
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022 1289

Preference-Aware Edge Server Placement
in the Internet of Things

Yuanyi Chen , Yihao Lin, Zengwei Zheng , Peng Yu , Jiaxing Shen , and Minyi Guo , Fellow, IEEE

Abstract—While it is well understood that edge computing
can significantly facilitate IoT-related applications by deploying
edge servers close to IoT devices, it also faces many challenges
with numerous IoT devices connected and interacted. One of the
most important issues is how to efficiently deploy edge servers
under a certain budget with the explosive growth of data scale
and user base. Existing studies for edge server placement fail to
consider user’s query preferences since individual users may be
interested in events in particular regions and are keen to receive
up-to-date data streams that originate in regions of interest. In
this article, we present a preference-aware edge server place-
ment approach that offers better workload distribution in terms
of both minimizing query latency and balancing the load of
edge servers. To achieve this, we formulate edge server place-
ment with multiobjective optimization as a p-center problem and
design two progressive approaches. We first propose quadratic
integer programming (QIP) for small-scale data sets. Since the
p-center problem is an NP-hard problem, we thus propose a
heuristic algorithm named TAKG (TAbu search with K-means
and Genetic algorithm) for large-scale data sets. To evaluate the
utility of the proposed models, we have conducted a comprehen-
sive evaluation on a large data set that is collected by more than
1900 IoT devices during 30 days. Experimental results indicate
our approaches outperform all baselines significantly in terms of
both query latency and load balancing.

Index Terms—Edge server deployment, Internet of Things
(IoT), multiobjective optimization, query latency, user preference.

I. INTRODUCTION

RECENT years have witnessed the rapid advancement of
Internet of Things (IoT) by connecting various physical

things embedded with sensing, communication and computing
capabilities (e.g., mobile phones, wallets, and key chains). IoT
has become the enabler of numerous intelligent applications,
including intelligent transportation [1], [2], IoT service recom-
mendation [3], [4], acoustic gesture recognition [5], blockchain

Manuscript received February 20, 2021; accepted May 4, 2021. Date of
publication May 11, 2021; date of current version January 7, 2022. This
work was supported in part by the National Natural Science Foundation of
China under Grant 61802343 and Grant 62072402; in part by the Zhejiang
Provincial Natural Science Foundation of China under Grant LGF19F020019
and Grant LGN20F020003; in part by the Hangzhou Science and Technology
Bureau under Grant 20191203B37; and in part by the Intelligent Plant Factory
of Zhejiang Province Engineering Lab. (Yuanyi Chen and Yihao Lin are co-first
authors.) (Corresponding author: Zengwei Zheng.)

Yuanyi Chen, Yihao Lin, Zengwei Zheng, and Peng Yu are with the
Department of Computer Science and Computing, Zhejiang University City
College, Hangzhou 310015, China (e-mail: zhengzw@zucc.edu.cn).

Jiaxing Shen is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong.

Minyi Guo is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China.

Digital Object Identifier 10.1109/JIOT.2021.3079328

applications in mobile IoT [6], [7], and WiFi-based group
detection [8], [9]. In most applications, end users need to
collect certain data types at particular locations and during
specific times which leads to the accumulation of massive IoT
data [10]–[12].

Unfortunately, most IoT devices especially those with lim-
ited resources are not capable of handling such large amounts
of data in real time [13]. Additionally, the massive data trans-
ferred from the IoT data source to the remote cloud center
will bring many challenges, such as: 1) increasing the capac-
ity pressure of the backhaul link and even lead to network
blocking, data loss and other errors; 2) putting a lot of stor-
age pressure on cloud server because there is a large amount
of meaningless, erroneous or duplicate data taking up effi-
cient and limited storage space, thus reducing productivity;
and 3) augmenting the computing load of the cloud computing
platform when a large amount of data get in simultaneously.
These challenges motivate a move toward an edge computing
approach that facilitates the collection and cleaning of data
closer to IoT devices, which increase the processing efficiency
and reduce cloud server storage costs by transferring only rel-
evant information [11], [14], [15]. As more and more devices
access the IoT, efficient edge server deployment scheme need
to be developed to process the spatiotemporality of IoT data
and resources to support high scalability [16], [17].

Existing studies (for a review see Section II) for edge server
placement are capable of efficiently deploying edge server
under a certain budget with different optimization goals, such
as minimizing latency [18], [19] or deploy cost [20], [21],
reducing energy consumption [22] and the robustness of edge
server network [23], [24]. However, the workload of edge
servers varies dramatically over time due to individual users
may be interested in data in particular regions and are keen to
receive up-to-date data streams from their interested regions.
Fig. 1 depicts the distribution of query frequency of users to a
specific station using a real-world data set of California’s free-
way, more details of the data sets are reported in Section V-A.
From this figure, we observe that the number of base stations
with a particularly high number of queries is small while most
base stations receive few retrieval requests. This phenomenon
inspires us to pay more attention to the edge servers that users
are highly interested in to prevent them from overloading or
even crashing due to the large number of work requests during
certain periods of time.

In this article, we present quadratic integer programming
(QIP), a preference-aware edge server placement method
for IoT-related applications. The design objective of QIP

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4038-6983
https://orcid.org/0000-0003-0386-6080
https://orcid.org/0000-0001-9986-0438
https://orcid.org/0000-0002-0833-0288
https://orcid.org/0000-0003-0034-2302

1290 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

Fig. 1. Frequency of query time.

is to accomplish better workload distribution in terms of
minimizing latency and balancing the query load of edge
servers. To accomplish these goals, we propose a handful of
new techniques. First, we refine the original problem into a
multiobjective optimization problem with NP-hard complex-
ity after a lot of work of mathematical modeling. Second, we
propose a QIP solution to find the optimal edge server place-
ment scheme for small-scale data set. For large-scale data set,
we propose a heuristic algorithm named TAKG (TAbu search
with K-means and Genetic algorithm) to find an approximate
edge server placement scheme based on multiple iterations.
The main contributions of this article are three folds.

1) According to the working process of the edge server,
the optimization goal is expanded into three aspects,
memory balancing, query balancing, and average access
delay. We formulate the problem as a multiobjective
optimization problem, and refer to the method of
p-center problem.

