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Abstract—Network measurement is critical for various network
applications, but scaling measurement techniques to the network-
wide level is challenging for existing sketch-based solutions.
Centralized sketch deployment provides low resource usage but
suffers from poor load balancing. In contrast, collaborative
measurement achieves load balancing through flow distribution
across switches but requires high resource usage. This paper
presents a novel lightweight distributed deployment framework
that overcomes the limitations above. First, our framework is
lightweight such that it splits sketches into segments and allocates
them across forwarding paths to minimize resource usage and
achieve load balancing. This also enables per-packet load bal-
ancing by distributing computations across switches. Second, our
framework is also optimized for load balancing by coordinating
between flows and enabling finer-grained flow distribution. We
evaluate the proposed framework on various network topologies
and different sketch deployments. Results indicate our solution
matches the load balancing of collaborative measurement while
approaching the low resource usage of centralized deployment.
Moreover, it achieves superior performance in per-packet load
balancing, which is not considered in previous deployment poli-
cies. Our work provides efficient distributed sketch deployment
to strike a balance between load balancing and resource usage
enabling effective network-wide measurement.
Index Terms—Sketch, network measurement, distributed deploy-
ment, load balancing

I. INTRODUCTION

A. Background and Motivations

Network measurement serves as the foundation for various
network applications, such as traffic engineering [1], conges-
tion control [2], and anomaly detection. Existing sketch-based
solutions have been widely used due to their ability to achieve
high accuracy with low memory usage. However, in the
context of data centers and backbone networks, the network
topologies are often too large and complex to measure. Never-
theless, existing sketches primarily focus on individual points
without considering network-wide traffic measurement. There-
fore, to achieve network-wide traffic measurement, sketch-
based solutions require deployment policies which mainly
consist of collaborative measurement [3]–[8], and centralized
deployment [9], [10].
Collaborative measurement involves each switch in the net-
work measuring a subset of flows to achieve optimal load
balancing. However, it is limited to the following two aspects:
• High resource usage: In collaborative measurement, each

switch in the network measures a subset of flows and
each packet performs a complete sketch operation at a

certain switch. To achieve good load balancing effect, nearly
all switches will be involved in the measurement process.
In programmable switches like Tofino [11], resources are
allocated statically. Since each packet performs a complete
sketch operation at a certain switch, all switches deploying
the sketch in the network must reserve hash units and
Stateful ALUs (SALUs) for a complete sketch, which results
in high resource usage. It becomes even worse when it is
necessary to deploy multiple sketches [12].

• Poor per-packet load balancing: Collaborative measure-
ment suffers from per-packet load imbalance, as each packet
undergoes a complete sketch operation at a certain switch
rather than having all switches along the path jointly perform
the sketch operation. Per-packet load balancing is thus
crucial, as it distributes multiple hash computations and
memory accesses for each packet evenly across multiple
switches. Collaborative measurement divides traffic by flow
granularity, causing severe load imbalance between switches
handling elephant flow versus mouse flow. Since per-packet
load balancing shares the measurement of each packet across
multiple switches, it reduces the impact of differing flow
sizes and further optimizes load balancing.

Centralized deployment involves deploying sketches on core
switches, which can be obtained through historical traffic
statistics or network topology. Since the sketch is only de-
ployed on core switches, centralized deployment minimizes
resource usage. However, it is limited in the following aspects:
• Poor load balancing: Centralized deployment concentrates

the measurement load and resource usage on core switches,
resulting in an unbalanced distribution between the core
switches and other switches.

• Poor per-packet load balancing: Similar to collaborative
measurement, each packet undergoes a complete sketch
operation in a certain switch, leading to per-packet load
imbalance.

• Redundant measurement: Due to lack of collaborative
strategy, some flows may traverse multiple switches where
the sketch is deployed, leading to redundant measurements.

B. The Proposed Solution and Contributions

As presented in Table I, centralized deployment exhibits
low resource usage but suffers from load imbalance, while
collaborative measurement achieves good load balancing but
entails high resource usage. In this paper, we propose a
distributed sketch deployment that could strike a balance



TABLE I: Comparison of existing solutions and design goals.

Advantages Centralized
deployment

Collaborative
measurement Our goal

Low resource usage
√

×
√

Load balancing ×
√ √

Per-packet load balancing × ×
√

between resource usage and load balancing while ensuring per-
packet load balancing. The previous distributed deployment
solution most similar to ours is DISCO [13]. However, DISCO
ignores interactions between forwarding paths and fine-grained
flow distribution in real network topologies, leading to severe
switch load imbalance. Moreover, DISCO is limited to heavy
hitter detection and certain sketches, lacking generalizability
to other scenarios. Lastly, DISCO requires substantial domain
expertise for deployment. To summarize, the contributions of
our proposed lightweight distributed sketch deployment are
illustrated as follows.

