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Abstract—Indoor subarea localization remains an open prob-
lem due to existing studies face two main bottlenecks, one is
fingerprint-based methods require time-consuming site survey
and another is triangulation-based methods is lack of scalability
in large-scale environment. In this paper, we aim to present
a graph-based method for indoor subarea localization with
zero-configuration, which can be directly employed without
offline manually constructing fingerprint map or pre-installing
additional infrastructure. To accomplish this, we first utilize
two unexploited characteristics of WiFi radio signal strength to
generate logical floor graph, and then formulate the problem of
constructing fingerprint map in terms of a graph isomorphism
problem between logical floor graph and physical floor graph.
Then, a Bayesian-based approach is utilized to estimate the
unknown subarea in online localization. The proposed method
has been implemented in a real-world shopping mall and ex-
tensive experimental results show that our method can achieve
competitive performance comparing with existing methods.

I. INTRODUCTION

Recent years have witnessed an increasing attempt on

indoor subarea localization in view of its importance to many

location-based services, such as indoor advertising [1], patient

activity monitoring [2] and indoor check-in services [3]. Since

traditional GPS positioning technique is infeasible in indoor

environment and the positioning accuracy of cellular-based

method is not enough, localization methods based on radio

signal strength (RSS) has attracted enormous research from

both academia and industry. Existing RSS-based localization

methods either require time-consuming site survey or huge

costs for deploying additional hardware. Therefore, indoor

subarea localization remains an unsolved problem according

to the report from Microsoft indoor localization competition

[4]. In general, existing RSS-based localization methods can

be divided into two categories: infrastructure-based methods

and infrastructure-free methods.

Infrastructure-based methods require pre-installed hardware

for localization, such as UWB [5], ZigBee [6] or wearable

sensor [7], [8], which make this kind of system unsalable

to large-scale environment. To address this drawback, many

infrastructure-free localization systems [9]–[11] without re-

quiring additional hardware have been proposed. One of

the most promising methods is using WiFi RSS, which is

mainly attributed to the widespread deployment of WLAN

infrastructure.

Previous localization methods using WiFi RSS in-

clude geometric-based scheme and fingerprint-based scheme.

Geometric-based scheme utilizes geometry relation between

the unknown location and more than two reference locations

for localization, such as TOA [12], TDOA [13] and AOA [14].

Geometric-based scheme requires prior knowledge of WiFi

access point (AP) and radio signal propagation model in indoor

environment. However, there is not a ubiquitous radio signal

propagation model due to complex phenomena (e.g., multi-

path fading, shadowing, etc.) in indoor environment. More-

over, the performance of geometric-based scheme is vulnerable

to be influenced by many factors, such as layout changes or

people walking. On the contrary, fingerprinting-based scheme

is more robust since it does not depend on radio signal propa-

gation model. Typically, fingerprinting-based scheme consists

of two phases: (1) construct fingerprint map, which firstly

divides indoor space into a few cells and manually associates

each cell with the scanned RSS values from surrounding APs;

(2) online localization, which estimates the unknown location

by matching the scanned RSS values with the fingerprinting

map. The main bottleneck of fingerprint-based scheme is that

manually constructing fingerprint map is time-consuming and

labor intensive. For instance, the deployment overhead for a

300m2 environment is more than 7 hours [4]. Additionally,

the fingerprinting map needs to be updated dynamically for

maintaining localization accuracy.

For a practical subarea localization system, we argue several

requirements are necessary: reasonable localization accuracy;

no additional hardware components on user’s side; scalable

to large-scale deployment. On these basis, we propose a

graph-based indoor subarea localization method with zero-

configuration, which is infrastructure-free and constructing

fingerprint map by passive crowdsourcing. Specifically, we

firstly generate logical floor graph by utilizing two inherent

characteristics of WiFi RSS in indoor environment, and then

we formulate the problem of constructing fingerprinting map

as a graph mapping problem between logical floor graph

and physical floor graph. Finally, we utilize a Bayesian-based

approach to estimate the unknown location.

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing 

and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

978-1-5090-2771-2/16 $31.00 © 2016 IEEE

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.41

236

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:44:56 UTC from IEEE Xplore.  Restrictions apply. 



The rest of this paper is structured as follows. Section 2

surveys related studies on indoor subarea localization. Section

3 describes our proposed method in detail. Section 4 reports

and discusses our experimental results. Finally, we present our

conclusion and future work in Section 5.

