
Journal Pre-proof

An agnostic and efficient approach to identifying features from execution
traces

Chun-Tung Li, Jiannong Cao, Chao Ma, Jiaxing Shen, Ka Ho Wong

PII: S0950-7051(22)00479-8
DOI: https://doi.org/10.1016/j.knosys.2022.108988
Reference: KNOSYS 108988

To appear in: Knowledge-Based Systems

Received date : 27 December 2021
Revised date : 21 March 2022
Accepted date : 4 May 2022

Please cite this article as: C.-T. Li, J. Cao, C. Ma et al., An agnostic and efficient approach to
identifying features from execution traces, Knowledge-Based Systems (2022), doi:
https://doi.org/10.1016/j.knosys.2022.108988.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2022.108988
https://doi.org/10.1016/j.knosys.2022.108988


Journal Pre-proofRevised Manuscript (Clean Version) Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

An Agnostic and Efficient Approach
to Identifying Features from Execution Traces

Chun-Tung Lia, Jiannong Caoa, Chao Mab, Jiaxing Shena, Ka Ho Wonga

aDepartment of Computing, The Hong Kong Polytechnic University
bSchool of Cyber Science and Engineering, Wuhan University

Abstract

Program comprehension is a necessary step during software understanding
and maintenance. It is usually performed by analyzing data gathered from pro-
gram execution. These execution traces reveal the relationship between high-
level concepts (features) and low-level implementation details. However, iden-
tifying features from execution traces is difficult and time-consuming due to
their large volume and complexity. Existing work assists the process by semi-
automated tools, leveraging either human input or prior knowledge of the pro-
gram implementation. It remains the key limitation towards a general method
to build such mapping. In this paper, we proposed TRASE, an approach to
identify features by segmenting the execution traces without the need for any
human intervention. The segments are identified by mining recurring patterns
on a sequence database, which is constructed by numerous execution traces
gathered from normal use of a program. Each segment refers to a feature and
the labels are inferred from the traces to assist program comprehension. The
performance is evaluated on traces collected from android applications and a
synthetic dataset. TRASE achieved up to 86% in F1 score and the result indi-
cates that it is robust to highly variate traces while efficient for large data.

Keywords: Execution Trace, Dynamic Analysis, Program Comprehension,
Sequential Pattern Mining

1. Introduction

Program comprehension aims to make developers understand software pro-
grams by analyzing artifacts like the source code and execution traces. The un-
derstandings are important for developers since over 50% of maintenance effort is
spent on program comprehension alone [1]. In many real-life scenarios like smart5
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cities, cloud management systems [2], and Internet of Drones [3], there is an ur-
gent need for automatic program comprehension for machines with minimized
human intervention, to achieve interoperability among heterogeneous operating
systems[4]. Understanding the program behavior with diverse hardware design
and software implementation is a prerequisite for enabling communication and10

control among them [5].
To understand a program, it is necessary to know the provided features

and its mapping with the implementation details [6]. Various tasks have been
proposed by analysing data, like execution traces, gathered from a running pro-
gram (a.k.a dynamic analysis). It provides an accurate picture of a software15

system since it exposes the program’s actual behavior, which has been widely
used in tasks like feature location [7, 8, 9], trace abstraction [6, 10], and fea-
ture identification [11]. In particular, we are interested in identifying features
of a program by analyzing its execution trace for the importance to the afore-
mentioned applications. With the rapid development of modern software, an20

overwhelming amount of execution traces are generated. To reduce the analysis
complexity, a critical step is execution trace segmentation, ETS converts the
execution trace into meaningful and manageable segments. Existing solutions
either posing strong assumption of the program implementation [12, 13, 14] or
require human intervention to derive proper segmentation [15, 16, 17], which25

greatly limits the potential of automatic program comprehension. Finding the
near-optimal segments of a trace is NP-hard [7], since the noise, unpredictabil-
ity and enormous amount as the key challenges for ETS. Therefore, we ask the
question “is it possible to derive an efficient ETS from a large amount of traces
automatically?”.30

TRASE, an agnostic and efficient proposed approach is the answer. A fea-
ture refers to a unique sequence of executions that exercise some functionality of
a program. The intuition of TRASE is when exercising the same feature, similar
sets of execution are invoked repeatedly, and the same to the resulting traces
generated [10]. Segments corresponding to a feature can be attained by finding35

the most recurring patterns, while nearly no assumptions are made on the input
traces. First, we construct a sequence database that adopted a compressed rep-
resentation to abstract the program behavior from the low-level implementation
details. Then, we introduced a variation of the closed sequential pattern mining
problem, where it is interested only in non-overlapping patterns that maxi-40

mize the coverage over the sequence database. This variation together with the
representation realizes our efficient heuristic algorithm for maximum support
sequential pattern (MSSP) mining. Finally, we select a set of non-overlapping
MSSPs that maximize the coverage using a branch and bound algorithm.

To evaluate our proposed approach, we focus on a use case of android ap-45

plications. Experimental evaluation was conducted on traces collected from
real-world android applications. It demonstrates that our approach is robust
and practical to real-world applications. The approach is also evaluated on a
synthetic dataset, which allows us to manipulate different properties of the data
such as the length and pattern appeared frequency.50

TRASE requires barely any prior knowledge of the program implementa-
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tion, therefore can potentially lead to a fully automatic program comprehension
method. It is variation tolerant while efficient to compute on a conventional
machine in a short time. As an important first step of dynamic analysis, it can
support numerous downstream applications including feature location, trace ab-55

straction, and feature identification. We summarize our main contribution as
follow:

• We proposed a generic and efficient approach to infer the segment of large
execution traces that barely any prior knowledge is required.

• We designed and implemented an efficient algorithm for maximum support60

sequential pattern mining.

• We conducted an extensive evaluation of synthetic datasets and traces
collected from real-world android applications, to validate the proposed
approach.