Contribution I: lightweight distributed deployment frame-
work for sketch. We introduced a lightweight distributed
deployment framework for sketch, aiming to combine the ben-
efits of centralized deployment and collaborative measurement.
The proposed framework achieves low resource usage, load
balancing, and per-packet load balancing. By leveraging the
concept of the k-hash model, we divide the existing sketch
into segments and deploy them across multiple switches. Each
switch stores a segment of the sketch, performs partial hash
calculations and memory accesses, and the measurement of
each packet is collaboratively completed by multiple switches.
This approach ensures low resource usage, balanced measure-
ment workload, and per-packet load balancing. Additionally,
distributed deployment offers the potential to expand resource
utilization beyond the constraints of existing single-point
sketches.

Contribution II: optimally distributed deployment frame-
work for sketch. To address issues such as load imbalance
in complex topologies, we propose an optimally distributed
deployment framework for sketch, which further optimizes the
load balancing process. This framework incorporates two op-
timizations. First, we eliminated the mutual influence between
flows through coordination, effectively reducing the load on
the aggregation nodes. Second, we enhanced load balancing
by fine-grained flow distribution. Although the optimally dis-
tributed deployment framework requires a slight increase in
resource usage, it remains significantly lower than that of
collaborative measurement.

Contribution III: extensive experimental verification. To
validate the effectiveness of our proposed solutions, we
conducted comprehensive experiments across three different
topologies and four kinds of sketches. The results demonstrate
that our approach surpasses current state-of-the-art techniques,
achieving low resource usage, optimal load balancing, and per-
packet load balancing.

II. RELATED WORK

In this section, we provide background on different types of
sketches and prior work on network-wide traffic measurement.

A. Different Kinds of Sketches

Sketch is a kind of probabilistic data structure. Classic sketches
support single-point deployment without considering the pos-
sibility of distributed deployment. According to the supported
queries, we classify them into three kinds.
1) Sketches for Membership Queries: Membership queries
check whether a flow is present. A typical membership query
sketch is Bloom Filter [14]. Bloom Filter consists of k equal-
length register arrays, and each register array is associated
with a hash function. When inserting a flow, Bloom Filter
maps it into k registers through k hash functions and sets
the mapped bits to 1. When querying a flow, it checks the
mapped bits of the k hashes, reporting true only if all are 1.
Recently, variants of Bloom Filter have been proposed to meet
the requirements of different applications such as CBF [15],
EBF [16], NBF [17], and HABF [18].
2) Sketches for Frequency Estimation: Frequency estimation
counts the number of packets in a flow. Typical frequency
estimation sketches include CM sketch [19], CU sketch [20],
and CO sketch [21]. The CM sketch comprises k equal-length
counter arrays, where each array uses a hash function. When
inserting a flow, CM sketch maps it into k counters via the
k hashes, incrementing each counter by 1. When querying a
flow, it checks the k mapped counters and reports the smallest
value. To improve memory utilization given skewed traffic,
recent sketches split flows by size such as Tower sketch [22],
Elastic sketch [23], BitSense [24] and HeavyGuardain [25].
3) Sketches for Heavy Hitter Detection: Heavy hitter de-
tection identifies flows exceeding a frequency threshold. A
typical example is the MV sketch [26], comprising k rows
of bucket arrays. The MV sketch uses the MJRTY algorithm
for insertion. When querying a flow, it checks the k mapped
buckets and returns the minimum value. MV sketch provides
high recall and precision. Recently, there are also some other
sketches that perform well, such as HeavyKeeper [27], Hash-
pipe [28] and Unbiased Space Saving [29].