II. RELATED WORK

In this section, we survey previous related works about

indoor subarea localization and discuss how these works differ

from our work. In general, existing studies on this topic can

be divided into two categories:

A. Infrastructure-based Localization System

Infrastructure-based localization systems estimate unknown

location based on the information from additional infrastruc-

ture or external equipment, such as WiFi signals, Bluetooth

signals and ZigBee signals. For instance, the beacon frames

from multiple Bluetooth APs [15] are used to localization the

room, ZigBee interface [6] is used to collect WiFi RSS for

room localization, wearable wrist sensors [7] is used to detect

a person. The main drawback of infrastructure-based system is

lack of scalability since costly infrastructure pre-deployment is

necessary. Moreover, the performance of infrastructure-based

systems is limited by disturbances and errors caused by indoor

obstacles (e.g. walls, ceiling and furniture, etc.). Another

challenge of infrastructure-based systems is how to design

optimal configurations with trade-off the deployment cost

and localization performance. [16] analyzed the localization

performance and deployment issues by revealing localization

error trends with geometric configurations, and concluded the

optimal configuration is regular polygon where the vertices

represent the RSS APs.

B. Infrastructure-free Localization System

In contrast, infrastructure-free localization systems utilize

existing infrastructure (e.g., WiFi [10], [11], [17]–[19], mag-

netic field [20], etc.) to estimate an unknown location without

deploying additional hardware.

Typically, localization methods for infrastructure-free sys-

tem consist of geometric-based method and fingerprint-based

method. Geometric-based method utilizes triangulation princi-

ple to estimate the unknown location based on radio propa-

gation model, such as TOA [12], TDOA [13] and AOA [14].

However, there is not a ubiquitous radio propagation model

in indoor environment, since the radio signal propagation

would be strongly affected by multipath effect. In addition,

specific devices for measuring TOA or AOA are costly.

Fingerprint-based method utilizes the RSS values collected

from a specific location as its fingerprint for labelling location.

The localization process of this scheme includes two phases:

construct fingerprint map and online localization. For example,

[21] utilized fingerprint-based method with WiFi RSS to

obtain room-level localization for visualizing indoor energy

consumption. [22] proposed an subarea detection method using

WiFi RSS. [23] proposed a more robust location fingerprint

for localization using the RSS relative ordering of each pair

TABLE I: Notations used in indoor subarea localization

Symbol Description

N,K,M the num of subareas, WiFi APs, RSS traces
S,D,H the set of subareas, WiFi RSS traces, Histogram bins

ri, R the RSS value from api,the RSS values from all WiFi APs
o(u, t, R) the RSS record collected by user u at time t
Li, traj(Li) a WiFi RSS trace, a virtual trajectory
si, fsi an indoor subarea,the fingerprint of subarea
νi virtual subarea with high similarity fingerprint
Y the fingerprint map
Gp, Gf the physical floor graph, logical floor graph
τ time windows size for identifying boundary points
σ user-specific threshold for removing false identification

of APs. For reducing erroneous estimation, [9] utilized the

RSS characteristics when passing through a boundary point

to calibration. However, previous fingerprinting-based method

is infeasible because constructing fingerprint map is time-

consuming and labor intensive [4].

Recently, some studies have been proposed to automatical-

ly construct fingerprinting map without time-consuming site

survey. For instance, [18] proposed an indoor floor plan con-

struction method with leveraging WiFi RSS and user motion

information, which can be utilized to automatically construct

fingerprinting map. WILL [10] automatically construct finger-

print map by utilizing RSS characteristics and user motions to

. WicLoc [19] records user motions as well as WiFi signals

for constructing fingerprint map. However, these methods need

user’s active participation when constructing fingerprint map.

In contrast, our proposed method only utilize WiFi RSS to

automatically construct fingerprint map, which can be done

by passive crowdsourcing.

III. GRAPH-BASED LOCALIZATION METHOD

In this section, we first introduce the key data structures and

notations used in our proposed subarea localization method,

and then present the problem definition and solution.

A. Problem Definition

For ease of the following presentation, we define the key

notations used in the proposed method. Table I lists the

relevant notations used in this paper.

Definition 1: RSS Record. A RSS record is a triple

o(u, t, R) that means the collected WiFi RSS values by user

u at time t. R is a K dimensional vector and denote by

(r1, ..., ri, ..., rK), ri means the scanned WiFi RSS value from

AP api, K is the num of WiFi APs in indoor space and

1 � i � K.

Definition 2: WiFi RSS Trace. We define a WiFI RSS trace

as a set of RSS records and denote by L = {o1, ..., oi, ..., oT },
oi represents the collected RSS record at time ti, 1 � i � T .