The rest of the paper is organized as follow. In section 2, we provide the mo-65

tivating example and the challenges of trace abstraction. Section 3.1 provides
the necessary background and problem formulation. The detailed approach is
presented in section 4. Section 5 discussed the experimental evaluation. In sec-
tion 6, we provide a brief summary of the related work. Finally, the limitations
and future directions are summarized in section 7.70

2. Motivation and Challenges

Consider a smart home environment where the lights and television are con-
trolled by Google Home1 and Apple HomeKit2 accordingly. For an application
that wants to manage both devices, software engineers have to study both frame-
works to develop the program that to operate the devices. The application now75

wants to include an air-conditioner controlled by Amazon Alexa3, engineers have
to spend extra effort to maintain the program for this new device. The same
process goes on for every new device. The lack of interoperability limited the
use of the devices, and there is little intention for the company to support the
rival’s platform.80

A similar scenario happens on the cloud service provider on a much larger
scale, where a cloud platform aims to manage various applications developed
by different parties on multiple operating systems [5]. It is nearly impossible
to study all applications and develop a system that capable to manage the
applications. Here comes the desire for automatic program comprehension, to85

let the machine understand the functionalities and the behavior of a program.
The management system can then discover the functionalities of heterogeneous
applications, and coordinate the resources available from different devices.

1https://assistant.google.com
2https://www.apple.com/ios/home/
3https://alexa.amazon.com
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Without human intervention, generating execution traces that can facilitate
program comprehension is difficult. One way is to collect execution traces from90

real-world user operations and perform analysis from those data. However, such
traces can be noisy, unbounded, and unpredictable. Splitting the large execu-
tion traces into independent segments that correspond to a specific function
greatly reduces the complexity of analyzing those traces. Various sophisticated
analyses can then be performed on each segment such as classification, cluster-95

ing, information retrieval, and visualization of the segments. However, inferring
the segment of a trace is non-trivial, it is even harder to segment on multiple
large execution traces.

Information Overload. Modern applications become more and more com-
plex, and so do the execution traces. Exercising a single functionality could100

generate a thousand or even a million events. Analyzing such overwhelming
information is challenging, which easily invalidate existing mining algorithms.
Some possible solutions could be reducing and compressing the size of the traces,
by eliminating low-level implementation detail while preserving necessary infor-
mation for comprehension. Also, an efficient mining algorithm is needed to105

extract the recurring patterns from such large traces.
Dynamic Program Behavior. Although exercising the same functional-

ity generate similar traces. However, there exist unpredictable variations due to
different operation sequences, state of the program, system intervention, and so
on. It is difficult to allow slight variation while robust enough to distinguish be-110

tween different functionality. The representation of the traces should be able to
abstract the implementation details. Also, the mining algorithm should be able
to tolerate slight variation while still efficient enough to the extra computational
overhead.

3. Background115

3.1. Problem Formulation

This section provides the necessary background and related concepts on
execution trace segmentation. First, we introduce the essential definitions and
the problem formulation. Then, we provide a brief description of sequential
pattern mining that is related to our problem. Finally, we discuss the limitations120

of applying the existing approach to our problem.
We will provide the definition of the essential concepts to help introduce our

problem. A program is an executable software composed of a set of methods M =
{m1,m2, ...,mq} to provide a set of features F = {f1, f2, ..., fp}. A sequence
s = (x1, x2, ..., xl) is a series of methods invoked consecutively where xi ∈M . A125

feature pattern sf = (xi, xj , ..., xk) is a sequence where xi ∈M and i, j, ..., k are
arbitrary integers, such that it contains all the methods required for a feature
f . That is, a feature pattern is a combination of methods in some particular
order. A feature typically exercises more than one method, and a method could
be utilized for different features.130

The distance between two sequences sa and sb is measured in the Jaccard
distance between the set of methods extracted from the two sequences denote

4
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as A and B accordingly, defined as dist(sa, sb) = 1− |A∩B||A∪B| , 0 ≤ dist(sa, sb) ≤ 1.

A sequence sa is a subsequence of sb if there exist integers i1 < i2 < ... < il such
that a1 = bi1 , a2 = bi2 , ..., al = bil denote as sa v sb. Exercising the feature135

f produce an execution pattern s′f , which is a variation of the feature pattern
sf with noise: ∃i : (xi ∈ s′f and xi /∈ sf ), and missing methods: ∃i : (xi ∈ sf
and xi /∈ s′f ). The variability is controlled by some threshold θ, such that
dist(sf , s

′
f ) < θ. It is based on the intuition where exercising the same feature

will invoke a similar set of methods in similar order, but variation may occur140

due to run time dynamics.
A trace st is composed by a series of execution patterns (s′fi1 , s

′
fi2
, ..., s′fik

),

obtained by exercising one or more features as g(st) = (fi1 , fi2 , ..., fik) for some
arbitrary integers ij . Take a note editing application as an example, in which the
application provides three features, to save/edit/delete a note. There are a set145

of methods available to provide these features. The feature pattern composes of
the essential methods, for example the delete note feature requires to obtain the
identifier of a particular note and remove it from the file system. The execution
of a feature produces a trace different from the ideal feature pattern due to the
run time dynamics, but the essential methods are similar.150

Note Editing
Application

Features

• Save a Note
• Edit a Note
• Delete a Note

Methods

• getNoteID()
• readNoteContent()
• updateNoteContent()
• writeToFile()
• removeFile()
• …

Feature Pattern
Edit a Note

• getNoteID()
• readNoteContent()
• updateNoteContent()
• writeToFile()

Execution Pattern
Edit a Note

• getNoteID()
• readNoteContent()
• …
• readLine()
• …
• writeLine()
• …
• updateNoteContent()
• writeToFile()

Feature Pattern
Delete a Note

• getNoteID()
• removeFile()

Figure 1: An example of a note editing application to illustrate the concept of the related
definitions including methods, features, feature patterns, and execution patterns.