B. Sketch Deployment for Network-Wide Traffic Measurement

The existing sketch network-wide deployment solutions are
mainly centralized deployment [9], [10], collaborative mea-
surement [3], [5]–[8], and distributed deployment solu-
tions [13].
Centralized deployment is to deploy sketch at core switches,
which can be obtained through historical traffic statistics. It is
modeled as an integer linear programming problem, and the
switch aggregating traffic is selected for sketch deployment.
Centralized deployment has the lowest resource usage but
results in a poor load-balancing effect.
Collaborative measurement means that each switch in the net-
work measures a subset of flows, which has an excellent load-
balancing effect. But all collaborative measurement solutions
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Fig. 1: An illustration of k-hash model sketch where k = 3.

suffer from extensive resource usage and per-packet load im-
balance. Currently, the most typical collaborative measurement
solution is NSPA [3] that maintains a sampling probability
for each switch. If the packet is not metered by one of the
preceding switches on the routing path, a hash calculation is
required to determine whether to perform the measurement.
If the packet has not been metered until the egress switch,
the packet will be metered at the egress switch. NSPA has a
good load-balancing effect. Although Distributed Sketch [4]
claims to be a distributed framework, we find that it still
needs to reserve the hash units and SALUs for a complete
sketch. Therefore, it is more like a collaborative measurement
solution. There are many other existing collaborative solutions,
such as DCM [5], CFS [6], cSamp [7], and HiFi [8].
DISCO [13] is a recent distributed deployment solution that
is most relevant to our proposed solution. However, our
framework differs from DISCO in four key aspects. First,
DISCO overlooks interactions between forwarding paths and
fine-grained flow distribution in real topologies, leading to
severe switch load imbalance. Second, DISCO is limited to
heavy hitter detection and certain sketches, which could not be
easily extend to other scenarios. Third, for any given topology
and traffic data, DISCO cannot directly provide an intuitive de-
ployment solution, requiring domain expertise. Fourth, DISCO
lacks rigorous theoretical analysis of feasibility.

III. DISTRIBUTED SKETCH DEPLOYMENT FRAMEWORK:
BASIC VERSION

In this section, we propose a lightweight distributed deploy-
ment framework for sketch, which only requires us to deploy
the sketch segment on the specific switches.

A. Sketch Model

Sketch has various data structures. One of the most advanced
classes is the k-hash model. The details of this model are
illustrated as follows.
Data structure: As shown in Fig. 1, the k-hash model sketch
consists of k segments, where each segment contains multiple
elements and is associated with a hash function. The elements
within a segment are called buckets, which could be bits,
counters, or key-value pairs depending on specific sketches.
Insertion: When inserting a flow e, the k-hash model sketch
maps it into k buckets through k hash functions, one in
each segment. Insertion is performed independently for each
mapped bucket.

V1 V2 V3 V4

V5 V6

Fig. 2: A distributed sketch deployment in leaf-spine topology.

TABLE II: Comparison of different solutions in leaf-spine
topology.

Solutions Resource usage
(Number of SALUs)

Load standard
deviation

Per-packet load
standard deviation

CD 6 67.9 1.41
NSPA 18 0 1.41
LDD 6 0 0

It should be noted that the sketch-like Hashpipe [28] is not a k-
hash model because its multiple insertions are not independent.

B. Baseline Solutions and Our Observations

To motivate our design, we first introduce two baseline solu-
tions and illustrate them using network examples. As shown
in Fig. 2, it is a typical leaf-spine network topology consisting
of two spine switches and four leaf switches. Each leaf switch
receives 24 different flows with only one packet and forwards
them equally to the remaining three leaf switches. Let’s take
the k-hash model sketch that needs to perform three hash
calculations and memory accesses as an example (k = 3).
Previous practice has proved that it is good enough for the
k-hash model sketch to perform 2-3 hash calculations in
the network. The resources of the programmable switch are
allocated statically. In the k-hash model sketch, we use the
Tofino switch to measure the number of hash units that need
to be used, which is about three times the number of SALUs.
Therefore, for the convenience of comparison, we use the
number of SALUs to represent the resource usage of the k-
hash model sketch. Since the measurement load depends on
the number of flows measured by the switch and the number
of hash calculations that need to be performed by the sketch
within the switch, we use the product of the two to represent
the measurement load. We use the standard deviation of the
number of hash calculations or memory accesses to reflect the
per-packet load balancing, performed by each packet on each
switch in its forwarding path. Table II gives a comparison of
different solutions for measurement load and resource usage.
The first solution is centralized deployment (CD) [9], [10].
The deployment results of [9] and [10] are similar. Sketch is
deployed on the switches with the most concentrated traffic in
the network. In leaf-spine topology, we deploy the complete
sketch on all spine switches (V5 and V6). In other words, a
complete sketch of three segments is deployed on each spine
switch. Only the spine switches need to reserve 3k hash units
and k SALUs. It minimizes overall resource usage but provides
no load balancing.



