all fac-
torized matrices have no negative elements.
• Probabilistic Matrix Factorization based QoS Prediction

(PMF). In PMF [46], probability distribution is utilized to
traditional matrix factorization method, then utilizes the
Bayesian method to derive the posterior probability of im-
plicit features of users and services.
• Factorization machines based QoS Prediction (FM). This

study [23] utilizes IoT service’s historical invoked records
to make QoS predictions for service users. This approach
integrates the QoS experiences of both similar users and
nearby users with the Factorization Machines.
• Autoencoder based QoS Prediction (Autoencoder). This

study [24] utilizes a stacked autoencoder with drop-out on
a deep edge architecture to predict IoT QoS values, which
aims to learn a representation for a set of data by training
the network to ignore signal noise.
• Deep neutral network based QoS Prediction (DNN). In [25],

a deep neural network based model is adopted to capture
the relationship between diverse communication parame-
ters (e.g., queue size, application traffic rate) and two IoT
QoS metrics (i.e., transmission power and delay).

.1.3. Evaluation metrics
To study the effectiveness of the proposed QoS prediction

odel in IoT, i.e., how well the method can predict the QoS
alues when a given user invokes a service, we use two widely
sed metrics, namely, Mean Absolute Error (MAE) and Root Mean
quare Error (RMSE), following the work [23,24].

– Mean Absolute Error (MAE), which calculates the average
of absolute difference between predicted QoS value and
ground truth as the following:

MAE =
1
|TE|

∑
(i,j)∈TE

|q(ui, sj)− r(ui, sj)| (19)

where q(ui, sj) is the ground truth QoS values when user
ui invokes service sj, r(ui, sj) is the predicted QoS value
by prediction models, and |TE| is the number of the test
samples.

– Root Mean Square Error (RMSE), which represents the
standard deviation of the difference between the predicted
values and observed values as the following:

RMSE(t) =

√
1
|TE|

∑
(i,j)∈TE

[q(ui, sj)− r(ui, sj)]2 (20)

.2. Experimental results

In this subsection, we first study the impact of hyperparam-
ters of the proposed QoS prediction model in IoT. Then we
onduct extensive experiments and report their performance to
alidate the efficiency of the proposed method.
181
4.2.1. Impact of hyperparameters
Tuning hyperparameters, such as the number of neurons per

layer, the number of hidden layers and activation functions,
are critical to the performance of the proposed QoS prediction
method. We study the impact of these hyperparameters on the
response time property of the QoS dataset.

(1) Effect of Activation functions. We mainly compare the
erformance of five kinds of activation functions by applying
hese activation functions to all hidden layers, i.e., tanh, relu, elu,
elu, softplus, the experiment results are shown in Fig. 5. From
his figure, we observe selu achieves the best performance when
he QoS dataset density from 10% increases to 30%. For instance,
he MAE is 1.023 when applying selu as activation function and
etting the dataset density as 10%, which is improved by 15.64%
relu), 4.39% (tanh), 2.93% (elu) and 26.32% (softplus) with the
ame dataset density. Similarly, the RMSE of selu is 1.597 when
etting the dataset density as 30%, which is improved by 7.29%
relu), 5.12% (tanh), 1.7% (elu) and 18.81% (softplus) with the
ame dataset density.
(2) Effect of the number of neurons per layer. We set the

umber of neurons per layer to 64, 128, 256, 512 and 1024 when
ther hyperparameters remain the same. From Fig. 6, we can
bserve that the best performance is achieved when setting the
umber of neurons per layer as 256. We further observe the
erformance increases with the increasing of neurons per layer
rom 64 to 256, and then decrease when the number of neurons
er layer is larger than 256. For example, the RMSE is 1.775 when
etting the dataset density as 20% and the number of neurons
er layer as 64, which decreases to 1.746 when the number of
eurons per layer is 256, then increases to 1.758 when setting the
umber of neurons per layer as 1024. The result is not surprising
ince too many neurons per layer introduce model complexity
hus may lead to model over-fitting, while fewer neurons per
ayer make the model suffer from under fitting. For the QoS
ataset in our study, 256 neurons per layer are a good choice
ccording to the experimental results.
(3) Effect of the number of hidden layers. One fundamental

actor of the proposed QoS prediction model is the number of
idden layers for both DCN and MLP network. From Fig. 7, we
bserve that increasing the number of hidden layers from 1 to
can improve the performance of QoS prediction, however, the
odel performance will degrade when we continue to increase

he number of hidden layers. Taking the MAE when dataset den-
ity is 10% as an example, the MAE is 0.99 when setting hidden
ayers number as 4, which improved 30.3% and 5.75% when set-
ing hidden layers number as 1 and 8 respectively. According to
hese results, we can find that a single hidden layer with a finite
umber of neurons can approximate continuous functions with
ild assumptions on the activation function, additional hidden

ayers can learn complex representations (i.e., automatic feature
ngineering) for complex high-sparsity datasets. The results sug-
est that one would like to avoid model over-fitting by setting
he number of hidden layers to an appropriate small number.