Definition 3: Indoor Subarea. S = {s1, s2, ..., sN} denotes

the set of subareas, N is the num of subareas and a subarea si
refers to a region that makes up part of indoor space. Typically,

subareas are rectangle, such as rooms and corridors, but not

necessary.
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Definition 4: Subarea Fingerprint. The feature of subarea

si is defined as a H ×K matrix fsi = {p1, p2, ..., pK}, H is

the histogram bins and pj represents the histogram of scanned

RSS values from apj in si, 1 � i � N and 1 � j � K.

We split the RSS values range into H bins and then pj
denote by a H dimensional vector, a bin-based method is used

to calculate the pj of subarea si, as shown in Equation. 1.

pj =
H∏

h=1

∑K
j=1 C

h
ij

Ci
(1)

Where
∑K

j=1 C
h
ij is the num of collected RSS values from

apj belongs to the h-th bin in total collected RSS values, Ci

means the total collected RSS values in subarea si.

Definition 5: Fingerprint Similarity. The fingerprint simi-

larity of subarea si and sj is calculated by cosine similarity,

as shown in Equation. 2.

Sim(fsi, fsj) =
1

K

K∑
n=1

Rown(fsi) ·Rown(fsj)

||Rown(fsi)|| × ||Rown(fsj)|| (2)

Where Rown(fsi) and Rown(fsj) represent the n-th row

vector of fsi and fsj , respectively.

Definition 6: Fingerprint Map. The fingerprint map is a set

of tuples by associating physical subarea and its fingerprint and

denote by Y = {(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.
Definition 7: Physical Floor Graph. We denote the physical

floor graph by Gp =< Vp, Ep >, where Vp = {v1, v2, ..., vN}
and vi represents subarea si, Ep ⊆ V × V correspond to the

directly reachable of subareas in indoor space.

Based on the above definitions, we formulate the prob-

lem of indoor subarea localization as: Given: 1) indoor

subarea set S = {s1, s2, ..., sN}. 2) WiFi RSS Trace set

D = {L1, L2, ..., LM} collected by passive crowdsourcing. 3)

physical floor graph Gp =< Vp, Ep >. 4) a user localization

request o?(u, t, R); Objective: find the correspond subarea si
when scanning RSS record o?(u, t, R).

Our solution for this problem consists of two phases: (1)

construct fingerprint map by graph mapping; (2) estimate the

unknown subarea with a Bayesian approach.

B. Construct Fingerprint Map

In this subsection, we first give an high-level overview of

our graph-based method for constructing fingerprint map, and

then present the details of the method.

Unlike existing fingerprint-based methods, our method au-

tomatically constructs fingerprint map without manual site

survey. First, we collect RSS traces by crowdsourcing (e.g.,

when participants go shopping, drink a coffee or relaxing).

Then, after obtaining enormous RSS traces, the fingerprint

map is constructed by the following three steps: modeling

physical floor plan to an undirected graph, generate logical

floor graph, and mapping logical floor graph to physical floor

graph.

Identify  Physical 
Boundary Point 

Construct   Virtual 
Trajectory 

Merge  Virtual 
Trajectories 

Indoor Floor Plan 

Physical Floor Graph 
Graph 

Mapping 
Generate Subarea  
Fingerprint Map 

Collect RSS Records Generate Logical Fingerprint Graph 

Modeling Indoor Floor Graph 

Fig. 1: High-level overview of constructing fingerprint map

1) Modeling Physical Floor Plan: Motivated by indoor

robots pursuit/evasion research [24], we model the indoor

floor plan with a undirected graph Gp =< Vp, Ep > by

decomposing the indoor floor plan into a collection of convex

subareas, and further reduce the indoor space to a graph

by discretization. Specifically, the discretization includes two

steps:

• Step1: decomposing the indoor floor plan into a set of

convex subareas based on critical visibility events and

association vertex vi to subarea si;
• Step2: adding edges between vertices which are directly

connected in the original indoor floor plan.

For example, the indoor floor plan of our experimental

environment is shown in 2a, which consisting of 27 rooms

and covering over 2000m2. Then, we decompose the floor

plan into a set of subareas and add edges between directly

connected vertices, and finally model the indoor floor plan as

a undirected graph as shown in Figure 2b.