2) We adopt QIP to achieve accurate solution on small-
scale data set and design an algorithm inspired by TABU
search on large-scale data set for approximate solution.

3) We evaluate our approaches based on a real world data
set collected by more than 1900 users over 30 days. The
results show the advantages of our approaches compare
with state-of-art baselines.

The remainder of this article is organized as follows. In
Section II, we show related work about edge server placement.
In Section III, we present the problem description and prove
the NP-hardness. In Section IV, we propose our methods and
analyze the complexity. In Section V, we introduce the data
set and discuss the experimental results comparing to other
methods. Finally, we present our conclusion and future work
in Section VI.

II. RELATED WORK

Unlike the cloud computing model, edge computing empha-
sizes that data and requests generated by user devices are
analyzed and processed at the edge of the network [25].
As the number of edge servers increases, how to place the
edge servers is a key issue. Earlier studies [26], [27] usually
assumed that the edge servers they need have been properly
deployed and merely considered how to efficiently use the
caching capabilities of the servers to store and retrieve data
quickly and accurately, another literature [28], [29] focused

on cloudlet placement problem using many wireless APs. For
example, the study [28] deployed cloudlets on the network and
allocate each requested task to cloudlets with the minimum
total energy consumption without violating each task’s delay
requirement, and further proved this problem is NP-hard and
propose a Benders decomposition-based solution. Similarly,
Bhatta and Mashayekhy [29] proposed a cost-aware approach
to deploy a set of heterogeneous cloudlets in a region under
the condition of meeting user’s latency requirements.

Recently, a few efforts have been made to efficiently deploy
edge server under a certain budget and different optimization
goals. Actually, it is impossible to deploy enough edge
servers everywhere since the budgets of edge computing
service provider are always limited. To address this chal-
lenge, the studies [20], [21] investigated how to deploy edge
servers effectively and economically by minimizing the num-
ber of edge servers while ensuring some QoS requirements.
Specifically, Zeng et al. [20] transformed the cost-effective
edge server placement into the minimum dominating set
problem in graph theory, while the work [21] formulated the
problem as an integer linear programming problem and solved
with a greedy algorithm. The study [30] considered two kinds
of cost, namely, the deployment cost and the area covered by
edge servers, then a dynamic programming algorithm and the
geometric image approach are used to find the placement solu-
tion. Another challenge of edge computing is that some servers
may fail due to hardware faults or cyberattacks, whihc will
greatly reduce the user experience. If users connected to the
failed edge server cannot cover by any other edge servers, they
need to access the service from remote cloud center. Therefore,
Cui et al. [23], [24] considered the robustness of edge
server network when deploying edge servers. Specifically,
Cui et al. [24] proposed an k-edge server placement method
by jointly considering user coverage and network robustness,
Cui et al. [23] further formally formulated this robustness-
oriented k-edge server placement problem and proposed an
integer programming-based optimal approach. For optimizing
energy consumption of edge servers, the study [22] proposed
a particle swarm optimization-based energy-aware edge server
placement algorithm, while LESP [31] proposed load-aware
edge server placement method and designed tree-based place-
ment strategy. In [18] and [19], a mixed integer programming-
based approach is proposed to deploy edge server for making
balance the workloads of edge servers and minimizing the
access delay. For minimizing the distance between servers
and WiFi access points, Lähderanta et al. [32] formulated
the edge server placement as a capacitated location-allocation
problem.

To support multiple applications in mobile-edge networks,
Zhao and Liu [33] proposed latency-aware heuristic place-
ment algorithm and SPAC [34] utilized local-search-based
algorithm to minimize the weighted sum of the service
cost and edge server opening. To add new servers to
the edge network, the work [35] proposed a solution to
the scale up the edge server deployment by selecting
the optimal number of new edge servers and reallocate
access points optimally to the old and new edge servers,
and [36] improved the efficiency and reduced the cost of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PREFERENCE-AWARE EDGE SERVER PLACEMENT IN INTERNET OF THINGS 1291

edge provisioning by discovering proper unforeseen edge
locations.

III. PROBLEM STATEMENT

In this section, we present the problem description
of preference-aware edge server placement in IoT, which
we prove is an NP-hard problem and formulate with
multiobjective optimization. Some important mathematical
symbols and their meanings are given in Table I.

In this article, the problem we need to solve is as follows.
As Fig. 2 shows, in an area, a certain number of base stations
and a small number of edge servers are discretely distributed.
These base stations are responsible for receiving data and
query requests from mobile users, which are transmitted to
or processed by edge servers. If an edge server cannot deal
with a request properly, it would be transmitted to the cloud
server or other edge server for further processing. Assume that
we already know the location information of all base stations,
such as longitudes and latitudes, and need to find a deploy-
ment where positions of edge servers happen to coincide with
the positions of some of base stations.

We can regard this problem as one related to networks.
Given a complete graph G = <V, E>. V is the set of loca-
tions of all nodes, including B and S, which represents the set
of base stations and edge servers, respectively. It is clear that
S ⊂ B because each server must be deployed where the base
station is located. E is the set of edges in the graph, and there
are transmission paths between every two base stations.

In fact, this problem can be reduced to a classic location
problem, that is, the p-center problem. This problem describes
a similar situation that in a weighted graph G = <V, E>, point
set V represents the potential locations of service stations. We
want to determine a deployment of service stations on this
point set to minimize the maximum of length of paths from
every node to the one in the control of it.

Lemma: The edge server placement problem is NP-Hard.
Proof: We can reduce the metric p-center problem to

the edge server placement problem. Consider a metric p-
center problem P with a weighted complete graph G∗ =
<V∗, E∗>, we can build an edge server placement problem
P1 with G = <V, E> where V = V∗ and E = E∗. If we place
p servers in G, the optimal solution is exactly the optimal
solution to p-center problem with G∗. So P can be reduced
to P1, which can also be written as P ≤ P1. As we all know,
the p-center problem is NP-hard, so the edge server placement
problem is also NP-hard.