Given a trace database D = {s1, s2, ..., sn} as a set of traces of a program,
and a user-defined threshold θ. The frequency of a sequence s occur in D is
denoted as coverage, and is defined as covD(s) =

∑
st∈D s v st and ∀s, st :

dist(s, st) ≤ θ. Assume that D contains traces that exercise features in different
order such that ∃(i, j) : g(si) 6= g(sj). Our problem is to find a minimum set of155

non-overlapping sequences P = {ŝ1, ŝ2, ..., ŝk} that maximize the total coverage
over D defined as maxŝi∈P

∑
covD(ŝi), while ∀ŝa ∈ P, ŝb ∈ P : ŝa v st and

ŝb v st → idx(ŝa, st) ∩ idx(ŝb, st) = ∅, where idx(s, st) is the set of indices for
a sequence s in a trace st that is the locations of which s appears in st.

Generally, execution trace segmentation aims to divide the execution trace160

into non-overlapping segments, so that each segment belongs to the execution
of exactly one feature. Since a feature produces a unique execution pattern of

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

a program, exercising a feature multiple times produce similar patterns over
the traces. Therefore, the ETS problem can be considered as finding the non-
overlapping sequential patterns from the trace database, and therefore the ex-165

isting methods have shed light on our problem.

3.2. Sequential Pattern Mining

Sequential pattern mining is a problem of mining interesting subsequences in
a set of sequences, where interesting patterns are usually defined by their support
- the frequency of the pattern within the sequence dataset. It is one of the most170

popular data mining tasks on sequences that have many applications ranging
from bioinformatics to clickstream analysis. This problem is difficult since the
search space grows rapidly even for small datasets. To tackle this problem,
numerous algorithms have been proposed in the last two decades to improve
the efficiency of mining the sequential patterns [18]. The intuition is to avoid175

exploring all possible subsequences but only those necessary to find the frequent
sequential patterns. One of the directions is mining closed sequential pattern
[19], which is the frequent sequential patterns that have no super-sequence with
the same support.

Numerous mining algorithms have been proposed for mining sequential pat-180

terns in the past decades. Most of them rely on the support to prune the search
space for better efficiency. However, sequences with mostly recurring patterns
contain a great number of patterns that satisfy the minimum support, which
makes the pruning ineffective. Also, existing approaches enforce specific con-
straints on the patterns to be efficient, like the sequence must appear the same185

in every occurrence. Although some previous work pushing down such constrain
introduced a maximum gap between the events occurring in the sequence, the
mining becomes intractable even for a small gap due to the tremendous search
space. The noisy and highly recurring execution patterns invalidate the existing
approaches.190

4. Approach

In this section, we introduce our approach for feature identification by analysing
execution traces collected from the normal use of the software. The intuition of
the proposed approach is that exercising a feature of software exhibits similar
traces, which can be identified as non-overlapping recurring patterns. We pro-195

posed a framework to find the patterns from a set of traces, which is efficient
and robust to minor variations of the execution details. Then we choose a set
of non-overlapping patterns which is similar to finding the trace segmentation,
such that each segment belongs to exactly one feature.

Figure 2 provides an overview of our approach, where the system has three200

stages. The instrumentation stage captures the program behavior and collects
the traces for analysis. The preprocessing stage converts the traces to a se-
quence database, which significantly reduces the complexity of the traces while
preserving critical information for trace segmentation. The segmentation stage

6
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Android
App

YanCloud

Execution
Traces

execution

Preprocessing

Dynamic
Call Trees Phases

Clustered
Phases

Sequence
Database

Segmentation

Vertical
Database

Closed Sequential
Pattern Mining

Maximum Support
Non-overlapping Patterns

instrument

caller-callee
relationship

Functional
Independent
Segments

Functional
Independent

Units

Figure 2: An overview of the System Framework: 1) the system applies YanCloud to in-
strument an android application during execution to collect traces; 2) dynamic call trees are
then converted from the traces and phases were identified from the tress to build a sequence
database; 3) the database is proccessed in vertical form to perform closed sequential pat-
tern mining efficiently; 4) eventually, segments are detected by finding the non-overlapping
patterns.

takes the sequential database as input and finds the recurring patterns as a205

unique feature and divides the traces accordingly. The details of each stage are
discussed in the following.

4.1. Instrumentation of Program Behavior

In this work, we adopted YanCloud [5], an integrated cloud management
system that supports multiple types of virtualization technologies. It provides210

an abstraction of resources within the cloud infrastructure. YanCloud is recently
extended to support the emerging IoT technologies, in which the ability to adapt
to heterogeneous devices is key to realize management among the cloud and IoT.
Given the ubiquity of smartphones, it has become an integral part of IoT that
coordinating the resources among different devices. Therefore, it is critical to215

understand smartphone applications automatically and the platform is recently
developed to support this task.

The YanCloud operates on a modified Android firmware, collecting the pro-
gram behavior on a smartphone and transmit the data collected to the server.
Modern programs are typically organized as a collection of methods, and usually220

a series of methods are invoked to achieve one feature. This invoke behavior is
a chain of caller methods that invoke a called method, while the called method
may also invoke another method, or even a series of methods. For example, to
display a note in a note editing app, this feature is initiated by a caller method
- onButtonTouch(). It is a system method available in the android system, and225

triggered by the user who clicked on one of the note. Then it will invoke an app
method called readNoteContent() implemented in the app. This method will
further invoke a series of readline() methods to load the contents from a file to
the memory. Finally, the readNoteContent() invoke the displayNoteContnet()
method that further called a series of printline() methods to display the note230

content.

7
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We leverage only this caller-callee relationship for execution trace segmen-
tation, since there has little implementation assumption made that allowing a
more generic approach. A filter was applied to collects traces only under the
package of the target app. Most of the system methods have been ignored ex-235

cept the system methods that trigger the app methods. Because we are only
interested in the behavior of the target app. It also significantly reduces the
overwhelming information generated by system operations. For each applica-
tion, we manually define a set of features and generate a set of test cases. Each
test case contains a random number and combination of features, to simulate240

traces collected from users.