The second solution is collaborative measurement. Each
switch in the network measures a subset of flows. We take
the state-of-the-art NSPA [3] as an example. The complete
sketch of three segments is deployed on all switches (V1 -
V6), and each switch measures a subset of the flows. Each
switch needs to reserve 3k hash units and k SALUs. NSPA
has a good load-balancing effect, but it does not take into
account the limitations of switch resources and the possibility
of sketch segments allocation. Inspired by this, we propose
the distributed deployment solution.
The third solution is our proposed lightweight distributed
deployment framework (LDD). It leverages the inherent paral-
lelizability of k-hash sketches. LDD distributedly deploys the
k sketch segments across switches along forwarding paths.
This realizes two key benefits: First, by allocating one seg-
ment per switch, LDD achieves resource efficiency equaling
centralized deployment and load balancing effect equivalent
to collaborative measurement. Second, LDD provides per-
packet load balancing by involving all switches equally in
measurement. A potential accuracy concern is that distributed
segments induce disjoint flow sets. We mathematically prove
in Section V that LDD preserves the statistical guarantees of
centralized deployment despite this segment splitting.

C. Lightweight Distributed Deployment Framework for Sketch

Collaborative measurement only considers load balancing by
dividing flows and ignores the possibility of load balancing by
splitting sketch segments. Our proposed solution is based on
two key facts: 1) k-hash sketches allow parallel computing
since each segment buckets operate independently, and 2)
forwarding paths contain multiple switches. We leverage these
by dividing sketches into segments and deploying across
switches. Each switch stores one segment, performing partial
computation and memory accesses per packet. This collab-
oratively completes measurement over multiple nodes. To
preserve sketch accuracy guarantees under distribution, the
path must have k or more segments with independent hash
functions. Our framework has three design goals:
Objective-I: minimizing resource usage in each forwarding
paths. It ensures that the distributed deployment framework
for sketch has the least resource usage close to the centralized
deployment. It needs to accumulate the resources used by the
switches on each forwarding path. The resources of overlap-
ping switches on the forwarding path need to be accumulated
repeatedly. The least resource usage of the forwarding path
promotes the unification of the solution set of the distributed
deployment and the solution set of the centralized deployment
solution into one solution set. As shown in Fig. 2, assuming the
forwarding path V1-V5-V3, Objective-I will drive the solution
deploying the complete sketch of three segments in V5 and
the solution deploying one segment each in V1, V5, and V3
into one solution set.
Objective-II: balance the number of sketch segments in
each forwarding path. It ensures per-packet load balancing.
In the above solutions, we select the distributed deployment
solution which deploys a sketch segment in V1, V5, and
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Fig. 3: Deployment satisfies Objective-I and II. The black
numbers represent switch’s measurement load. Solution-II that
satisfies Objective-III is more load balanced.

V3, respectively. Because each switch only stores a segment,
performs one hash calculation and memory access, and the
measurement of each packet is collaboratively completed by
multiple switches. Thus the distributed deployment solution
has better per-packet load balancing. At the same time, since it
distributes segments evenly across multiple switches as much
as possible, we will see that it will help select the deployment
solution with the lowest resource usage in Section IV.

Objective-III: network-wide measurement load balancing.
It ensures that the solution with the most balanced measure-
ment load is selected in the above solution sets. As shown
in Fig. 2, the deployment solution that satisfies Objective-I
and II in the leaf-spine network happens to be load balanced.
Therefore, to further illustrate the role of Objective-III, we give
another example. As shown in Fig. 3, assume that there are two
paths, each path has 24 flows, and each flow has one packet
that needs to perform three hash calculations and memory
accesses. The two deployment solutions simultaneously satisfy
the Objective-I and II. And Objective-III guarantees the choice
of solution Fig. 3b, because it is more load balanced.

The priorities of Objective-II and Objective-III can be adjusted
according to different requirements. If you think measurement
load balancing is more important than per-packet load bal-
ancing, you can set Objective-III priority higher than that of
Objective-II. In this paper, we set the priority of Objective-II
higher than that of Objective-III.

In order to formulate this problem, we set the set of switches
in the network as V = {v1, v2 . . . vn} , n = |V |. The number
of sketch segments deployed by each switch is expressed as
Dv (v ∈ V ). We use Sj

i to express the flows and total flow
size from the ingress switch vi to the egress switch vj from the
measured flow matrix, which is also known to the controller.
We set the set of flows is Γ (Sj

i ∈ Γ) and the forwarding path
of flow Sj

i is PSj
i
= {vi, . . . vj}. We use σ to represent the

variance and Lv(v ∈ V ) to represent the measurement load
on the switch v.