It is convenient to use the format of a multiobjective
optimization problem to describe what we want to solve.
Suppose that all base stations have the same workload while
the number of query requests is different. The data set we use
is the road traffic data set (see Section V-A). The data volume
of each base station is set to the same. Generally speaking, as
a 720P camera with the default code stream 3000 kb/s, 24 h
of recording requires about 32-GB storage space, so the data
volume is set to 32 GB. And the number of queries of the
base station varies from a few times to hundreds of times (see
Section I).

Fig. 2. Example of edge computing network.

TABLE I
NOTATIONS USED IN THIS ARTICLE

Fig. 3. Example of edge server deployment.

We need to find a matrix X = [xij]N×N and a vector P =
[pk]N×1, where

xij =
{

1, if Bi is in the control of Sj

0, else
(1)

pk =
{

1, if an edge server is deployed on the location of Bk

0, else.
(2)

For example, as Fig. 3 shows, we deploy edge servers at the
location of the second, the fourth and the Nth base station. So
p2, p4, and pN are 1 while p1, p3 and other elements in P are 0.
Arrows in the figure mean data transmission paths where the
first, second and third base station give data to the second
server and the Nth base station gives data to the Nth server.
So x12, x22, x32, and xNN are 1 while x11, x21 and so on are 0.

Our optimization goal consists of three parts. The first one
is M(X, P) that represents memory balancing related to X and
P expressed in (1) and (2). We want to minimize the maximum
length of the interval consists of memory load of each server

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

1292 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

to achieve balancing which can be expressed as

M(X, P) = max
1≤i≤N

MR
i − min

1≤j≤N
MR

j = max
1≤i,j≤N

(
MR

i − MR
j

)

(3)

where i, j satisfy that pi, pj = 1, MR
i means the amount of data

Si receives.
Similarly, the second optimization goal is Q(X, P) that

represents query balancing

Q(X, P) = max
1≤i≤N

QR
i − min

1≤j≤N
QR

j = max
1≤i,j≤N

(
QR

i − QR
j

)
(4)

where i, j satisfy that pi, pj = 1, QR
i means the amount of

query requests Si receives.
The last one is D(X, P) which is the sum of distances

between base stations and edge servers and represents query
latency

D(X, P) =
∑

1≤i,j≤N

dis(lbi, lsj) (5)

where i, j satisfy that xij = 1.
In (5), dis is a function to calculate the distance between

two nodes. lb and ls means the location of base stations and
edge servers, respectively. Next, we illustrate our optimization
goals for edge server deployment with the following three con-
straints: 1) assuming that all the edge servers are placed, each
base station must transmit its data and requests to one and
only one server; 2) naturally, the number of servers is K; and
3) no data or requests should be given to other base stations
where servers are not placed. As shown

N∑
j=1

xij = 1,

N∑
k=1

pk = K,

N∑
j=1

xijpj = 1. (6)

According to (1)–(6), our edge server deployment problem
becomes a multiobjective problem following can be trans-
formed into a single-objective problem following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

variable: X, P
minimize: M(X, P), Q(X, P), D(X, P)

s.t.:
∑N

j=1 xij = 1

∑N
k=1 pk = K

∑N
j=1 xijpj = 1

xij, pk ∈ {0, 1}.

(7)

As we can know, the format of the problem above can be
transformed into a single-objective problem following with the
same constraints:{

variable: X, P
minimize: ω1M(X, P) + ω2Q(X, P) + ω3D(X, P)

(8)

where ω1, ω2, ω3 > 0 and ω1 + ω2 + ω3 = 1.
Further, we can transform (7) into⎧⎪⎪⎨
⎪⎪⎩

variable: X, P

minimize: max
(
ω1

(
MR

i − MR
j

)
+ ω2

(
QR

i − QR
j

)
+ ω3

∑
1≤i,j≤N dis(lbi, lsj)

)
.

(9)

Theorem 1: All the solutions of (8) are exactly the
solutions of (7).

Proof: We can use contradiction to prove the theorem.
If it is wrong, then there must exist L = [X, P], which is
an optimal solution of (8) but not the optimal solution of
question (7). Then there must be a solution L∗ = [X*, P*]
that enables (7) reach the optimal. Therefore, M(X*, P*) ≤
M(X, P), Q(X*, P*) ≤ Q(X, P), D(X*, P*) ≤ D(X, P).
According to the definition, three parameters ω1, ω2, ω3 are
larger than zero. It provides the evidence that

ω1M(X*, P*) + ω2Q(X*, P*) + ω3D(X*, P*)

≤ ω1M(X, P) + ω2Q(X, P) + ω3D(X, P). (10)

Equation (10) means the solution L∗ is a more optimal solu-
tion of (8) and this fact is a contradiction of the assumption
that L is optimal.

Theorem 2: All the solutions of (9) are exactly the solutions
of (7).

Proof: What we need to do is to prove solution set N1
of (8) contains N2 of (9), that is, N1 ⊂ N2. If for every solution
L1 = [X1, P1] which makes

ω1

(
MR

i − MR
j

)
+ ω2

(
QR

i − QR
j

)
+ ω3

∑
1≤i,j≤N

dis
(
lbi, lsj

)

reaches the maximum can also make M(X, P), Q(X, P) and
D(X, P) reach the maximum, the assumption above would be
met. Similar to the proof process of Theorem 1, we can use
contradiction to prove it. Therefore, N1 ⊂ N2 and all the
solutions of (9) are exactly the solutions of (7).

IV. APPROACH

In this section we detail the proposed approaches, a QIP for
small-scale data set and a heuristic algorithm (namely, TAKG)
for large-scale data set.