4.2. Preprocessing Execution Traces

With the execution traces collected from the previous step, the preprocessing
stage is responsible for converting the data to a sequence database for mining
purposes. It first builds the Dynamic Call Tree (DCT) for each of the traces.245

The phases are then identified from the DCTs. To handle a small variation of
the phases, we perform clustering to group similar phases into the same class.
Finally, the sequence database is built containing the list of clustered phases
and passed to the next stage. The following provides detail of the preprocessing
procedure.250

The traces captured from YanCloud is a sequence of events containing the
caller-callee relationship as a tuple, and the completion of each method invoked.
We then build a DCT for each trace since it is the most precise data structure
to represent the calling behavior [16]. To improve the space efficiency, we divide
the DCT by the system events such that each DCT is composed of multiple255

sub-trees, denoted as phases [6]. It is reasonable as the methods invoked by
the same system event must belong to the same feature. Each phase is treated
as a set such that each method invoked within the same phrase appears once
only, and only the first occurrence of each phase is recorded. It can abstract the
implementation details such as loop and recursive calls.260

Consider an example DCT in figure 3, in which the nodes represent the
methods being invoked and the edges represent the caller-callee relationship.
For example, method a0 called methods a1, a2, and a3, in which a1 called b1 and
b3, and so on. The methods ai are the system methods (i.e. onButtonTouch())
and bi are the methods implemented in the app (i.e. readNoteContent()). The265

root node a0 is an abstract representation to all system implementation and
its child (a1, a2, a3) are the system events. In this example, the DCT contains
4 subtress initiated by the system methods (a1, a2, a2, a3). Since (a2, b4) just
repeated itself which will be counted once only. Therefore, we convert the DCT
to 3 phases by choosing the unique methods for each subtree as a set represented270

as: {a1, b1, b2, b3}, {a2, b4}, and {a3, b3, b6, b7}.
With the sequence of phases, we then perform clustering to group similar

phases into the same cluster, result in a set of clustered phases. The distance
between the two phases is defined as 1− Jaccard(A,B).

8
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Figure 3: An Example of a Trace Represented as a Dynamic Call Tree. The system methods
defined the subtrees where each subtree is considered as a phase.

dist(A,B) =
|A ∩B|
|A ∪B| (1)

Hierarchical Agglomerative Clustering [20] is applied to the phases such that275

the pairwise distances of all phases within the same cluster are less than some
threshold θ. The original phases are replaced by the clustered phases. This
allow similar phases to be treated as the same so that it better handle variation
due to run time dynamics. In this work, θ is 0.1 if not specified. After the
preprocessing procedure mentioned above, the example trace becomes a list of280

phases in which the phase is represented by the phase ID. The sequence database
is then built and pass to the next stage for segmentation.

4.3. Segmentation of Trace Sequences

The segmentation stage takes a sequential database as input and finds the
set of non-overlapping closed sequential patterns with the maximum support.285

It first converts the sequence database to a vertical database, then finds a set
of potential closed sequential patterns from the vertical database. Finally, it
finds the set of patterns that maximize the sum of their supports by reducing
the problem as a maximum weighted independent set problem and solving it
with a branch-and-bound approach. In the following, we discuss the detail and290

rationale of each step in this stage.

4.3.1. Construct Vertical Database

A sequence database in horizontal format is a database where each entry is a
sequence; a sequence database in vertical format is a database where each entry
represents an item and indicates the list of sequences where the item appears295

and the position(s) where it appears [21]. Previous work suggested that mining
sequential patterns from vertical database format is much more efficient than
horizontal database format. With the sequence database obtained from the
previous step, we build the IDList [22] as a vertical format of the database for
efficient sequential pattern mining.300
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SID Sequences
1 (A,B,C)
2 (A,B,C,D,E)
3 (D,E,A)
4 (B,C,D,E)

Table 1: An example of sequence database in horizontal representation.

Consider a sequence database as shown in table 1. Each entry is a sequence
of phases obtained from the original trace, in which each phase is a set of
methods. The corresponding vertical database is shown in table 2. We also
create an extension map, a data structure to store the coherence relationship in
the sequence database. Given the maximum gap max gap, the extension map305

of a phase A is all phases that exists in the same trace after A in which the
position offset is at most max gap: {X|(Ba, Bb) ∈ si ∈ S and b−a ≤ max gap}.
For example, given the max gap = 2, the extension map of phase B in table 1
is {C,D}.

SID A
1 1
2 1
3 3
4

SID B
1 2
2 2
3
4 1

SID C
1 3
2 3
3
4 2

SID D
1
2 4
3 1
4 3

SID E
1
2 5
3 2
4 4

Table 2: The vertical representation of the sequence database in table 1

Since execution traces are highly repetitive and therefore the number of can-310

didates in the extension map is limited. It significantly reduces the search space
when finding the closed sequential pattern, and both IDList and extension map
can be constructed in one scan of the sequence database efficiently. Note that
the original IDList contains the raw transaction sequences, while we consider the
phase (set) as the element in this work. The reason is that we are not interested315

in finding sequential patterns at the method level, if the phases are very differ-
ent, then they must belong to another feature. With the clustered phases, it
allows slight variation on the phases, while significantly reduce the computation
overhead searching for method level sequential patterns. The mining algorithm
is then developed based on the vertical database.320

10
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4.3.2. Maximum Support Closed Sequential Pattern Mining

Although execution traces are highly repetitive, finding those recurring pat-
terns to segment the execution trace is non-trivial, and actually is NP-hard [7].
Inspired by sequential pattern mining, we proposed a heuristic approach to find
the closed sequential patterns efficiently. Then, we reduce the problem to a325

maximum weighted independent set problem to find a set of non-overlapping
patterns that maximize the total sum of support. The detail of the proposed
method is provided in the following.