.2.2. Comparison of different QoS prediction models in IoT
We compare the performance of QoS prediction of differ-

nt models on the two QoS properties, i.e., response time and
hroughout. Since there is no concept of hidden layer and acti-
ation functions for UPCC, UIPCC, PMF and NMF, it is impossible
o compare the effect of these parameters in these methods on
he prediction performance. To this end, we explore the impact
f different activation functions and the number of hidden lay-
rs for Autoencoder [24] and DNN [25]. As mentioned earlier,
e set the data density as 10% and repeat five times for each
xperiment, and report the average MAE and RMSE of the two
ethods in Fig. 8 and Table 2. We observe the best RMSE are
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Fig. 5. Effect of different activation functions for the proposed QoS prediction model.
Fig. 6. Effect of the number of neurons per layer to the proposed QoS prediction model.
Fig. 7. Effect of the number of hidden layers to the proposed QoS prediction model.
Table 2
Effect of the number of hidden layers to Autoencoder and DNN.
Hidden layer 1 2 3 4 5 6 7 8 9 10

Autoencoder MAE 1.594 1.465 1.486 1.712 1.687 1.703 1.686 1.677 1.695 1.665
RMSE 2.263 2.04 2.167 2.276 2.321 2.358 2.324 2.389 2.353 2.368

DNN MAE 1.318 1.277 1.279 1.292 1.301 1.325 1.353 1.348 1.353 1.347
RMSE 1.982 1.95 1.965 1.971 1.965 1.963 1.978 1.9762 2.003 2.124
achieved when the activation function is set to selu, while the
best MAE is achieved for Autoencoder and DNN with different
activation functions (i.e., selu for DNN and relu for Autoencoder).
For different hidden layers, the best MAE and RMSE are achieved
when the layer is 2 The result is not surprising since deep learning
182
based models would overfit to the training data with too many
hidden layers.

In our experiment, there are six different data densities to be
used, which are 5%, 10%, 15%, 20%, 25% and 30%. Finally, each case
is repeated 10 times to produce the final results, and we report
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Fig. 8. Effect of different activation functions for Autoencoder and DNN.
he mean of the performance as the ultimate experiment results.
he results are shown in Tables 3 and 4.
From Table 3, we have the following observations: (1) the

roposed method that consider modeling both low-order and
igh-order feature interactions always outperforms traditional
F-based models (e.g., UPCC, UIPCC, MF, PMF, NMF and FM)
nd existing deep learning based models (e.g., Autoencoder and
NN). For example, the MAE of our method is 1.01 when the
ataset density is 5%, while 1.54 for PMF (which is the best
erformance with CF-based models) and 1.345 for DNN(which
s the best performance with deep learning based models). In
act, a small improvement in IoT QoS prediction is likely to
ead to a significant increase with such a huge IoT service mar-
et. Therefore, the performance improvement of our method is
ignificant (about 33.11% and 23% respectively), which clearly
emonstrates the effectiveness of jointly considering low-order
nd high-order feature interactions for QoS prediction in IoT;
2) deep learning based models such as our method and DNN can
chieve better performance than traditional CF-based models. For
nstance, compared to the best CF-based models PMF, our method
nd DNN achieve more than 29.57% and 6.24% in terms of MAE
12.36% and 3.94% in terms of RMSE) when the user–service QoS
atrix density is 10%. The results suggest that existing CF-based
oS prediction methods perform low-order feature interaction
ince they are linear and have shallow structures, which cannot
earn nonlinear and complex relationships with sparse QoS data
et in IoT environment, thus will result in poor QoS prediction
erformance. Contrary to these CF-based QoS prediction methods,
eep learning based methods can model non-linearity of sparse
oS dataset with nonlinear activations such as relu, elu, tanh
nd softplus. Therefore, deep learning based methods can cap-
ure complex and intricate user–service interaction patterns, thus
an achieve better QoS prediction performance; (3) fusing both
ow-order and high-order feature interaction can significantly im-
rove the performance of QoS prediction in IoT. This observation
s from the fact that Antoencoder and DNN (which is similar
o the proposed model without considering low-order feature
nteraction) performs much worse than the proposed model. As
he best model, our method outperforms DNN by 24.13% in terms
f MAE and 10.36% in terms of RMSE when the dataset density
s 20%. This reason is that feature interactions behind service’s
nvoked behaviors can be highly sophisticated, thus both low-
rder and high-order feature interactions should play important
oles in IoT QoS prediction. Therefore, QoS prediction in IoT
y considering low-order and high-order feature interactions si-
ultaneously brings additional improvement over the cases of
onsidering either alone.
Table 4 shows the prediction results of throughput property
mong these models with different dataset density, and both the

