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Abstract Random sample partition (RSP) is a newly devel-
oped big data representation and management model to deal
with big data approximate computation problems. Academic
research and practical applications have confirmed that RSP is
an efficient solution for big data processing and analysis. How-
ever, a challenge for implementing RSP is determining an ap-
propriate sample size for RSP data blocks. While a large sam-
ple size increases the burden of big data computation, a small
size will lead to insufficient distribution information for RSP
data blocks. To address this problem, this paper presents a novel
density estimation-based method (DEM) to determine the opti-
mal sample size for RSP data blocks. First, a theoretical sample
size is calculated based on the multivariate Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality by using the fixed-point iteration
(FPI) method. Second, a practical sample size is determined
by minimizing the validation error of a kernel density estimator
(KDE) constructed on RSP data blocks for an increasing sam-
ple size. Finally, a series of persuasive experiments are con-
ducted to validate the feasibility, rationality, and effectiveness of
DEM. Experimental results show that (1) the iteration function
of the FPI method is convergent for calculating the theoretical
sample size from the multivariate DKW inequality; (2) the KDE
constructed on RSP data blocks with sample size determined by
DEM can yield a good approximation of the probability density
function (p.d.f.); and (3) DEM provides more accurate sample
sizes than the existing sample size determination methods from
the perspective of p.d.f. estimation. This demonstrates that DEM
is a viable approach to deal with the sample size determination
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problem for big data RSP implementation.

Keywords random sample partition, big data, sample size,
Dvoretzky-Kiefer-Wolfowitz inequality, kernel density estima-
tor, probability density function

1 Introduction

A popular algorithmic strategy to handle big data computa-
tion problems is divide-and-conquer [1]. According to that
paradigm, the big data is first partitioned into several subsets.
Then, each subset is processed, and local results from all sub-
sets are combined to obtain the global results. MapReduce [2] is
a widespread programming model to implement the divide-and-
conquer paradigm to perform big data computation tasks using
distributed file systems such as HDFS (Hadoop Distributed File
System) [3]. The default size of a data subset or data block in
HDFS is 64 MB or 128 MB, depending on the specific hardware
support of the distributed computing environment. The HDFS
data block size influences the efficiency for processing big data
[4]. If the block size is too small, there will be too many HDFS
data blocks and thus too much "metadata" will be stored. And
if the block size is too large, the time to transfer data from the
disk can be significantly longer than the time to seek the start
of a block. Thus, it is very important to determine an appropri-
ate block size for handling big data in a distributed computing
environment.

An intrinsic issue to data partitioning when using HDFS data
blocks to handle big data computation tasks is that the proba-
bility distribution of each HDFS data block is often inconsistent
with that of the whole big data. This can be a problem especially
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when analyzing big data containing numerical attribute values.
To obtain data blocks that have a consistent distribution, a novel
big data representation model was introduced in 2019, named
random sample partition (RSP) [5]. According to that model, big
data is partitioned into a series of RSP data blocks using sam-
pling such that each block has a consistent probability distribu-
tion with the whole big data for a given significance level. RSP
data blocks can be generated by transforming HDFS data blocks
using a two-stage data processing algorithm [6].

The RSP model is receiving more and more attention from
academia and the industry, as it solves a key problem of HDFS.
However, the issue of determining an appropriate block size re-
mains. From a statistical perspective, the key issue to select an
adequate block size for RSP is to determine an effective sample
size. Current sample size determination methods, e.g., the Slovin
formula [7], population estimation method (PEM) [8], and pop-
ulation mean estimation method (PMEM) [9] have the follow-
ing limitations for big data. They were designed for sampling
problems with univariate random variables and the sample size
is determined based on the assumption of a normal distribution.
Moreover, these methods were proposed to deal with small and
medium sized data sets. Given the aforementioned limitations,
these methods cannot be directly used to handle big data since
big data can be multivariate and have complex probability distri-
butions.

To solve the problem of determining an optimal sample
size for RSP data block, this paper proposes a novel density
estimation-based method (DEM). The main contributions of this
paper are summarized as follows.