A. Introduction to QIP

In this section, we formulate this problem to a QIP problem.
First, derive the expression of MR

i and M(X, P) from X
and P. We can create a matrix M = [Mij]N×N that rep-
resents the potential amount of data transmitted from ith
base station to edge server located at the position of jth
base station. A property of this matrix is all the elements
in a row are identical and equal to the amount of data the
ith base station possesses. It can also be written as a row
vector M = [M∗1, M∗2, . . . , M∗N], where column vectors
M∗k(k = 1, 2, . . . , N) are the same. For example, if the
assumption that all the base stations have the same workload
w is accepted, M will become a matrix with all the elements
are w. x∗k(k = 1, 2, . . . , N) is the kth column vector of matrix
X. MR

i means the data that ith edge server receives and can
be expressed as

MR
i = pi

N∑
z=1

Mzixzi = piMT∗ix∗i. (11)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PREFERENCE-AWARE EDGE SERVER PLACEMENT IN INTERNET OF THINGS 1293

So (3) becomes

M(X, P) = max
1≤i,j≤N

(
MR

i − MR
j

)

= max
1≤i,j≤N

(
piMT∗ix∗i − pjMT∗jx∗j

)
(12)

where i, j satisfy that pi, pj = 1.
Second, X and P can be transformed into a vector y =

[xT∗1, xT∗2, . . . , xT∗N, PT]T .
Third, in order to convert the problem into the format yTAy,

A is also needed. Since the function max relates to the sub-
scripts i and j when evaluating M(X, P), each element of the
coefficient matrix A should be related to the corresponding
subscripts i and j. Let

A(1)
ij =

⎡
⎢⎢⎢⎣

O · · · O · · · O · · · O
O · · · O · · · O · · · O
...

. . .
...

. . .
...

. . .
...

O · · · B(1)
i · · · −B(1)

j · · · O

⎤
⎥⎥⎥⎦.

(13)

In the above equation, O means a zero matrix with the same
size of B(1)

i which is N × N

B(1)
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...

M1i M2i · · · MNi
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

MT∗i
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

Therefore, each element in yTAy will be

yTA(1)
ij y = PT · B(1)

i · x∗i + PT ·
(
−B(1)

j

)
· x∗j

= MR
i − MR

j . (15)

So the optimization function of memory balancing is

max
1≤i,j≤N

yTA(1)
ij y. (16)

From (15) we can get N2 matrixes but what we need is one
part that i, j satisfy pi, pj = 1. So we choose K2 elements and
form a new matrix. Equation (16) can be simplified as

max
(

YTA(1)Y
)

(17)

where max(T) means a function to find the maximum element
in the matrix T. A(1) is the first coefficient matrix and Y is a
matrix where diagonal elements are all y

A(1) =
[
A(1)

ij

]
K×K

, YT =
⎡
⎢⎣

yT · · · 0
...

. . .
...

0 · · · yT

⎤
⎥⎦. (18)

Similarly, we can create a matrix Q = [Qij]N×N and matrix
D = [Dij]N×N , which represents the amount of data query
request times and distances between every two base stations,
respectively.

The optimization function of query balancing is

max
(

YTA(2)Y
)

(19)

where each element in A(2) can be expressed similar to (13)
and (14). The only difference is that B(2)

i is related to different
matrix Q

A(2)
ij =

⎡
⎢⎢⎢⎣

O · · · O · · · O · · · O
O · · · O · · · O · · · O
...

. . .
...

. . .
...

. . .
...

O · · · B(2)
i · · · −B(2)

j · · · O

⎤
⎥⎥⎥⎦ (20)

B(2)
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...

Q1i Q2i · · · QNi
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

QT∗i
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

And the optimization function of the sum of translation
latency is

yT Ã
(3)

y (22)

Ã
(3) =

⎡
⎢⎢⎢⎣

O · · · O O
O · · · O O
...

. . .
...

...

B(3)
1 · · · B(3)

N O

⎤
⎥⎥⎥⎦. (23)

Since this objective function is a summation function, it
differs from the above two functions in that the last line of
Ã

(3)
will contain N matrices

B(3)
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...

D1i D2i · · · DNi
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

DT∗i
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (24)

According to (13)–(24), the original optimization goal is

max(YTω1A(1)Y), max(YTω2A(2)Y), yTω3Ã
(3)

y.
The third item can be added into the function max because

if y is fixed, it is a constant. Here, for the sake of uniformity,
we expand this objective function into a matrix

YTA(3)Y (25)

where each element in A(3) is the same

A(3) =
[
Ã

(3)
]

K×K
. (26)

So according to (9), (25), and (26), the problem can be
transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

variable: y
minimize: max

(
YT

(
ω1A(1) + ω2A(2) + ω3A(3)

)
Y
)

s.t.:
∑N

j=1 xij = 1

∑N
k=1 pk = K

∑N
j=1 xijpj = 1

xij, pk ∈ {0, 1}.

(27)

Now the problem has become a QIP problem. Many papers
have discussed the complexity of QIP. Due to the limitation of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

1294 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

the size of the paper and this is not our focus, we have adopted
the conclusion of [37]: solving QIP is an NP-hard problem.

B. Introduction to TAKG

In this section we first propose an approximate approach,
namely, TAKG, for solving large-scale edge server placement.
Then we analyze the complexity of TAKG.

Solving a QIP problem is a very hard problem, and an accu-
rate solution can usually be found only in scenarios of a small
data set. When data set is large, the accuracy of the solution
should be sacrificed to obtain an approximate solution in order
to speed up the procedure. The heuristic algorithm has better
performance widely known. Therefore, we adopt the idea of a
heuristic algorithm named TABU, and designed an algorithm
based on multiple iterations to solve it fast.

The innovation of our proposed algorithm is the combina-
tion of three classical algorithms: 1) TABU search; 2) k-means;
and 3) genetic algorithm. The heuristic algorithm TABU
search is the main part of the algorithm. We build a TABU
table so that each adjustment of the solution is made in a
better direction as possible, without revisiting the already vis-
ited solution. However, the initial solution to classical TABU
search is generated randomly. We use k-means algorithm in
generating the initial solution because k-means is good at
solving the site selection problem, so that the initial solution
will be much closer to the optimal solution than the random
solution, which makes the rate of iterative convergence more
rapidly and reduces the complexity. The three operators in the
genetic algorithm, selection, crossover and mutation, consti-
tute the operations of adjusting the current solution in each
iteration. These three operators, whose principles come from
biological inheritance in nature, are one of the core steps
of genetic algorithms, and many practical applications have
shown their powerful capabilities. Our algorithm combines the
advantages of the three classical algorithms, and thus has result
that far exceed those of a single algorithm for solving the edge
server deployment problem.