2) Generate Logical Floor Graph: A few factors can in-

fluence the propagation of radio signal in indoor environment,

such as multiple diffraction, reflection of scattered signals from

adjacent walls and crowd walking. By investigating spatial-

temporal characteristics of indoor radio signal propagation,

we observe two valuable characteristics can be exploited to

subarea localization.

The first observation is physical obstacles, such as walls

and stairs, will make WiFi RSS values jump dramatically. In

order to investigate the physical obstacles effect on radio signal

propagation, we collected 200 RSS records from three APs in

room 1 and room 2, where AP1 and AP2 are located in room

1 and AP3 is located in room 2. The statistical information of

RSS values is shown in Table II, and we can observe that the

range of RSS values from the same AP significantly differ in

different rooms.

Therefore, this characteristic can reflect the indoor floor

plan to a certain degree and can be used to distinguish two

subareas, which is also demonstrated in [25]. Based on this

characteristic, we design a robust subarea fingerprint using

RSS histogram as shown in Definition 4. In order to distinguish

different subareas, we further define the similarity of Subarea

Fingerprint as shown in Definition 5.
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Fig. 2: Modeling physical floor plan as a undirected graph

TABLE II: The RSS values scanned from three WiFi APs at different rooms

Range AP1 at Room 1 AP1 at Room 2 AP2 at Room 1 AP2 at Room 2 AP3 at Room 1 AP3 at Room 2

[−55,−40] 115 0 93 1 0 120
[−70,−55) 72 3 81 5 4 63
[−85,−70) 10 11 21 17 21 15
[−100,−85) 3 23 5 39 42 2

Take RSS values of Table II as an example,

split the range of RSS values into 4 bins:

{(−40,−55], (−55,−70], (−70,−85], (−85,−100]}, the

fingerprint of room 1 and room 2 can be calculated as fs1
and fs2, respectively.

fs1 =

⎡
⎣0.575 0.36 0.05 0.015
0.465 0.405 0.105 0.025
0 0.0597 0.3134 0.6269

⎤
⎦ (3)

fs2 =

⎡
⎣ 0 0.0811 0.2973 0.6216
0.0161 0.0806 0.2742 0.629
0.6 0.315 0.075 0.01

⎤
⎦ (4)

The second observation is the WiFi RSS values will jump

dramatically when passing a physical boundary point, such

as room entrances and corners. For example, we collect a

sequence of RSS values from three APs when walking from

room 1 to room 2, as shown in Figure. 3a. Specifically,

{t1, t2, t3, t4, t5} are collected in room 1, {t6, t7, t8} are

collected when passing the entrance, {t9, t10, t11, t12} are

collected in room 2, as shown in Figure. 3b. We find that the

”jump” range can reach 15dBm-30dBm. However, the RSS

values should change smoothly in a small continuous area

according to indoor empirical propagation model [26]. There-

fore, the RSS ”jump” characteristic when passing boundary

points can be utilized to identify subarea entrance.

Based on the two spatial-temporal characteristics of radio

signal propagation in indoor environment, we generate logical

floor graph by three stages, as shown in Figure 4. Specifically,

we first identify all physical boundary points based on the

RSS ”jump” characteristic when passing a physical boundary

point, and remove false identification using subarea fingerprint

similarity. Then, we partition a WiFi RSS trace into a virtual

trajectory according to physical boundary points, as shown in

Figure. 4. Finally, we merge all virtual trajectories to generate

logical floor graph, as shown in Figure. 5.

Identify Physical Boundary Points. Based on the obser-

vation that the WiFi RSS values jump significantly when

walking through a physical boundary point, we utilize the

fluctuation of RSS values in a small time window to identify

physical boundary points. Formally, given a WiFi RSS trace

L =< o1, ..., oi, ..., oT >, we define V ar(ti, τ) to represent

the RSS fluctuation in time window (ti − τ/2, ti + τ/2), as

shown in Equation. 5.

V ar(ti, τ) =
1

K

K∑
i=1

V ar(api) (5)

Where K is the number of WiFi APs, V ar(api) is the

variation of RSS values from api during the time window,

as calculated in Equation. 6.

V ar(api) =
1

τ − 1

ti+τ/2∑
j=ti−τ/2

(rij − ri)2 (6)

Where ri is the average RSS values from api in time

window (ti − τ/2, ti + τ/2) , rij is the RSS value from api
at time tj .

If the RSS fluctuation in time window (ti − τ/2, ti + τ/2)
is significantly higher than average, we can infer the user

is walking through a physical boundary point at time ti.
Formally, we use variation coefficient α to quantify the degree

of RSS ”jump”, as shown in Equation. 7.