Before we introduce the solution, we clarify how existing sequential pattern
mining approaches failed in our problem. The sequential pattern mining prob-330

lem aims to discover all ”interesting” patterns that frequently appear in the
sequence database. It is assumed that a majority of candidate patterns are
infrequent such that the search space can be drastically reduced. However, the
execution traces are highly repetitive, and therefore a large number of pattern
candidates are qualified as interested that invalidated the existing mining algo-335

rithms. We leverage this property to design the pruning strategy such that it is
much more efficient than the existing method in our problem at hand.

Given the min sup, the search space is constructed including all phases
where their supports are greater than min sup and are sorted by their supports
in descending order. For each candidate phase in the search space, the pattern340

is explored by adding one phase at a time in a depth-first search manner. The
pattern is extended recursively until the coverage of the closed sequential pattern
decrease, in which the coverage is defined in equation 2. It is different from the
original sequential pattern mining, which keeps exploring until the support is
less than min sup. We demonstrate in the following example why existing345

sequential pattern mining is not suitable for our problem.
Consider an example where exercising features (f1, f2, f3) produce phase se-

quences as ({A}, {B,C}, {D,E}) accordingly. Traces generated by exercising
features (f1, f2) and (f1, f2, f3) is the first and second sequences as shown in
table 1. Finding patterns in these traces alone could not identify all the fea-350

tures separately, but treat {A,B,C} as one feature. By increasing the sequence
database, it covers different combinations of feature sequences that help sepa-
rate each feature from the others. In this case, the coverage of {A,B,C} is 6
while the coverage of {A} and {B,C} are 9. Therefore, instead of accepting
{A,B,C} as a maximum support sequential pattern, we choose the patterns355

with the largest coverage to identify traces that belong to the same feature.
The proposed heuristic has a delayed checking on the coverage only perform

when a closed sequential pattern is found. Figure 4 shows an example of the
coverage while extending a candidate pattern. As we can see the coverage con-
tains multiple peaks indicated by the blue plus sign. The peaks indicate where360

closed sequential patterns are found and check if the coverage w(x) increases
comparing to the last best coverage, and terminate the search of the candidate if
the coverage decrease. The heuristic realizes the discovery of the maximum sup-
port sequential pattern by avoiding local optimum. On the other hand, we find
that most applications have commonly used utility functions. Those patterns365

11
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Figure 4: An Example of the Coverage of a Pattern at Different Length.

corresponding to the utility functions have relatively high support, which po-
tentially dominates the coverage comparing to other patterns. It might separate
a pattern into multiple segments as a result. To avoid this, we also introduced
the minimum size min size of a phase specified by the user to eliminate those
utility functions.370

This intuition can help significantly prune the search space while performing
the search. On one hand, it reduces the search space vertically by terminate
earlier from exploring the same candidate if the support of the pattern decreases.
On the other hand, it reduces the search space horizontally by eliminating those
phase candidates that are already included in another closed sequential pattern.375

Since the pattern obtained from such a candidate must be a subsequence of that
closed sequential pattern.

After finding all the closed sequential patterns, it is possible that some pat-
terns are overlapped which violate our constrain. To segment the traces us-
ing the patterns identified, we find the set of non-overlapping patterns that380

maximize the total coverage. As the problem is NP-hard, we reduce it to the
maximum weighted independent set (MWIS) problem and using a graph-based
approach [23] to solve the problem efficiently. In particular, we construct the
graph G = {V,E} for vertices V = {v1, v2, ..., v|V |}. Each vertex vi represent a
closed sequential pattern s′i and the weight of the vertex is defined as the total385

number of methods in the pattern * support of the pattern:

w(s′) =
∑

X∈s′
(|X| ∗ supD(s′)) (2)

The set of edges E represents if two closed sequential patterns are overlapped.
More specifically, (i, j) ∈ E if s′i and s′j are overlapped in at least one sequence
s ∈ D. The objective is then defined as:
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Vopt⊆V ′

∑

vi∈Vopt

vis.t.∀u, v ∈ Vopt : (u, v) 6∈ E (3)

Vopt is the selected set of independent vertices that maximize the sum of390

weights. The graph generated is usually sparse with numerous components, or
disconnected subgraphs, since the patterns overlap only with similar patterns.
To find the solution more efficiently, we divide the problem into multiple sub-
problems by the components in G and finally concatenate the result to obtain
the optimal solution. The detailed algorithm is shown in algorithm 1 and 2.395

Algorithm 1 Maximum Support Sequential Pattern Mining

Require: D, double min sup, int max gap, int min size
Ensure: S′

1: Z ← [];
2: S′ ← [];
3: (id list, xmap)← build verticalDB(D);

// Mining closed sequential patterns
4: C ← unique desc(id list);
5: for Q← C do
6: qs← w(Q);
7: Z ← extend(Q,Z,min sup, qs);
8: for z ∈ Z do
9: if supD(Q) = supD(z) then

10: remove(C, z);
11: end if
12: end for
13: end for

// Find non-overlapping closed sequential patterns
14: G← generate graph(Z);
15: for G′ ← sub graph(G) do
16: S′ ← MWIS(g);
17: end for
18: return S′;

The algorithm 1 is the overall method to find the maximum support sequen-
tial patterns. It takes the sequence database D as input and the minimum sup-
port min sup, maximum gap max gap, and minimum size of pattern min size
as parameters. It first initializes the set of closed sequential patterns as Z and
the set of maximum support sequential patterns as S′ in lines 1 and 2. Then the400

search space C is constructed that contains all the unique phases with support
greater than or equals to min sup in line 4. Note that the search space is in
descending order of the support. From lines 5 to 13, it performs the depth-first
search mining the closed sequential patterns for each of the candidates in C.
The recursive method extend(Q,Z, qs) in line 7 is described in algorithm 2.405

This recursion implemented the vertical pruning of the search space. The
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Algorithm 2 Recursive Extension Method: extend(Q,Z, qs)