We formulate the problem as follows:



Opt.



min
∑
Sj
i∈Γ

∑
v∈P

S
j
i

Dv

min
∑
Sj
i∈Γ

σ
(
{Dv} ,∀v ∈ PSj

i

)
min σ ({Lv} ,∀v ∈ V )

(1)

S.t.



∑
v∈P

S
j
i

Dv ≥ k ∀Sj
i ∈ Γ

Lv =
∑
Sj
i∈Γ

(
Dv × Sj

i , if v ∈ PSj
i

)
∀v ∈ V

Dv ∈ [0, 1, ...k] ∀v ∈ V

(2)

The first constraint in Eq. 2 restricts each forwarding path
to have k or more sketch segments, which preserves the
error bound of sketch. The three objective functions in Eq. 1
correspond to Objective-I, II and III, respectively. We use the
solver Gurobi [30] to solve.
Then, let’s explain how many sketch segments are deployed in
the switch and the memory size of each sketch. The number
of sketch segments to be deployed is Dv . The memory size
of sketch is calculated by Lv∑

v∈V Lv
×Memory in switch v.

Our solution unifies the benefits of centralized deployment and
collaborative measurement. We realize collaborative measure-
ment’s load balancing with resource efficiency approaching
centralized deployment. Additionally, we uniquely achieve
per-packet load balancing, with each packet measured collab-
oratively across multiple switches. By solely leveraging the
distributed sketch, our solution provides a lightweight and
balanced network measurement.

IV. DISTRIBUTED SKETCH DEPLOYMENT FRAMEWORK:
OPTIMIZED VERSION

The lightweight distributed deployment framework for sketch
performs well in most data center topologies. Unfortunately,
the lightweight distributed deployment framework suffers from
load imbalance in complex network topologies. In order to
optimize load balancing performance, we present the optimally
distributed deployment framework for sketch.

A. Baseline Solutions and Our Observations

We use a more complex network topology to reveal the
problems of the lightweight distributed deployment framework
for sketch. In the topology shown in Fig. 4, we assume that
there are three paths, each path has 24 flows, and each flow
has one packet that needs to perform three hash calculations
and memory accesses (k = 3). Centralized deployment and
collaborative measurement will not be described.
The third solution is the lightweight distributed deployment
framework (LDD). It has two problems. First, multiple flow
forwarding paths will affect the deployment of the sketch
segments, which causes the aggregation switches to be heavily
loaded. For example, as shown in Fig. 4a, we need to have each
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Fig. 4: Comparison of distributed deployment solutions in
synthetic topology. The red numbers represent the value of
the optimized D

Sj
i

v . The yellow numbers represent optimized
switch’s measurement load.

TABLE III: Comparison of different solutions in synthetic
topology.

Solutions Resource usage
(Number of SALUs)

Load standard
deviation

Per-packet load
standard deviation

CD 6 62.4 1.33
NSPA 24 4.8 1.33
LDD 7 14.4 0.29
ODD 8 3.9 0.29

packet perform three hash calculations and memory accesses.
In order to satisfy Objective-I and II, suppose the blue path
flow choose switch V7, V4 and V8. Since the green path
flow has only three switches, it can only choose switch V5,
V2 and V6. Due to the influence between paths, this results
in purple path flows having to use switch V2 and V4 even
when switch V1 and V3 are all available. Second, the flow
distribution of the previous solution is coarse-grained, and
there is the possibility of further optimization. For example,
in the k-hash model sketch, we set k = 2 for this example.
In the leaf-spine topology, we will deploy a sketch segment
in all leaf switches. Spine switches will be unused. If one
sketch segment is deployed on each switch, the ingress leaf
switch completes the first measurement of the first 67% of
flows, the spine switch completes the first measurement of the
remaining 33% of flows and the second measurement of the
first 33% of flows, and the egress leaf switch completes the
second measurement of the remaining 67% of flows, the better
load balancing will be achieved. In other words, each switch
performs one measurement on 67% of the path flows.
The fourth solution is the optimally distributed deployment
framework (ODD). It performs the two-step optimization of
LDD. First, we eliminate the impact on the allocation of
segments between flows. Second, we achieve further load
balancing through fine-grained flow distribution.