α =
τ × V ar(ti, τ)∑ti+τ/2

j=ti−τ/2 V ar(tj , τ)
(7)

For example, set time window size τ = 5 and varia-

tion coefficient as α = 1.3, the variation of RSS values

from three APs in Figure 3b is calculated as shown in

Table III. We further calculate the RSS fluctuation: V =
{36.97, 34.6, 48.4, 78.67, 96.4, 86.8, 49.27, 30.77} as shown
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TABLE III: The variation of RSS values from three WiFi APs

time window (t1, t5) (t2, t6) (t3, t7) (t4, t8) (t5, t9) (t6, t10) (t7, t11) (t8, t12)

AP1 46.5 31.8 42.3 137.5 162.7 143.5 80.8 18.7
AP2 14.7 10.3 36.7 40.3 48.7 20.2 11.7 42.3
AP3 49.7 61.7 66.3 58.2 77.8 96.7 55.3 31.3

in Figure 3c, and infer the user is passing a physical boundary

point in time {t6, t7, t8}.
Remove False Identification. As mentioned above, we

identify physical boundary points according to the RSS ”jump”

characteristic. However, this method may bring some false

positives, since other factors (e.g., crowd passing and furniture

layout change, etc.) may create similar RSS ”jump”. However,

subarea fingerprint using RSS histogram is stable and robust

according to the first observation. On the basis, we remove

false positives based on the similarity of subarea fingerprint.
Formally, after obtaining time set Ω = {tp, tp+1, ..., tq} that

users may walk through physical boundary points according

to RSS ”jump” characteristic, we partition RSS trace L into

a subsequence set L = {o(t1 : tp), o(tp : tp+1), ..., o(tq−1 :
tq), o(tq : tT )}, o(tp : tp+1) is the RSS subsequence collected

from tp to tp+1. Then, we calculate the fingerprint of each

RSS subsequence as denote by F = {fp, fp+1, ..., fq}, fp
represents the fingerprint of RSS subsequence o(t1 : tp).
Finally, we use a threshold-based approach to remove false

positives, which means tp+1 is a false positive if the fingerprint

similarity between fp and fp+1 is greater than a threshold δ,

as shown in Equation. 8.

Sim(fp, fp+1) > δ (8)

Construct Virtual Trajectory. After removing false iden-

tification of physical boundary points, we repartition the RSS

trace L into a subsequence set L = {o(t1 : tp), o(tp :
tp+1), ...} and map each RSS subsequence o(tp : tp+1)
to a virtual subarea νp+1. A virtual subarea is a container

which consists of fingerprint with high similarity. Finally, we

construct the virtual trajectory of RSS trace L as traj(L) =<
νp → νp+1 → ... >, as shown in Figure. 4.

Generate Logical Floor Graph. After constructing vir-

tual trajectory for each RSS trace, we generate logical

floor graph Gf (Vf , Ef ) by merging all virtual trajectories

{traj(L1), traj(L2), ..., traj(LM )}. Specifically, the merge

process consists of two steps:

• Step1: using K-means to cluster virtual trajectories

{traj(L1), traj(L2), ..., traj(LM )} into P clusters, and

mapping cluster center πi of cluster Pi to vertex vi
of logical floor graph, as shown in Figure. 5b. In the

clustering process, using fingerprint similarity (See in

Definition 5) to measure the closeness of two virtual

subareas.

• Step2: adding an edge between vi and vj if cluster Pi

and cluster Pj is reachable, which means that there is at

least one pair of adjacent virtual subareas < νi → νj >
for ∀νi ∈ Pi and ∀νj ∈ Pj , as shown in Figure. 5c.

3) Mapping Logical Floor Graph to Physical Floor Graph:
For automatically constructing fingerprint map, we need to

associate virtual subarea νi to the corresponding subarea sj by

mapping logical floor graph to physical floor graph. Formally,

given logical floor graph Gf =< Vf , Ef > and physical floor

graph Gp =< Vp, Ep >, find a mapping function τ : Vf → Vp

for ∀e(u, v) ∈ Ef , e(τ(u), τ(v)) ∈ Ep. Obviously, this is a

subgraph isomorphism problem and can be solved by Ullmann

algorithm [27].

Ullmann algorithm utilizes a depth-first search strategy to
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enumerate all sub-graphs of Gf that matching Gp. For ease

of understanding, Figure 6c is the search tree for mapping Gf

(Figure 6a) to Gp (Figure 6b), the i-th layer of search tree

represents mapping ui of Gf to each node of Gp, a path from

root node to leaf node represents a subgraph matching between

Gp and Gf . A subgraph matching is correct if the adjacency

relationship of ui in Gf is the same as its mapping node vj
in Gp.