Require: Q, int Z, double min sup, int qs
Ensure: P

1: P ← [];
2: if supD(Q) ≥ min sup then
3: if is closed(Q) then
4: if w(Q) < qs then
5: return P ;
6: else
7: qs← w(Q);
8: end if
9: end if

10: for X ← xmap(Q) do
11: P ← extend(Q+X,Z, qs);
12: end for
13: if is closed(Q) and |P | = 0 then
14: P ← Q;
15: end if
16: end if
17: return P ;

recursion takes query pattern Q as input and explores for each candidate in the
extension map xmap. The largest coverage by far is stored as qs, and is updated
when Q is a closed sequential pattern. The recursion goes on until the coverage
of the closed sequential pattern is less than qs. Finally, if no pattern is found410

from all the candidates, it returns Q if it is a closed sequential pattern.
After the recursion, it back to algorithm 1, where the horizontal pruning of

the search space is performed in lines 8 and 12. Specifically, the candidate in
C is removed from the search space if it is already included in any found closed
sequential pattern Z that has the same support as the candidate. Finally, from415

lines 14 to 16, the maximum weighted independent set is found to select the
non-overlapping patterns with maximum support.

With the identified patterns, we then extract the name of the method and
its class and separate the name by either delimiter or capital letter. For ex-
ample, edit memo.init is transformed as a set of keywords {edit,memo, init}.420

Each method call is then treated as a sentence, and the pattern is a document
that contains multiple sentences. Then we apply Rapid Automatic Keyword
Extraction [24] to extract the top 5 keywords from each of the patterns to label
the feature of the pattern.

5. Evaluation425

We implemented our approach in Python as a tool, called TRASE. We empir-
ically evaluate our approach on trace sequences collected from five open-source
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android applications and a synthetic dataset. The reason for a synthetic dataset
is that we have full knowledge of the groundtruth patterns as well as complete
control of the characteristic of the data. Given the large traces of android ap-430

plications, it is difficult for human experts to determine the exact segment of
each trace as well as the patterns that correspond to the features. With the
synthetic dataset, the patterns are known beforehand, and we can adjust the
characteristics of data including the length of the pattern, the number of pat-
terns repeated, and the number of traces, to examine the performance of our435

approach. We examined the performance in terms of efficiency, effectiveness,
and robustness, and the evaluations are motivated by three research questions
as follow:

• RQ1. How the proposed approach performs comparing to the existing
mining algorithm in terms of efficiency?440

• RQ2. Can the proposed approach precisely identify recurring patterns
from a large sequence database?

• RQ3. Is it robust enough to identify features from traces collected from
real-world applications?

5.1. Synthetic Dataset445

The synthetic dataset is generated to estimate the efficiency and effectiveness
of mining the recurring patterns. There are two major components to generate a
dataset. First, we construct a set of patterns to simulate the trace of a feature.
Each pattern is a list of phrases, and each phase contains a set of methods.
Second, we construct the set of trace sequences as the sequence database. Each450

sequence is a combination of different patterns, which is to simulate the real
traces generated by multiple features. There are multiple parameters that can
be adjusted to generate different sequence databases: 1) the number of methods
in phase, 2) the number of phases in patterns, 3) the number of patterns in
sequences, 4) the number of repetitions for each pattern. For each parameter,455

the values are not fixed but follow Gaussian distribution that varies with a
standard deviation as 10% of its mean. In this study, we choose 20 and 2 as
the mean and standard deviation for all the parameters as default values if not
specified. Finally, we perform noise injection to the generated traces in the
phase level randomly with at most 30% chance, and the noise phase is inserted460

from all the phases over all the feature patterns.

5.2. Evaluation Metrics

To examine the quality of patterns recovered from the sequence database,
we estimate the relevance of the identified patterns ŝ ∈ P comparing to the
groundtruth patterns {sf |f ∈ F} of the features. Inspired by the previous work465

[25], we treat the result as a multi-class classification problem. Each feature f
is a class label, and the methods within the corresponding pattern sf are the
labeled examples. A good prediction implies that ŝ contains more methods from
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the same f while excluding methods from the other features. The precision of ŝ

on any feature f is defined as
|sf∩ŝ|
|ŝ| . We said ŝ is predicting class f if it has the470

maximum precision over all the features, denoted as g(ŝ) = f . With that we
classify each ŝ into one of the class in F . Then, we combine the methods from
all the ŝ that predicting the same class as {ŝ|g(ŝ) = f} to obtain a large method
set as Y ′ = {mi,mi+1, ...,mi+|Y ′|}. Similarly, we obtain a large method set by
combining all methods in sf as Y = {mj ,mj+1, ...,mj+|Y |}. The quality of the475

prediction of each class can then be measured by the precision, recall, and F1

score defined as follow:

prec =
|Y ∩ Y ′|
|Y ′| (4)

recall =
|Y ∩ Y ′|
|Y | (5)

F1 = 2× prec× recall
prec+ recall

(6)

The overall performance is finally calculated by the macro average of each480

of the measures. Note that a pattern sf can be recovered by one or more
ŝ. Ideally, each sf should be recovered by exactly one ŝ. Therefore, we also
measure the number of ŝ used to reconstruct sf . The evaluation is defined as
the root-mean-squared-error (RMSE) for each class:

RMSE =

√∑
f∈F (|{ŝ|g(ŝ) = f}| − 1)2

|F | (7)

5.2.1. Effectiveness Evaluation485

Effectiveness evaluation measures the performance of our approach on find-
ing the underlying feature patterns. The setting of the evaluation contains the
following steps. First, we constructed the synthetic trace databases with differ-
ent maximum noise factors ranging from 10% to 30%. For each noise setting,
5 databases were generated with different random seeds to avoid any bias by490

chance. Then, TRASE is applied on those datasets with min sup = 0.5 and
min size = 100. The result is aggregated with macro-average as shown in ta-
ble 5.2.1. The different noise setting aims to simulate unpredictable execution
patterns, and providing an estimation on the effect of noise on performance.