B. Optimally Distributed Deployment Framework for Sketch

First, in order to eliminate the impact on the allocation of
sketch segments between flows, we need to redefine Dv . In
Eq. 1 and Eq. 2, Dv represents the number of sketch segments
of each switch, which is prepared for all flows passing through
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Fig. 5: Deployment satisfies Objective-I and III. Solution-II
that satisfies Objective-II has the lowest resource usage.

the switch. In other words, each flow passing through the
switch where sketch is deployed needs to be measured in LLD,
which causes load imbalance. We modify Dv to D

Sj
i

v , which
represents the number of sketch segments specially prepared
by the switch for the certain path flow Sj

i . We do not make
any changes to other goals and constraints.
We formulate the problem as follows:

Opt.
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(
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i , if v ∈ PSj

i

)
∀v ∈ V

D
Sj
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v ∈ [0, 1, ...k] ∀v ∈ V, Sj
i ∈ Γ

(4)

As shown in Fig. 4a, the result of Eq. 3 and Eq. 4 prompted
the sketch segment of S4

1 to change from being deployed on
switches V1, V2 and V4 to being deployed on switches V1,
V2 and V3. We only modify Dv to D

Sj
i

v to avoid the impact
on the allocation of sketch segments between flows, which
achieves better load balancing.
In Eq. 3, Objective-II is important. In addition to per-packet
load balancing, since we modify Dv to D

Sj
i

v , this results in the
inability to select the solution with the lowest resource usage
from the measurement load balancing solutions. As shown in
Fig. 5 (k = 2 for this example), segments of different colors
are private to the path flow of the corresponding color. Two
deployment solutions simultaneously satisfy Objective-I and
III, but Solution-II that satisfies Objective-II has the lowest
resource usage.
Second, in order to achieve finer-grained allocation. We further
optimize the results above. Last D

Sj
i

v in Eq. 6 is the result
of the previous step (Eq. 1 and Eq. 2 or Eq. 3 and Eq. 4 are
both feasible). At the same time, we relax D

Sj
i

v to float, which
represents the percentage of the flows needs to be measured.
We further formulate the problem as follows:

Opt.
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(6)
In Eq. 5, we set the priority of Objective-III (Network-wide
measurement load balancing) over Objective-II (Balance the
number of sketch segments in each forwarding path). There
are two reasons. 1) Since we relax D

Sj
i

v to float, this will
always result in an even distribution of the number of segments
if we do not change the priorities of the objectives, which
makes it impossible to further optimize the measurement
load balancing. 2) Meanwhile, since we set the priority of
Objective-III over Objective-II, in order to prevent poor per-
packet load balancing and high resource usage (high resource
usage as shown in Fig. 5), we have already approximated
Objective-II in the third constraint and the fourth constraint
of Eq. 6 with the help of the previous solution. The result is
shown in Fig. 4b. The red number represents the value of the
optimized D

S4
1

v and D
S8
7

v .
The number of sketch segments that each switch v needs to
deploy is

⌈
max D

Sj
i

v ,∀Sj
i ∈ Γ

⌉
. The memory size of sketch

is calculated by Lv∑
v∈V Lv

×Memory in switch v. Finally, we

can add some additional fields to the forwarding table in the
ingress switch to achieve coordination. Our approach is similar
to previous work [31]. When a packet arrives, we match
the forwarding table entry based on the destination IP. Once
an entry is matched, we can obtain the additional fields we
added. We add it to the packet header to achieve collaborative
measurement. For example, by adding the field “4 1, 0, 1, 1”,
it means that this path passes through four switches, and the
second switch does not perform measurements. The first field
represents the number of switches on the flow path, and the
second field represents how many segments the packet will
be inserted into in the corresponding switch. When the packet
passes through a switch, we use the value of the first field as
an index and take the value of the corresponding index in the
second field to determine how many segments the packet will
be inserted into. Then we decrement the first field by one.



As shown in Fig. 4b, DS4
1

v1 , DS4
1

v2 , DS4
1

v3 and D
S4
1

v4 are 1, 0.34,
0.83 and 0.83 respectively. For the path flow S4

1 , the switch
V1 completes the first measurement, the switch V2 completes
the second measurement of the first 34% of flows, switch V3
completes the second measurement of the remaining 66% of
flows and the third measurement of the first 17% of flows,
and the switch V4 completes the third measurement of the
remaining 83% of flows. Therefore, in the ingress switch
V1, we can simply set the first 17% of matching entries to
“4 1, 1, 1, 0”, 17%-34% of matching entries to “4 1, 1, 0, 1”,
and the last 66% of matching entries to “4 1, 0, 1, 1”.
In summary, the optimally distributed deployment framework
for sketch performs the two-step optimization on the measure-
ment load, which achieves better measurement load balancing
at the cost of slightly more resource usage.