Since we have mapped each virtual subarea νi to the

corresponding physical subarea sj , we further compute the

fingerprint of sj according to Equation. 1. Then, we construct

subarea fingerprint map with associating sj to the calculated

fingerprint.

C. Online Localization

At the online localization part, user sends localization

request with submitting the scanned RSS record o(u, t, R),
R = {r1, r2, ..., rK}, our method estimates the subarea of

his/her current location using a Bayesian approach. According

to Bayesian inference, the posterior probability P (si|R) can

be calculated as Equation. 9.

P (si|R) =
P (R|si)P (si)

P (R)
(9)

Since the prior probability that user is located in each

subarea is equal and the RSS values from different WiFi APs

are independent, the posterior probability P (si|R) can further

be simplified as Equation. 10.

P (si|R) ∝
K∏
j=1

P (rj |si) (10)

For a given subarea si, the prior probability P (rj |si) can

be calculated by the normalized histogram of apj in this

subarea. We partioned the RSS values range into H bins when

constructing fingerprint map, suppose rj belongs to the h-

th bin, P (rj |si) is equal to fsi(h, j). Then, the localization

result for RSS record o(u, t, R), R = {r1, r2, ..., rK} can be

estimated by Equation. 11.

ŝ = argMax
si∈S

K∏
j=1

fsi(h, j) (11)

Algorithm 1 formally describes the framework of our pro-

posed method for indoor subarea localization. First, as shown

in Lines 2 ∼ 7, we generate the logical floor graph based

on two unexploited RSS characteristics in indoor space. Then,

as depicted in Line 8 ∼ 9, we construct subarea fingerprint

map by mapping logical floor graph to physical floor graph.

At the online localization part, we calculate the posterior

probability for each subarea based by Bayesian inference, as

shown in Line 11 ∼ 14. Finally, we select the subarea with

the maximum posterior probability as the localization result.

Algorithm 1 Graph-based method for indoor subarea local-

ization

Require: 1) The RSS traces set D = {L1, L2, ..., LM}; 2)

Subarea set S = {s1, s2, ..., sN}; 3) Physical floor graph

Gp; 5) user-specific threshold: τ, α, δ; 4)The RSS record

of user’s localization request: o < u, t, R > and R =
{r1, r2, ..., rK}.

Ensure: The subarea su of user’s current location

1: ∗ ∗ ∗Phase 1: Construct Fingerprint Map∗ ∗ ∗
2: for ∀Li ∈ D do
3: Identify physical boundary points according to Equa-

tion. 7.

4: Remove false identification according to Equation. 8.

5: Construct virtual trajectory traj(Li).
6: end for
7: Generate logical floor graph Gf by merging virtual tra-

jectories {traj(L1), traj(L2), ..., traj(LM )}.
8: Map logical floor graph Gf to physical floor graph Gp.

9: Construct subarea fingerprint map Y =
{(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.

10: ∗ ∗ ∗Phase 2: online localization∗ ∗ ∗
11: for ∀(si, fsi) ∈ Y do
12: Otain the histogram bin h that rj belongs to.

13: Calculate the probability P (si|R) =
∏K

j=1 fsi(h, j)
14: end for
15: return su=arg Max

si∈S
P (si|R).
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TABLE IV: The RSS sample format

001-123 124 125 126 127

RSS values timestamp phone ID boundary point flag subarea ID

TABLE V: One example of RSS sample

[001] ... [123] [124] [125] [126] [127]

-73 ... -87 2015-12-07 15:28:15 1 0 1

IV. EXPERIMENT EVALUATION

In this section, we first describe the experimental setting and

dataset for evaluation. Then, we report the results of a series

of experiments conducted to evaluate the performance of our

proposed method for indoor subarea localization, follow by

discussions.

A. Experimental Setup

Our experimental environment is a large indoor shopping

mall with 26 shops and 7 corridors. Each shop is regarded

as a subarea and corridors are partitioned to 16 subareas, so

there are 42 subareas in total. The floor plan and subarea

partition are shown in Figure 2. To evaluate our subarea

localization method, we need to record two labeled infor-

mation: the subarea and whether the location is a physical

boundary point of each WiFi RSS record. We develop a mobile

application to collect WiFi RSS samples with a sampling rate

of 1 Hz, each sample is represented by a tuple: < L, o >.