We observed that the performance in terms of recovering the feature pat-495

tern is fairly sensitive to the noise level of the input data, which increases the
variation of the execution patterns. The noisy patterns have a higher chance
to exceed the distance threshold or the maximum gap allowed. From the eval-
uation result, we affirm that allowing the flexibility of the target pattern by
increasing the max gap achieved much better performance than less flexibility.500

Simply allowing one gap can significantly improve the segmentation result up
to 40% in F1 score. Better performance can be achieved with higher max gap,
but not as significant as from none to just one gap allowed. The same for the
RMSE, which implies that the gap also avoids breaking a pattern into many
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Max Noise: Max-Gap RMSE Prec. Recall F1

10%

1 0.72 40.00% 29.26% 33.41%
2 0.39 81.00% 68.27% 73.66%
3 0.21 92.00% 77.36% 83.74%
4 0.19 94.00% 78.81% 85.44%
5 0.17 95.00% 79.37% 86.18%

20%

1 0.93 14.00% 10.55% 11.83%
2 0.64 50.00% 41.97% 45.30%
3 0.51 68.00% 53.64% 59.57%
4 0.38 79.00% 61.96% 69.08%
5 0.37 83.00% 64.43% 72.13%

30%

1 0.95 8.00% 4.52% 5.75%
2 0.72 39.00% 31.56% 34.60%
3 0.60 55.00% 42.74% 47.72%
4 0.52 66.00% 49.92% 56.44%
5 0.46 72.00% 53.57% 61.00%

pieces of segments. This property is important in automatic program compre-505

hension, as the boundary of a segment has to be accurately identified in order
to support many downstream applications. However, the improvement comes
with a price. The running time of the mining algorithm also increases with
higher max gap. Theoretically, the running time would be exponential to the
max gap. From our observation, let max gap = 3 achieve a reasonable balance510

between computational complexity and the patter mining quality. Therefore,
we will apply max gap = 3 for the rest of the evaluations.

5.2.2. Evaluation of Efficiency

For efficiency, we empirically evaluate the running time with different sizes
of input on the proposed approach as well as other baseline sequential pat-515

tern mining algorithms including Gap-Bide [26], SPAM [22], and VMSP [21].
Specifically, we examined the effect on the running time of the maximum gap,
pattern length, sequence length, and the number of sequences. In this evalua-
tion, the datasets were generated with a maximum noise factor of 10% for each
setting of the input size. The parameters are min sup = 0.5, max gap = 3,520

and min size = 100 for all methods. We let the maximum computation time
as 1000 seconds since allowing the algorithms to continue after that can easily
trigger memory overflow that crashes the system.

Figure 5 shows the effect of different sizes of the database on the empirical
execution time. Starting from the left, the first plot shows the running time525

of different maximum gaps. The next shows the result under different pattern
lengths in terms of the number of phases in each pattern. Then, the third is
the result of different sequence lengths in terms of the number of patterns in
each sequence. The right shows the result of a different number of sequences by
varying the number of repetitions for each pattern.530

As shown in the figure, TRASE significantly better than the existing meth-
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Figure 5: Empirical execution time over different configuration of the dataset.

ods in terms of running time in general. The existing methods are not scalable to
the pattern length, and the running time increases drastically with the increas-
ing maximum gap. Most existing methods cannot complete the computation
for patterns with average pattern length equals to or larger than 30. Note that535

the average pattern length of the real-world data in this study is around 35.
TRASE completed the computation in 0.59s, while other methods were timeout
on Notes. For the Memo Notes, there are similar results for SPAM, VMSP, and
TRASE, recorded 0.44s, 0.5s, and 0.16s accordingly. Except for GAP-BIDE,
the running time was 363.13s.540

The performance of TRASE and existing methods are similar in the number
of sequences. It is mostly because of the vertical representation that enables
efficient mining for large sequence databases. TRASE is generally faster and
less likely to stuck in the worst case for different sequence lengths. Since it only
focuses on a small set of sequential patterns, that is more efficient and providing545

a more compressed set of patterns as a result. On the contrary, Gap-Bide and
SPAM can easily identify more than 10,000 patterns for only a few small traces.
Although it theoretically provides a better solution, the computation complexity
to find the set of non-overlapping patterns will be intractable for such a large
input size. Therefore, TRASE is shown to be more efficient and practical for550

execution trace segmentation.

5.2.3. Evaluation on Feature Identification

The proposed method is also evaluated for feature identification on traces
collected from two android applications: Notes - Memo4 and Notes5. The
features were defined by domain experts, and the groundtruth is obtained by555

instrumenting the trace solely exercising the target feature. For each feature,
three traces are collected and the methods are retained only if they appeared in
both three traces. The traditional mining algorithms were causing the thrashing
of the computer due to a large amount of memory consumed. It was unable to
produce any result in most cases, so the evaluation only included the output560

of TRASE. It is expected that the identified patterns of TRASE are a proper

4https://play.google.com/store/apps/details?id=com.abhi.newmemo
5https://play.google.com/store/apps/details?id=com.ogden.memo
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subset of the patterns returned from those traditional mining algorithms. So
the result should be similar though future studies are required to confirm this
hypothesis.
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Figure 6: The feature identification result on real traces.