The input of TAKG is a weighted complete graph, the
weight of each point is divided into two parts, the amount
of data and the number of queries. The location coordinates
of each point has already been acknowledged. The output of
the algorithm is a matrix X and a vector P.

The main idea of the algorithm is as follows.
1) Use an existed algorithm to calculate the initial solution

that satisfies the constraints, for example, k-means algo-
rithm. Then calculate the value of the objective function
(loss function).

2) When the solution obtained does not satisfy the judg-
ment conditions, continue iterating. Judgment conditions
here include judging whether the maximum number of
iterations has been reached and whether the optimal
solution has not been changed for a certain number of
times.

3) In each iteration, some minor adjustments are made
which is divided into two steps, a deployment step and
an allocation step. Here, the minor adjustments include
three variations in genetic algorithm: a) selection;
b) crossover; and c) mutation. If the constraints are met,

Algorithm 1 TAKG
Require: a weighted complete graph G
Ensure: X and P

generate an initial solution solu using k-means or k-means++
calculate the loss function value curr_quality
initialize best_quality and best_solution
while best_solution has not been unchanged for 20 times or not
reach iter_num do

clear candidates
for i in range(100) do

minimize the loss function value by genetic algorithm with
respect to P
minimize the loss function value by genetic algorithm with
respect to X
if satisfy the constraints then

add a solution to candidates
end if

end for
choose the minimum loss value curr_quality in candidates
if curr_quality � best_quality then

update best_quality and best_solution
end if
update Tabu_table

end while
return X and P

the loss function value of the new solution is calculated
and the reference solution set is extended. In the deploy-
ment step we need to adjust the positions of the edge
servers according to the vector P. And in the allocation
step we need to adjust how the base station transmits
data based on the matrix X. After a certain number of
iterations, the optimal solution of these reference solu-
tion sets is found and compared with the previous one.
Adding the optimal solution to the Tabu table at the same
time.

4) If in the above process, a solution has already been in
the Tabu table, give it up.

Next, the time complexity of TAKG will be analyzed. We
can divide the algorithm into the following steps: generating
the initial solution, making minor adjustments, judging the
constraints, searching in the Tabu table and updating the Tabu
table.

1) The complexity of generating the initial solution varies
depending on the method we choose. With k-means
algorithm, the time complexity becomes O(N · K).

2) The upper limit of complexity of making minor adjust-
ments by the three operators in the genetic algorithm are
equivalent to processing each element in P and X for at
most a constant time. So it becomes O(N + N2).

3) It is obvious that the complexity of judging the con-
straints is O(N + N2).

4) The complexity of searching in the Tabu table and updat-
ing the Tabu table is related to the size of Tabu table.
If we set the length of Tabu table is L, the minimum
complexity will be O(log L).

In summary, after all the analysis, we can clearly obtain the
time complexity of the TAKG algorithm as O(N · K) + O(M ·
(N + N2 + log L)), where M represents the maximum number
of iterations.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PREFERENCE-AWARE EDGE SERVER PLACEMENT IN INTERNET OF THINGS 1295

Fig. 4. Distribution of base stations.

V. EVALUATION

In this section, we conduct an experimental evaluation of the
proposed methods. By comparing memory balancing, query
balancing and average access delay with other methods in the
context of different number of base stations and different num-
ber of servers. Our experiments are divided into two parts,
using QIP for exact solutions in small-scale case and heuristic
algorithm for approximate solutions in large-scale case. We
have determined that our methods perform more efficiently
and effectively.

A. Data Set Discription

The data set employed in our experiments is from
California’s freeway, which contains traffic information col-
lected from 1907 base stations along the road. The number
of times the traffic department retrieves varies from location
to location due to different traffic conditions as Fig. 4 shows.
The amount of data stored in each device is assumed to be the
same, while the number of queries will fluctuate widely from
a few to several hundred, as can be seen in Fig. 1.

Since there are a large variety of IoT devices around us
and the algorithm in this article has a better implementation
for homogeneous devices, we choose the data set provided
by collection devices with similar functionality. In the trans-
portation system, the vehicle driving situation is the important
information that the transportation department closely moni-
tors. They may need to know the vehicle’s path, whether it is
a violation of the law, and other information to use as criteria
for penalties for each driver.

B. Comparison Algorithm and Evaluation Metric

The comparison algorithms we use are as follows.
1) K-Means: The K-means clustering is the best known

partitioning clustering algorithm, its simplicity and effi-
ciency make it the most widely used of all clustering
algorithms. Given a set of data points and the required
number of clusters k, which is indicated by the user,
the algorithm repeatedly divides the data into k clus-
ters based on a distance function. This is an NP-hard
problem but there exists efficient heuristic algorithms.

2) PEMB: PEMB (Place Edge Servers and Map Base
Stations to Edge/Cloud Servers) is proposed by [38]
and aims to optimize the average response time of the
base stations which contain communication delay and
task execution delay. It utilizes ILP solver. Integer linear
programming is an approach to solve a linear objective
function. In placement problem, when the optimization
is a single objective, integer linear programming can
achieve excellent results in terms of efficiency and
accuracy.

3) DCNOPA: Divide and conquer-based near-optimal
placement algorithm (DCNOPA) is proposed by [39] and
considers the deployment cost and the traffic cost. It first
selects k base stations with the largest coverage as the
initial location. Then each cluster with a small number
of clusters first selects the nearest base station within
its average radius. The remaining base stations are allo-
cated to the nearest cluster. Each cluster selects a server
with the least average data traffic.

4) MIQP: Guo et al. [40] proposed an approximate
approach that adopted the K-means and mixed-integer
quadratic programming (MIQP) with objective to bal-
ance the workload between edge clouds and minimize
the service communication delay of mobile users.

The metrics we adopt are as follows.
1) Average Access Delay: This can be expressed as

D̃ =
∑

1≤i,j≤N xijdis
(
lbi, lsj

)
N

. (28)

In our data set, the given location is the latitude and lon-
gitude of the base station, and through them the straight
line distance between the base stations can be derived.
Since our scenario is a wireless transmission scenario,
the transmission delay can be represented by the aver-
age distance between each pair of base stations and edge
servers.