Specifically, L = {si, 0|1} is the label information of subarea

and whether is a physical boundary point, o is the scanned

RSS record from surround WiFi APs and represented by a

triple (M, t,< r1, r2, ..., rK >), M is the MAC address

of collection device and t is the collection time, r1 is the

scanned RSS values from AP1. Note that we collect RSS

information with a sampling rate of 1 Hz at the offline phase

for constructing fingerprint map, users only need to submit the

single RSS sample in online localization without continuously

collecting RSS information.

B. Experimental Datasets

We collect 117 WiFi RSS traces for experiment evaluation

by 25 participants (including students and shop workers) over

33 days, in which one RSS trace includes an average of 10

subareas and 1532 RSS records, and each subarea has been

visited by at least three participants. Statistically, there are 123

different WiFi APs and 179241 WiFi records in this dataset.

For constructing subarea fingerprint and calculating fingerprint

similarity, we extent each RSS sample to a 128 dimensional

vector, as shown in Table IV. For WiFi AP without collecting

RSS values, we set -110 dBm as default value, one example

of RSS samples is shown in Table V.

C. Experimental results

1) Identify Physical Boundary Points: Three parameters in

our algorithm need to be determined for identifying physical

TABLE VI: The accuracy of identifying physical boundary

points with different time window sizes and variation coeffi-

cients

τ
α

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

3 0.23 0.37 0.44 0.47 0.52 0.37 0.29 0.24 0.19
4 0.29 0.48 0.51 0.59 0.71 0.64 0.48 0.41 0.21
5 0.43 0.56 0.61 0.75 0.83 0.76 0.70 0.63 0.53
6 0.37 0.45 0.51 0.70 0.79 0.57 0.46 0.47 0.33
7 0.30 0.37 0.44 0.59 0.67 0.55 0.39 0.35 0.20
8 0.24 0.29 0.32 0.48 0.54 0.38 0.31 0.21 0.16

boundary points: time windows size τ , variation coefficient α
for recognition boundary points, user-specific threshold δ for

removing false identification. The three parameters directly

impact the accuracy of identifying physical boundary Points.

We use a cluster-based method to select δ. Specifically, we first

cluster all WiFi RSS records to N classes by KNN, N is the

num of subareas. Then, we calculate fingerprint of each class

and further obtain the similarity for each pair of fingerprints.

Finally, we select the average similarity as δ for removing

false identification.

For calculating the subarea fingerprint, we partition the

range of RSS values into 4 bins which is in line with typical

RSS quality partition [28], [29]: (1) bin-1, which represents

WiFi signal is excellent and the RSS values are in range [-

55,0]; (2) bin-2, which represents WiFi signal is good and the

RSS values are in range [-70,-55); (3) bin-3, which represents

WiFi signal is poor and the RSS values are in range [-85,-70);

(4) bin-4, which represents WiFi signal is bad and the RSS

values are in range [-100,-85).

Table VI shows the accuracy of identifying physical bound-

ary points with time window size τ and variation coefficient

α. From this table, we observe: 1) the accuracy drops sharply

when the user-specific threshold of variation coefficient α is

lower than 1.2 or greater than 1.5; 2) Set α = 1.3, the accuracy

increases with time window size increasing from 1 to 5, and

slightly decrease when the time window size is larger than 5

due to the RSS fluctuation between physical boundary point

and other location will be smaller for a large time window

size. Finally, the best performance (83%) is achieved when

α = 1.3 and τ = 5.
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Fig. 7: Parameter tuning for identifying physical boundary

points

242

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:44:56 UTC from IEEE Xplore.  Restrictions apply. 



30 33 36 39 42 45 48 51
50

60

70

80

90

100

the number of logical subareas

M
ap

pi
ng

 a
cc

ur
ac

y 
(%

)

rooms corridors total

(a) The mapping accuracy with dif-
ferent virtual subareas

100 200 300 400 500 600 700 800
50

60

70

80

90

100

WiFi scan records of per room

M
ap

pi
ng

 a
cc

ur
ac

y 
(%

)

(b) The mapping accuracy with dif-
ferent RSS records of per subarea

Fig. 8: Parameter tuning for mapping accuracy

Figure 7a and Figure 7b show the identification accuracy

as a function of variation coefficient and time window size,

respectively. From the two figures, we observe: 1) the method

using subarea fingerprint similarity can effectively remove

false recognition; 2) Set the time window size τ = 5, the ac-

curacy declines sharply when variation coefficient α is greater

than 1.6 or lower than 1.4, and achieve the best accuracy when

α = 1.5; 3) Set α = 1.5, the identification accuracy increases

with the increasing number of time window size between 3 and

5, and slightly decrease when the time window size is larger

than 5; 4) the performance of removing false identification

decreases slightly with increasing time window size, due to

the difference of RSS fluctuation between physical boundary

point and normal location will be smaller with increasing time

window size.