• A theoretical sample size that is used to model the extrinsic
empirical distribution is first calculated based on the multi-
variate Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [10]

by utilizing the fixed-point iteration (FPI) method.
• On the basis of theoretical sample size, a practical sample

size is then determined to characterize the intrinsic proba-
bility density by minimizing the validation error of the ker-
nel density estimator (KDE) constructed for an RSP data
block.
• Finally, extensive experiments are reported, which were

conducted to validate the feasibility (i.e., convergence of
the iteration function of the FPI method), rationality (i.e.,
the probability density function is well estimated), and ef-
fectiveness (i.e., the sample size is appropriate for estimat-
ing the probability density function) of the DEM. Results
demonstrate that the DEM is a viable approach to deter-
mine the sample size for implementing the big data RSP
model.

The remainder of this paper is organized as follows. Related

work is reviewed in Section 2. Section 3 introduces the ba-
sic concepts of RSP and KDE. Section 4 presents the proposed
DEM method to determine the sample size of RSP data blocks.
Section 5 describes experiments and analyzes the results. Fi-
nally, Section 6 draws a conclusion and discusses future work.

2 Related works

Representative methods for sample size determination are briefly
reviewed. The typical Slovin formula [7] calculates the sample
size as

MSlo =
N

1 +NE2 , (1)

whereN is the population size and E is a margin of error (MOE).
The sample size determined by the Slovin formula strongly de-
pends on the selection of the MOE. If E = 0, the sample size
is the population size, and if E → 1, the sample size is close to
1. The PEM [8] and PMEM [9] are based on the assumption that
the population from which samples are drawn follows a normal
distribution. They respectively determine sample sizes as

MPEM =

(
z α

2

)2
P (1 − P)

E2 (2)

and

MPMEM =

( z α
2
× σ

E

)2

, (3)

where P is the sample proportion, σ is the population standard
deviation, and z α

2
is the bilateral quantile of standard normal dis-

tribution corresponding to the significance level α. These two
methods are only suitable to determine sample sizes for univari-
ate random variables.

Kleiner et al. proposed the bag of little bootstraps (BLB)
method [11] to provide a robust and efficient mean of assessing
the quality of estimators, where each BLB resample contains at
most

MBLB = Nν (4)

distinct sample points and ν ∈ [0.5, 1.0] is a scale factor. In
fact, the BLB sample size was firstly used in Reshef et al.’s work
[12], where a maximal information coefficient was designed to
measure the dependence between two variables. Sengupta et al.
[13] presented a subsampled double bootstrap method for mas-
sive data analysis. Similarly, the BLB sample size was used to
fix the subset size for the design of a new resampling method.

Other sample size determination methods can be found in the
literature [14–17], and are tailored to specific application scenar-
ios.
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3 Preliminaries

Let there be aD-dimensional big data set

X = {xn |xn = (xn1, xn2, · · · , xnD) ,
xnd ∈ <, d = 1, 2, · · · ,D, n = 1, 2, · · · ,N} (5)

having N distinct sample points of a random variable X with
probability distribution function (PDF) F (x) and probability
density function (p.d.f.) f (x). The random sample partition
(RSP) and estimated p.d.f. f̂ (x) are introduced as follows. With-
out loss of generality, we assume that each xnd is a numerical
attribute value because symbolic attribute values can be easily
transformed into numerical attribute values using existing encod-
ing techniques such as one-hot encoding [18] and deep encoding
[19].

3.1 Random sample partition of big data

An RSP T = {X1,X2, · · · ,XK } contains K RSP data blocks and
is a sample point partition of a big data set X, which satisfies the
following conditions:

1)
K⋃

k=1
Xk = X and

K∑
k=1
Nk = N , where |Xk | = Nk;

2) for ∀i , j ∈ {1, 2, · · · ,K}, Xi ∩ X j = ∅;
3) for a given significance level α ∈ (0, 1) and error threshold ε

∈ (0, 1), the probability

P( sup
x∈<D

|F̂(k)
Nk

(x) − F(x)| > ε) ≤ α (6)

holds for the empirical distribution function (EDF) F̂(k)
Nk

(x)
estimated based on the RSP data block Xk, k = 1, 2, · · · ,K .

In fact, the big data set X is composed of N sample points
corresponding to the simple random sample (SRS) X1, X2, · · · ,
XN which areN independent and identically distributed random
variables with PDF F (x). An RSP data block

Xk = {x(k)
n

∣∣∣x(k)
n = (x(k)

n1 , x
(k)
n2 , · · · , x

(k)
nD) ,

x(k)
nd ∈ <, d = 1, 2, · · · ,D, n = 1, 2, · · · ,Nk}

(7)

is composed of Nk sample points that are sampled randomly
from the big data set X, where there exists a unique n′ ∈
{1, 2, · · · ,N} such that x(k)

n = xn′ . Because the EDF of an RSP
data block can approximate the PDF of the big data for a given
significance level and error threshold, combining the results ob-
tained by processing RSP data blocks can be used to approxi-
mate the results for the whole big data. Extensive experiments
[5] have demonstrated that the RSP model performs well for the
approximate computation of big data.