2) Memory Balancing: We use standard deviation of
memory load of each edge server to evaluate the effec-
tiveness of memory balancing

M̃ =

√√√√∑N
i=1

(
MR

i − MR
)2

K
(29)

where MR
i has been claimed before and MR is the

average of MR
i .

3) Query Balancing: Similarly, the expression of query
balancing is

Q̃ =

√√√√∑N
i=1

(
QR

i − QR
)2

K
(30)

where QR is the average of QR
i .

4) Comprehensive Metric: The three metrics we want
to compare are normalized and weighted to obtain a
comprehensive metric shown in the following equation:

C̃ = ω1nor
(
D̃

) + ω2nor
(
M̃

) + ω3nor
(

Q̃
)

(31)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

1296 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

Fig. 5. Performance evaluation on 30 base stations. (a) Query balancing. (b) Memory balancing. (c) Average access delay.

TABLE II
COMPREHENSIVE METRIC ON SMALL-SCALE DATA SET WITH 30 STATIONS

TABLE III
COMPREHENSIVE METRIC ON SMALL-SCALE DATA SET WITH 5 SERVERS

where nor(x) is a normalization function. Here, we set
ω1, ω2, and ω3 are equal to 1/3 which will balance three
aspects we need to observe.

C. Experiment on Small-Scale Data Set

We use a selected portion of the data set described in
Section V-A to implement performance tests using different
methods. First, we fix the number of base stations to 30 and
change the number of edge server from 2 to 15 shown in Fig. 5
and Table II. Then, we set the number of edge server to 5 and
change the number of base station from 16 to 29 in Fig. 6 and
Table III where bold numbers indicate that this method performs
best under this situation. From them, we observe the following.

1) When the number of base station is fixed, all the met-
rics go down when the number of edge server increases.
Here, we can define a variable r, which represents the
ratio between the number of edge server and the number
of base station

r = K

N
. (32)

The larger r is, the less number of base stations each
server has to control on average, and the easier it is
for optimization. The most extreme case is when the
number of server is equal to the number of base station,
then servers can be deployed at each location of base

station, and the average delay will become zero and the
load balancing will become better.

2) When the number of edge server is fixed, there is an
upward trend in all metrics as the number of base station
increases. However, the change is small compared to
Fig. 5. In Fig. 5, when the number of base stations is
fixed, the value of r changes from 0.067 to 0.5, while in
Fig. 6, the value of r changes from 0.167 to 0.333 where
the range of r is smaller. Therefore, the magnitude of
changes in metrics presented is also smaller.

3) QIP performs best in most cases. The comprehensive
performance of PEMB is less than that of QIP when
k = 2. This is due to the fact that the latency-optimal
case considered by PEMB in this situation also hap-
pens to be the case where the query load balancing
is better, but our multiple objectives have some mutual
constraints.

4) As for the analysis of data, QIP performs 29.60%,
25.17%, 20.75%, and 10.60% better than the other three
methods on average on 30 base stations and 21.34%,
38.99%, 37.50%, and 35.12% on five servers.

5) Overall, it appears that our method performs best on
small data sets, followed by MIQP, then PEMB with
similar DCNOPA and K-means performance. MIQP per-
forms a little worse compared to QIP because it can
get an approximate optimal solution on the basis of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PREFERENCE-AWARE EDGE SERVER PLACEMENT IN INTERNET OF THINGS 1297

Fig. 6. Performance evaluation on 5 edge servers. (a) Query balancing. (b) Memory balancing. (c) Average access delay.

Fig. 7. Performance evaluation on 900 base stations. (a) Query balancing. (b) Memory balancing. (c) Average access delay.

Fig. 8. Performance evaluation on 50 edge servers. (a) Query balancing. (b) Memory balancing. (c) Average access delay.

TABLE IV
COMPREHENSIVE METRIC ON LARGE-SCALE

DATA SET WITH 50 SERVERS

K-means and MIQP but it neglects user preference, so
query balancing is not that good.

D. Experiment on Large-Scale Data Set

We compare TAKG with K-means and DCNOPA which can
also run fast on large data set. First, we set the number of edge
server to be 50 and change the number of base station from

300 to 1800. As shown in Fig. 7 and Table IV. Then, we fix
the number of base station to 900 and change the number of
edge server from 50 to 300 in Fig. 8 and Table V. From them,
we can observe the following.

1) When the number of edge servers is fixed, r becomes
smaller as the number of base station increases, and all
of these metrics have a tendency to increase. The rea-
son for this phenomenon is similar to that described in
the previous section, because as r increases, each server
needs to receive less data from different base stations
on average, which is more conducive to load balancing
and latency optimization.

2) When the number of base station is fixed, r becomes
larger as the number of server increases, but the com-
prehensive metric does not have a tendency to decrease.
The reason for this phenomenon is as r increases to a

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

1298 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

TABLE V
COMPREHENSIVE METRIC ON LARGE-SCALE DATA SET

WITH 900 STATIONS

threshold, continuing to increase r will not produce a
better performance optimization. For example, when the
number of base stations is fixed at 900, it does not make
much difference whether the number of servers is 899
or 898, when the value of r is already very large.

3) After calculating, TAKG performs 34.04% and 27.97%
better than K-means and DCNOPA, respectively, on
50 edge servers and 35.37% and 17.12% on 900 base
stations.

4) In general, TAKG outperforms K-means and DCNOPA,
as shown in Tables IV and V, TAKG is the optimal
kind of approach in most cases. This is because although
TAKG is worse than DCNOPA in the optimization of
the average delay because this is its main optimization,
TAKG does better than DCNOPA in the two evaluation
parts of load balancing.

5) The variation in the average delay is smaller than load
balancing, which may be due to the fact that our base
station distribution is concentrated and dense. When r
changes, the location of the selected server does not
change much or may not even change compared to the
previous location, resulting in small fluctuations in the
distance that each base station transmits data.