2) Construct Fingerprint Map: We utilize mapping accu-

racy to evaluate the performance for constructing fingerprint

map. The mapping accuracy (MA) is defined in Equation 12.

We define si as the ground truth subarea label of record oi,
ŝi is the mapping subarea label.

MA =

∑Te
i=1 I(si, ŝi)

Te
(12)

Where I(si, ŝi) is an indicator function that return 1 if ŝi =
si, Te is the test RSS records for evaluation.

Figure 8a reports the performance of constructing finger-

print map with different parameter settings. One parameter

need to be determined for constructing fingerprint map: the

cluster number Kf for generating logical floor graph. As

shown in Figure 8a, we show the performance where Kf is

in the range [30,33,...51]. From this figure, we can see that

the mapping accuracy increases gradually when Kf increases

from 30 to 42 and then drops when Kf is greater than 42,

the highest mapping accuracy is 92.3% when Kf equals to

42 (the number of physical subareas). Another observation

is the mapping accuracy for subareas located in corridor is

lower about 20 percent than rooms, which shows there no

obvious RSS ”jump” characteristic for two connected subareas

in corridor because there are no walls or physical boundary

points can significantly weakened the radio signal strength.

Figure 8b reports the performance of constructing finger-

print map as a function of number of WiFi RSS records per
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Fig. 9: The subarea localization accuracy

subarea. We can see that the mapping accuracy is relatively

stable when RSS records of each subarea is more than 500,

which shows our algorithm for constructing the fingerprint

map will converge quickly and has a low crowdsourcing

data requirement. Moreover, the performance of constructing

fingerprint map will improve with increasing collected data.

3) Localization Accuracy: We evaluate the performance of

the proposed localization method by comparing with two well-

known subarea localization methods. We first introduce the

experimental dataset and parameters setting, then detail the

comparative localization techniques. Finally, we report and

discuss the experimental results.

Dataset. We randomly select 70% RSS records of each

subarea as training dataset to construct fingerprint map, and the

rest 30% as testing dataset for evaluation localization accuracy.

Parameters Setting. Tuning algorithm parameters, such as

the time window size for identification physical boundary

points and the clusters for constructing logical floor map,

are critical to the performance of localization. According

to the experience of previous experiments, our algorithm

empirically set parameters as: {τ = 5, α = 1.5,Kf = 42},
for constructing fingerprint map.

Comparative Methods. We compare our method with the

following two methods that have been widely used in subarea

localization: (1) RSS-NN [17], which constructs fingerprint

map by manual site survey and estimates subarea using KNN

classification; (2) RSS-Bayesian [9], which also constructs

fingerprint map by site survey and estimates subarea using

Bayesian inference.

Results and Analysis. Figure 9 shows the localization accu-

racy of the three methods. It can be seen that the performance

for open subarea (subareas in the corridor) and closed subarea

(room) are significantly different for all methods. As shown

in Figure 9, the localization accuracy of rooms are more than

87% for the three methods, but lower than 85% for open

subareas in corridor, which shows RSS values of two con-

nected open subareas are too similar to distinguish. RSS-NN

achieves the best performance for both closed subarea(92%)

and open subarea(83%). Another observation is the average

localization accuracy rate is 85% for our method, which is

4% less than RSS-NN. Therefore, our method can obtain

considerable performance compared with previous methods

with labor intensive and time-consuming site survey.
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V. CONCLUSION

Indoor subarea localization has attracted a few research

efforts from both academia and industry in recent years .

This paper has proposed a ready-to-deploy method for in-

door subarea localization with zero-configuration, since the

proposed method is infrastructure-free and does not need

time-consuming site survey. The main idea is to generate

logical floor graph based on two characteristics of WiFi RSS

in indoor space, and automatically construct fingerprint map

by mapping logical floor graph to physical floor graph. The

proposed method has been implemented and deployed in a

real-world shopping mall with 25 users over 33 days with an

average localization accuracy of 85%, which is competitive

to traditional approaches. The advantages on infrastructure-

free and automatically constructing fingerprint map, make our

method can be widely used in indoor environment.
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