V. THEORETICAL PROOF

We give the theoretical proof that the difference in the flow
set between different segments of the sketch has no effect on
the error bound. We refer to previous work SketchConf [32]
to provide theoretical proof. It should be noted that we do
not emphasize the innovation of our theoretical proof. We just
want to illustrate the theoretical basis of our solution. Let’s
take the CM sketch [19] as an example.
Single-segment sketch error bound: For one segment of
the CM sketch with w counters, we consider the counter
that e is hashed to. For any one of the other N − 1 distinct
flows, the possibility that it collides with e is 1

w . Therefore,
the number of distinct colliding flows Z follows binomial
distribution B(N − 1, 1

w ). As N − 1 is usually large and 1
w

is small, we approximate that Z follows Poisson distribution,
with λ = N−1

w . In other words, the number of collisions is
only related to the ratio of the total flow number to the number
of counters. Assume that two segments hashed by flow e have
the same number of counters and the same number of flows.
Except for flow e, none of their remaining N − 1 flows are
the same. Since they have the same number of counters and
the same amount of flows, they have the same number of
collisions. Therefore, at this time, the error bound is only
related to the characteristics of the N − 1 flows. Since the
flows in the local network are independent and identically
distributed, their error bounds are the same.
Multi-segment sketch error bound: As different segments
are associated with independent hash functions, the error
bound in each segment can be regarded as independent.
In summary, even if the flow set between different segments
is different, it will not affect the error bound in the case of
independent and identical distribution of the flow.

VI. EXPERIMENTAL RESULTS

We apply the lightweight distributed deployment framework
for sketch and the optimally distributed deployment framework
for sketch to three topologies (Fat tree topology, Leaf-spine
topology, and Synthetic topology) and four sketches (Bloom
Filter, CM sketch, CO sketch and MV sketch).

A. Test Setup

We use anonymous IP tracking collected from CAIDA in
2018 [33]. Each trace contains about 2.5 million packets. In
the case of aggregation with source IP, there are about 70k
flows. We conduct experiments in three network topologies.
The first topology is the fat tree network topology [34], which
consists of 4 core switches, 8 aggregation switches, and 8 edge
switches. The second topology is leaf-spine network topology,
which contains 4 spine switches and 8 leaf switches. The third
topology is a synthetic network topology, as shown in Fig. 4.
It should be noted that the experimental results are similar
in larger topologies. We hash 2.5 million packets to each
path through a hash function. We conduct experiments using
four solutions. The first solution is the lightweight distributed
deployment framework for sketch (LDD). The second solution
is the optimally distributed deployment framework for sketch
(ODD). The third solution is centralized deployment (CD) [9],
[10]. The fourth solution is NSPA [3]. Due to the limitation
of the number of Tofino switches, we evaluate the resource
usage of each switch in the Tofino switch and then accumulate
the resource usage of all switches in the topology. And other
experiment is carried out by simulation.

B. Experimental Results on Resource Usage and Load Bal-
ancing

1) Experimental Setup: We apply the above four solutions in
three network topologies. We set k = 3 for the k-hash sketch.
The results of CM sketch are as follows. Since most k-hash
model sketches are k hash calculations and memory accesses,
the results of other k-hash model sketches are also similar. Due
to page limitations, the experimental metrics are described in
detail in Section III-B.
2) Performance on Resource Usage and Load Balancing: The
following are the results of the above experiment.
Resource usage: As shown in Fig. 6a, Fig. 7a and Fig. 8a,
the percentage in the figure indicates the ratio of the number
of SALUs used to the number of SALUs of all switches in the
topology. We find that the lightweight distributed deployment
framework and centralized deployment has the lowest resource
usage. And as shown in Fig. 6b, Fig. 7b and Fig. 8b, the
resource allocation of the lightweight distributed deployment
framework is more balanced than the centralized deployment.
The resource usage of the optimally distributed deployment
framework is slightly higher than the resource usage of both
but much lower than that of the current optimal collaborative
measurement solution NSPA. The resource usage of NSPA is
much larger than these three solutions. In the three topologies,
the lightweight distributed deployment framework resource
usage is only 0.2, 0.33, and 0.29 of the NSPA resource usage.
The optimally distributed deployment framework resource
usage is only 0.33, 0.33, and 0.33 of the NSPA resource usage.
Measurement load balancing: As shown in Fig. 6c, Fig. 7c
and Fig. 8c, we find that the optimally distributed deployment
framework and NSPA have the good load balancing effect,
and the optimally distributed deployment framework achieves
better load balancing effect than NSPA. The lightweight
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Fig. 6: Resource usage, measurement load balancing and per-packet load balancing on fat-tree topology.
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Fig. 7: Resource usage, measurement load balancing and per-packet load balancing on leaf-spine topology.
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Fig. 8: Resource usage, measurement load balancing and per-packet load balancing on synthetic topology.