VI. CONCLUSION

In this study, we present a preference-aware edge server
placement method in IoT environment to provide better work-
load distribution by minimizing query latency and balancing
the load of edge servers. To the best of our knowledge, this
is the first work on preference-aware edge server placement
in IoT. First, we formulated the preference-aware edge server
placement with three optimization goals, including memory
balancing, query balancing and average access delay. Then,
we modelled it in the form of QIP problem with NP-hard
complexity. Finally, we designed two approaches to solve this
problem, namely, a QIP for small-scale data set and a heuristic
algorithm named TAKG for large-scale data set. We conduct
extensive experiments over a large real-world data set, and the
experimental results show that the proposed methods beat all
baselines in terms of query latency and load balancing.

In future work, we plan to improve edge server placement
in IoT environment by considering online placement edge
servers to dynamically update the deployment of services.
Additionally, in practice, edge servers can be heterogeneous
due to different application scenarios, device brands, device
types, and so on, which will make the device’s capacity of
computation and storage or energy consumption vary greatly.
With the increasingly deep relationship between mobile
devices and users, certain characteristics of users will be dis-
played on them, such as mobility and sociality. Therefore,

taking into account the heterogeneity, mobility and sociality
is also a future direction.

REFERENCES

[1] Z. Zheng et al., “A fused method of machine learning and dynamic time
warping for road anomalies detection,” IEEE Trans. Intell. Transp. Syst.,
early access, Aug. 26, 2020, doi: 10.1109/TITS.2020.3016288.

[2] T. Wang, H. Luo, X. Zeng, Z. Yu, A. Liu, and A. K. Sangaiah,
“Mobility based trust evaluation for heterogeneous electric vehicles
network in smart cities,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3,
pp. 1797–1806, Mar. 2021.

[3] Y. Chen, M. Zhou, Z. Zheng, and D. Chen, “Time-aware smart object
recommendation in social Internet of Things,” IEEE Internet Things J.,
vol. 7, no. 3, pp. 2014–2027, Mar. 2020.

[4] Y. Chen, J. Zhang, M. Guo, and J. Cao, “Learning user preference from
heterogeneous information for store-type recommendation,” IEEE Trans.
Services Comput., vol. 13, no. 6, pp. 1100–1114, Nov./Dec. 2020.

[5] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of acoustic gesture
recognition,” in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
2020, pp. 566–575.

[6] J. Zhang, S. Zhong, T. Wang, H.-C. Chao, and J. Wang, “Blockchain-
based systems and applications: A survey,” J. Internet Technol., vol. 21,
no. 1, pp. 1–14, 2020.

[7] J. Zhang, S. Zhong, J. Wang, X. Yu, and A. Osama, “A storage
optimization scheme for blockchain transaction databases,” Comput.
Syst. Sci. Eng., vol. 36, no. 3, pp. 521–535, 2021.

[8] J. Shen, J. Cao, and X. Liu, “BaG: Behavior-aware group detection in
crowded urban spaces using WiFi probes,” IEEE Trans. Mobile Comput.,
early access, Jun. 2, 2020, doi: 10.1109/TMC.2020.2999491.

[9] J. Shen, J. Cao, X. Liu, and S. Tang, “SNOW: Detecting shopping groups
using WiFi,” IEEE Internet Things J., vol. 5, no. 5, pp. 3908–3917,
Oct. 2018.

[10] X. Liu, P. Lin, T. Liu, T. Wang, A. Liu, and W. Xu, “Objective-
variable tour planning for mobile data collection in partitioned sensor
networks,” IEEE Trans. Mobile Comput., early access, Jun. 17, 2020,
doi: 10.1109/TMC.2020.3003004.

[11] T. Wang et al., “Privacy-enhanced data collection based on deep learning
for Internet of Vehicles,” IEEE Trans. Ind. Informat., vol. 16, no. 10,
pp. 6663–6672, Oct. 2020.

[12] Y. Chen, J. Zhang, L. Xu, M. Guo, and J. Cao, “Modeling latent relation
to boost things categorization service,” IEEE Trans. Services Comput.,
vol. 13, no. 5, pp. 915–929, Sep./Oct. 2020.

[13] X. Liu, M. S. Obaidat, C. Lin, T. Wang, and A. Liu, “Movement-
based solutions to energy limitation in wireless sensor networks: State
of the art and future trends,” IEEE Netw., vol. 35, no. 2, pp. 188–193,
Mar./Apr. 2021.

[14] T. Wang, L. Qiu, A. K. Sangaiah, A. Liu, M. Z. A. Bhuiyan, and Y. Ma,
“Edge-computing-based trustworthy data collection model in the Internet
of Things,” IEEE Internet Things J., vol. 7, no. 5, pp. 4218–4227,
May 2020.

[15] T. Wang, H. Ke, X. Zheng, K. Wang, A. K. Sangaiah, and A. Liu, “Big
data cleaning based on mobile edge computing in industrial sensor-
cloud,” IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1321–1329,
Feb. 2020.

[16] H. Jayakumar, A. Raha, and V. Raghunathan, “Energy-aware memory
mapping for hybrid FRAM-SRAM MCUS in IoT edge devices,” in
Proc. 29th Int. Conf. VLSI Design 15th Int. Conf. Embedded Syst.
(VLSID), 2016, pp. 264–269.

[17] M. Singhal et al., “Collaboration in multicloud computing environments:
Framework and security issues,” Computer, vol. 46, no. 2, pp. 76–84,
2013.

[18] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server place-
ment in mobile edge computing,” J. Parallel Distrib. Comput., vol. 127,
pp. 160–168, May 2019.

[19] S. Kasi, M. Kasi, K. Ali, M. Raza, and A. Lasebae, “Heuristic
edge server placement in industrial Internet of Things and cellu-
lar networks,” IEEE Internet Things J., early access, Dec. 1, 2020,
doi: 10.1109/JIOT.2020.3041805.

[20] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-effective edge server place-
ment in wireless metropolitan area networks,” Sensors, vol. 19, no. 1,
p. 32, 2019.