183
MAE and RMSE of these models are shown in this Table. We
observe the proposed method achieves the best performance, as
the MAE and RMSE metric is always lower than other baseline
models. For example, the MAE of our method is 10.07 when the
dataset density is 15%, while the results are 16.55 for Autoencoder
and 21.12 for IoTPredict. Similar results can be investigated in
terms of RMSE with different dataset density. The result sug-
gests again that jointly model low-order and high-order feature
interactions can improve the prediction performance. On the con-
trary, existing CF-based models fail to predict service’s through-
out property as they are inability to uncover and generalize the
underlying patterns from high-dimensional and high-sparse QoS
dataset. Given such a high-sparse QoS dataset, the key challenge
of QoS prediction is in effectively modeling feature interactions.
Deep neural network is efficient in learning the underlying ex-
planatory factors and useful representations from sparse QoS
dataset. Another observation is that the prediction performance
of all methods increase as the data density increases. Taking
IoTpredict as example, the RMSE is 53.45 and 44.55 when the data
density is 10% and 20% respectively. The reason is that increasing
the data density makes the data denser, which leads more ground
truth values in each test case thus leading to better prediction
results.

5. Conclusion

This paper proposes a hybrid QoS prediction model (CFM) for
IoT service by jointly modeling both low-order and high-order
context feature interactions. CFM goes through three phases:
learn low-order feature interaction with factorization machine,
model high-order feature interaction with MLP and DCN, and ag-
gregate the output of low-order and high-order feature
interactions with a parametric-matrix-based fusion. Extensive
experiments are conducted on a real-world benchmark dataset to
evaluate CFM against the state-of-the-art models. The extensive
results of the compared experiments verify the proposed method
has significantly better performance than the state-of-the-art
models in prediction accuracy, which suggest that jointly con-
sidering low-order and high-order feature interactions is signifi-
cantly effective for IoT QoS prediction. Although CFM has shown
promising prospects, one important issue remains unveiled: how
to perform IoT QoS prediction in data privacy-sensitive IoT sce-
narios? Therefore, it is important to protect the private data
of users while retaining the ability of generating accurate QoS
prediction.

Currently, we are building an IoT testbed, which consists of
several different places (e.g., bedroom, bathroom, garage, kitchen),
where approximately 127 physical IoT objects (e.g., couch, laptop,

microwave oven, fridge) are monitored by attaching WiFi tags
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Table 3
Experiment results of different QoS prediction models in response time property (a smaller value indicates a higher accuracy).
Method density=5% density=10% density=15% density=20% density=25% density=30%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 2.57 3.356 2.535 3.32 2.511 3.276 2.457 3.108 2.398 2.967 2.375 2.856
UIPCC 2.235 3.123 2.21 3.04 2.146 2.914 2.042 2.85 1.912 2.768 1.876 2.75
IoTPredict 1.756 2.56 1.735 2.523 1.726 2.48 1.719 2.456 1.687 2.42 1.66 2.367
NMF 2.532 3.55 2.332 3.325 2.16 3.165 2.05 2.995 1.95 2.85 1.84 2.723
PMF 1.54 2.235 1.41 2.035 1.386 1.987 1.365 1.95 1.36 1.935 1.334 1.925
FM 2.056 3.04 2.01 3.023 1.95 3.01 1.932 2.96 1.92 2.964 1.895 2.921
Autoencoder 1.45 2.03 1.46 2.04 1.475 2.052 1.48 2.064 1.492 2.11 1.485 2.05
DNN 1.345 1.967 1.322 1.95 1.298 1.935 1.292 1.927 1.28 1.91 1.275 1.879
CFM 1.01 1.756 0.993 1.751 0.985 1.745 0.975 1.732 0.972 1.729 0.968 1.726
Table 4
Experiment results of different QoS prediction models in throughput property (a smaller value indicates a higher accuracy).
Method density=5% density=10% density=15% density=20% density=25% density=30%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 28.96 62.78 26.93 58.38 24.71 55.46 22.89 52.72 21.16 48.26 20.32 45.17
UIPCC 26.29 60.16 23.76 54.28 21.29 47.93 20.15 45.82 18.47 43.72 17.21 40.01
IoTPredict 25.35 59.56 23.35 53.45 21.12 48.92 19.24 44.556 18.18 42.52 17.36 40.167
NMF 27.35 60.4 25.32 57.56 23.83 54.35 21.56 50.56 20.25 46.17 19.95 43.15
PMF 19.74 40.62 18.46 37.86 17.57 34.78 16.18 32.18 15.22 29.84 14.36 27.79
FM 20.67 48.36 18.67 42.67 17.84 37.56 16.54 34.25 15.21 32.45 14.12 30.65
Autoencoder 18.55 40.15 17.15 36.23 16.55 33.2 15.78 31.05 14.54 28.56 13.82 26.46
DNN 16.48 36.45 14.61 33.91 13.97 30.27 13.57 27.68 13.02 25.87 12.59 23.72
CFM 12.58 31.83 11.63 29.38 10.07 28.14 10.01 26.15 9.78 24.56 9.52 22.89
t.
and sensors. After collecting enough IoT QoS data in our testbed
or other public datasets suitable for IoT QoS prediction emerge,
we will assess the effectiveness of the proposed approach and
compare with state-of-the-art techniques in the future.
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