distributed deployment framework is slightly worse than the
load-balancing effect of both. But on the one hand, the
lightweight distributed deployment framework has the lowest
resource usage. On the other hand, the lightweight distributed
deployment framework has a far better load-balancing effect
than centralized deployment. Centralized deployments have
the worst load-balancing effect. In the fat tree topology, the
measurement load standard deviation of both the optimally
distributed deployment framework and NSPA is 0, and the
measurement load standard deviation of the lightweight dis-
tributed deployment framework is only 0.41 of the measure-
ment load standard deviation of centralized deployment. In
the synthetic topology, the optimally distributed deployment
framework achieves better load balancing than NSPA. The
lightweight distributed deployment framework, the optimally
distributed deployment framework, and NSPA are 0.23, 0.06,
and 0.08 of the standard deviation of the measurement load

of the centralized deployment, respectively.

Per-packet load balancing: As shown in Fig. 6d, Fig. 7d and
Fig. 8d, we find that the per-packet load standard deviation
in the switch of the lightweight distributed deployment frame-
work and the optimally distributed deployment framework is
only 0.41 and 0.22 of the centralized deployment and NSPA in
fat-tree topology and synthetic topology. As mentioned above,
since each packet is measured by multiple switches, per-packet
load balancing can reduce the impact of different flow sizes
on the measurement load so as to optimize the load balancing
effect further.

In summary, the distributed deployment frameworks combine
the advantages of centralized deployment and collaborative
measurement, which achieve optimal load balancing effects
with low resource usage. At the same time, our distributed
deployment frameworks achieve per-packet load balancing.
Multiple hash calculations and memory accesses for each
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Fig. 9: Accuracy of membership query, frequency estimation, and heavy hitter detection on fat-tree and spine-leaf topology.
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Fig. 10: Accuracy of membership query, frequency estimation, and heavy hitter detection on synthetic topology.

packet are evenly distributed to multiple switches, which can
better adapt to elephant flows.

C. Experimental Results on Accuracy

1) Experimental Setup: We apply the above four solutions
and compare the metrics of four sketches in three topologies.
These sketches belong to three classes of tasks: membership
query, frequency estimation, and heavy hitter detection. They
are typical k-hash model sketches, we set k = 3. We set the
heavy hitter threshold to 0.01% of the number of packets.
Since the results of the fat tree and the leaf-spine topology
are almost identical, we show them in the same figure.
2) Performance on Accuracy: The following are the results
of the above experiment.
Membership query: As shown in Fig. 9a and Fig. 10a, in
both fat-tree and leaf-spine topologies, we find that the FPR of
these four solutions are almost equal as the memory varies. In
synthetic topologies, centralized deployment performs slightly
worse due to redundant measurement.
Frequency estimation: As shown in Fig. 9b and Fig. 10b, in
both fat-tree and leaf-spine topologies, we find that the ARE of
these four solutions are almost equal as the memory varies. In
synthetic topologies, centralized deployment performs slightly
worse due to redundant measurement.
Heavy hitter detection: As shown in Fig. 9c, Fig. 9d,
Fig. 10c, and Fig. 10d, in both fat-tree and leaf-spine topolo-
gies, we find that the F1 and ARE of four solutions are

almost equal as the memory varies. In synthetic topologies,
centralized deployment performs worse due to redundant mea-
surement.
In summary, even if the flow set stored in each segment of the
sketch is different, this has no effect on the accuracy of the
sketch which is consistent with our theoretical proof.

VII. CONCLUSION

This paper proposes two distributed deployment frameworks
for sketch that support lightweight or optimally distributed
deployment for network-wide traffic measurement. Our frame-
work combines the advantages of centralized deployment
and collaborative measurement, which achieves a better load-
balancing effect than collaborative measurement with low
resource usage close to centralized deployment. We applied
the proposed framework to diverse topologies and sketches,
and the experimental results demonstrated that the proposed
framework achieves good load balancing with low resource
usage. Meanwhile, our framework achieves per-packet load
balancing by evenly distributing hash calculations and memory
accesses to multiple switches for each packet.
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