[21] Y. Ren, F. Zeng, W. Li, and L. Meng, “A low-cost edge server placement
strategy in wireless metropolitan area networks,” in Proc. IEEE 27th Int.
Conf. Comput. Commun. Netw. (ICCCN), 2018, pp. 1–6.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2020.3016288
http://dx.doi.org/10.1109/TMC.2020.2999491
http://dx.doi.org/10.1109/TMC.2020.3003004
http://dx.doi.org/10.1109/JIOT.2020.3041805

CHEN et al.: PREFERENCE-AWARE EDGE SERVER PLACEMENT IN INTERNET OF THINGS 1299

[22] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in Proc. IEEE Int. Conf. Edge Comput.
(EDGE), 2018, pp. 66–73.

[23] G. Cui, Q. He, X. Xia, F. Chen, H. Jin, and Y. Yang, “Robustness-
oriented k-edge server placement,” in Proc. 20th IEEE/ACM Int. Symp.
Clust. Cloud Internet Comput. (CCGRID), 2020, pp. 81–90.

[24] G. Cui, Q. He, F. Chen, H. Jin, and Y. Yang, “Trading off
between user coverage and network robustness for edge server place-
ment,” IEEE Trans. Cloud Comput., early access, Jul. 10, 2020,
doi: 10.1109/TCC.2020.3008440.

[25] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[26] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE
J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343–2355, Oct. 2020.

[27] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in Proc. 39th IEEE
Conf. Comput. Commun. (INFOCOM), Toronto, ON, Canada, Jul. 2020,
pp. 2076–2085.

[28] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE Internet
Things J., vol. 6, no. 3, pp. 5853–5863, Jun. 2019.

[29] D. Bhatta and L. Mashayekhy, “Generalized cost-aware cloudlet place-
ment for vehicular edge computing systems,” in Proc. CloudCom, 2019,
pp. 159–166.

[30] F. Wang, X. Huang, H. Nian, Q. He, Y. Yang, and C. Zhang, “Cost-
effective edge server placement in edge computing,” in Proc. 5th Int.
Conf. Syst. Control Commun., 2019, pp. 6–10.

[31] X. Xu et al., “Load-aware edge server placement for mobile edge com-
puting in 5G networks,” in Proc. Int. Conf. Service Orient. Comput.,
2019, pp. 494–507.

[32] T. Lähderanta et al., “Edge server placement with capacitated location
allocation,” 2019. [Online]. Available: arXiv:1907.07349.

[33] L. Zhao and J. Liu, “Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,” IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6533–6545, Jul. 2018.

[34] J. Meng et al., “Joint heterogeneous server placement and application
configuration in edge computing,” in Proc. IEEE 25th Int. Conf. Parallel
Distrib. Syst. (ICPADS), 2019, pp. 488–497.

[35] L. Lovén et al., “Scaling up an edge server deployment,” in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops),
2020, pp. 1–7.

[36] H. Yin et al., “Edge provisioning with flexible server placement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 1031–1045, Apr. 2017.

[37] P. M. Pardalos and S. Jha, “Complexity of uniqueness and local
search in quadratic 0–1 programming,” Oper. Res. Lett., vol. 11, no. 2,
pp. 119–123, 1992.

[38] K. Cao, L. Li, Y. Cui, T. Wei, and S. Hu, “Exploring placement of
heterogeneous edge servers for response time minimization in mobile
edge-cloud computing,” IEEE Trans. Ind. Informat., vol. 17, no. 1,
pp. 494–503, Jan. 2021.

[39] L. Zhao, J. Liu, Y. Shi, W. Sun, and H. Guo, “Optimal placement of
virtual machines in mobile edge computing,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2017, pp. 1–6.

[40] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge computing,”
Softw. Pract. Exp., vol. 50, no. 5, pp. 489–502, 2020.

Yuanyi Chen received the B.Sc. degree from
Sichuan University, Chengdu, China, in 2010, the
M.Sc. degree from Zhejiang University, Hangzhou,
China, in 2013, and the Ph.D. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2017.

He is currently a Distinguished Research Fellow
with the Department of Computer Science and
Computing, Zhejiang University City College,
Hangzhou. He has published more than 20 technical
papers in major international journals and confer-
ence proceedings. His research interest includes the

Internet of Things, mobile computing, and ubiquitous computing.

Yihao Lin received the B.S. degree from the School
of Mathematical Sciences, Zhejiang University,
Hangzhou, China, in 2020. He is currently pursuing
the master’s degree with the College of Computer
Science and Technology, Zhejiang University and
the Zhejiang University City College, Hangzhou.

His research topic includes the Internet of Things
and mobile-edge computing.

Zengwei Zheng received the B.S. and M.Ec. degrees
in computer science and western economics from
Hangzhou University, Hangzhou, China, in 1991 and
1998, respectively, and the Ph.D. degree in computer
science and technology from Zhejiang University,
Hangzhou, in 2005.

He is currently a Professor with the Department
of Computer Science and Engineering, Zhejiang
University City College, Hangzhou. His research
interests include wireless sensor network, location-
based service, Internet of Things, digital agriculture

and pervasive computing.
Prof. Zheng is a member of the ACM and the CCF.

Peng Yu received the B.S. degree in computer sci-
ence from Soochow University, Suzhou, China, in
2020. He is currently pursuing the master’s with
the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China, and the
Zhejiang University City College, Hangzhou.

His research topic includes the Internet of Things
and mobile-edge computing.

Jiaxing Shen received the B.E. degree in soft-
ware engineering from Jilin University, Changchun,
China, in 2014, and the Ph.D. degree in computer
science from PolyU, Hong Kong, in 2019.

He is currently a Research Assistant Professor
with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. He has pub-
lished several papers in high-impact journals and top
conferences. His research interests include mobile
computing, data mining, social computing, affective
computing, and Internet of Things.

Dr. Shen served as a reviewer for many international conferences and
journals like IEEE TRANSACTIONS ON MOBILE COMPUTING, IJCAI, and
PERCOM.

Minyi Guo (Fellow, IEEE) received the B.Sc. and
M.E. degrees in computer science from Nanjing
University, Nanjing, China, in 1982 and 1986,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Tsukuba, Tsukuba,
Japan, in 1998.

He is currently a Zhiyuan Chair Professor and
the Chair with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
Shanghai, China.

Dr. Guo received the National Science Fund for
Distinguished Young Scholars Award from NSFC in 2007.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 20,2022 at 07:32:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2020.3008440

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