Figure 6 shows the feature identification result with different max gap and565

min size allowed. To be more adaptive to different applications, the min size
here is defined as a factor to the average phase size of the application. For
example, min size = 2 means the minimum size is two times the average phase
size. The RMSE is the measure of an error on the number of segments being
identified for each feature. With the increasing maximum gap allowed, it is less570

likely to divide a pattern with random noise. Therefore, the RMSE decreases
with increasing the maximum gap. As we can see from the figures, max gap = 3
can achieve comparable results to higher gaps allowed. The minimum size of a
pattern poses constraints to the identified pattern that favors longer patterns
and rejecting more short patterns that are possibly related to a feature. There-575

fore, the RMSE is lower with higher min size but the F1 score is lower. From
the above result, we suggest that max−gap = 3 and min−size = 2 can produce
better results in general.
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The keywords are then extracted from each of the segments identified. Par-
ticipants are recruited to recognize the features given the keywords. The re-580

sult suggests that although the participants cannot correctly recognize all the
features, it is mainly because of the naming convention of the program. For
instance, the methods of adding a memo have about 90% in common with the
methods of editing a memo. One can hardly identify between adding and editing
a memo by looking into the raw execution traces. In fact, participants who spent585

less than 5 minutes studying the keywords, can get a similar understanding of
the trace segment that needs to be analyzed for more than an hour.

Finally, we recruited 14 participants who have at least 1 year to more than 5
years experience of programming for the comprehension test. We provided the
set of features exercised and the keywords extracted from each of the segments,590

the participants are then trying to recognize the feature that is being exercised
for each of the segments. The features are a) add memo, b) edit memo, and c)
delete a memo. With the proposed method, 8 segments were identified from the
traces for the first memo app and 5 for the second. The participants achieved
66.2% and 45.2% accuracy accordingly for the first and second memo applica-595

tion. The performance is significantly better than random guess, but relatively
lower than the performance of segmentation in the synthetic dataset. The key
reason is that the quality of the method name highly depends on the developer
practice, and some may name the method that is entirely different from the
actual feature.600

6. Related Work

Execution trace segmentation is crucial to many program comprehension
tasks, in which feature location and execution trace abstraction are the com-
monly studied area. Many approaches have been proposed in the last decade
and this section will discuss some of the previous work relevant to this work.605

Feature location is a problem that aims to identify source code that imple-
ments a specific functional requirement. The early work that leverages execution
trace for feature location takes two test cases as input, in which one invoked
the target feature and the other excluded [15, 27]. Collecting such data input is
however labor-intensive, so Eisenberg and Volder [28] proposed to leverage one610

large test suite for all features instead of two test cases for each feature. It still
requires the developer to manually create the mapping of features and the test
cases to build the input test suite which is time-consuming. In [7], the authors
proposed to segment the execution trace to conceptually cohesive segments us-
ing a genetic algorithm. Medini [8] proposed a dynamic programming approach615

to further improve the speed of the computational time. However, the previous
approaches pose strong assumption to the input traces, which require extensive
manual input that remains a key limitation to an agnostic method.

On the other hand, trace compression and abstraction techniques were stud-
ied to improve the comprehensibility of execution traces, while some require few620

human intervention. Trace compression and abstraction is typically performed
by finding recurring patterns within executions, then group the similar phases
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to retain high-level information from the execution details [29, 6, 10]. Feng et.
al. [6] and Alimadadi [10] both proposed a hierarchical abstraction of trace.
The former one aggregates executions into clusters perform frequent pattern625

mining to identify the recurring patterns. The latter proposed SABALAN, a
tool to infer models of motifs, which is the abstract and flexible recurring pat-
terns in program execution. However, these approaches only group and extract
the traces in order to assist user to perform program comprehension manually.
The mapping between the feature and the implementation details still require630

extensive human input.
The idea of using sequential pattern mining to segment execution trace is

not new [17]. However, as the system becomes more and more complex in recent
years, previous approaches become intractable even for small applications. Xin
et. al. [11] proposed a heuristic to segment execution trace of android apps635

by the user events given that each feature is usually separated by the user
interaction. This method leverage a machine learning model trained on manual
labeled data to decide if two segments should merge. Obtaining such training
data is time-consuming and the validity over different application is uncertain.
To fill the research gap mentioned above, this work aims to provide a agnostic640

and efficient method to identify features from large execution traces, in which
barely no assumption is made to the traces that no human intervention is need
to gather the input data. The approach also provide a mapping between the
features and the implementation details that greatly reduce the need of human
input during program comprehension.645

7. Conclusion

In this work, we studied the problem of feature identification using data
collected from program execution. We proposed an agnostic and efficient ap-
proach to identify features by segmenting the execution traces. Specifically, we
introduced a heuristic mining algorithm to find a set of sequential patterns that650

maximize the span over a trace database. Our approach has barely any as-
sumption to the program implementation as well as the input execution traces,
so there is limited human intervention required. The proposed algorithm has
greatly reduced the computational overhead while introducing flexibility to the
target pattern. The approach is evaluated empirically with traces collected from655

real-world android applications and a synthetic dataset. The result shows that
our approach is more efficient than the state-of-the-art sequential pattern min-
ing algorithm on highly recurring sequences like execution traces. Also, the
target feature patterns can be recovered accurately, achieving the best F1 score
at 86% on both real and synthetic datasets.660

However, the proposed approach also comes with several limitations. First
of all, it is assumed there contains a different order of feature execution within
the trace database such that the feature patterns can be recovered from the
traces. It is reasonable as the features have a great chance that being executed
in a different order during normal use. Also, the proposed algorithm still scales665

exponentially to the pattern length and the number of sequences in the worst
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case. It actually is a trade-off between finding the optimal solution and more
efficient pruning. The proposed method is robust to the noise of input traces
since it explores most of the possible search space. One may introduce a more
greedy heuristic but it may easily trap in the local optimal, which results in670

breaking one feature pattern into large numbers of segments.
Feature identification without human intervention is the first step towards

automatic program comprehension for machines. There is still room for im-
provement, and problems to explore. In the future, a more efficient pruning
approach will be studied that ideally scales linearly to the pattern length and675

the number of sequences. Non-convex optimization techniques could be applied
to further improve the performance of searching the optimal segment of the
traces [3, 30, 31, 32]. Also, different downstream applications will be applied to
the segments identified, such as privacy leakage detection, malware detection,
and task scheduling in the cloud and fog computing environment [33, 34, 35].680

Finally, the approach could be applied to larger datasets containing applications
from different platforms.
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