3.2 Kernel density estimator

Because the true PDF and p.d.f. of a random variable X are
unknown, the estimated p.d.f. can be constructed as

f̂ (x) =
1

N
D∏

d=1
h(k)

d

N∑
n=1

K(
x1 − x(k)

n1

h(k)
1

, · · · ,
xD − x(k)

nD

h(k)
D

)

=
1
N

N∑
n=1

D∏
d=1

1
√

2πh(k)
d

exp[−
1
2

(
xd − x(k)

nd

h(k)
d

)2]

(8)

using a KDE [20, 21] based on the RSP data block Xk, where

K(u) = K(u1, · · · , uD) =
1

(
√

2π)
D

D∏
d=1

exp(−
1
2

u2
d) (9)

is theD-dimensional kernel function and h(k)
d is the kernel width

or bandwidth parameter that is a function of Nk and satisfies the
conditions 

lim
Nk→+∞

h(k)
d = 0

lim
Nk→+∞

Nkh(k)
d = +∞

. (10)

The estimation quality of the p.d.f. depends on the selection of
the kernel width for the given kernel function. A small band-
width results in an under-smoothed p.d.f. estimation, while a
large bandwidth leads to an over-smoothed p.d.f. estimation.

4 Density estimation-based method for sample
size determination

A challenge to apply the RSP model in a distributed environment
is to select a suitable sample size for RSP data blocks. A large
sample size will increase the burden of data computation, while
a small sample size will increase that of data scheduling. A new
density estimation-based method (DEM) is presented in this sec-
tion to determine the optimal sample size for RSP data blocks,
which includes the calculation of the theoretical sample size and
the determination of the practical sample size.

4.1 Calculation of theoretical sample size

Eq. (2) shows that an RSP data block has a consistent probability
distribution with the big data set for the given significance level
and error threshold. The big data set X can be deemed as the
population of random variable X. We need to randomly draw
M sample points from X based on the sampling scheme without
replacement so that they can be used to empirically determine
the probability distribution function. Recently, the multivariate
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Algorithm 1 Theoretical sample size determination

1: Input: The dimensionD of the data set, a significance level
α ∈ (0, 1), and an error threshold ε ∈ (0, 1);

2: Output: The theoretical sample sizeM;
3: Initialize the theoretical sample sizeM(0);
4: Initialize the iteration number I = −1;
5: repeat
6: I ← I + 1;
7: M(I+1) ← I(

⌈
M(I)

⌉
), where d•e is the ceiling function;

8: until |
⌈
M(I+1)

⌉
−

⌈
M(I)

⌉
| = 0

9: Obtain the theoretical sample sizeM =
⌈
M(I)

⌉
.

Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [10] provided a
bound for the approximation between EDF and PDF as

P( sup
x∈<D

∣∣∣F̂M (x) − F (x)
∣∣∣ > ε) ≤ D(M + 1)e−2Mε2

, (11)

where F̂M (x) is the EDF constructed based on the M random
sample points andM is the theoretical sample size. We let

D(M + 1)e−2Mε2
= α (12)

and can derive the iterative expression as

M =
1

2ε2 ln
D(M + 1)

α
. (13)

It is difficult to calculate the analytical solution of M from
Eq. (13). Thus, the fixed-point iteration (FPI) method described
in Algorithm 1 is used to find an approximation ofM. Let

I(M) =
1

2ε2 ln
D(M + 1)

α
(14)

express the iteration function of the FPI method, which is a
monotonically increasing concave function of M and satisfies
the following two conditions:

1) forM ∈ [1,N], I(M) ∈ [1,N] holds;
2) there exists γ ∈ (0, 1) such that |I′(M)| ≤ γ holds for any

M ∈ [1,N].

The theoretical analysis of the convergence of the iteration func-
tion I(M) is provided in Appendix A.

BecauseM is the sample size, the original design intent was
for its value to be smaller than the population size N . Due to
the iteration function’s convergence, the theoretical sample size
satisfies the condition |I(M)| ≤ N when M≤N . For example,
when N=1,000,000 (assume that this is the population size of a
big data set), the maximumM of 2982 for ε = 0.05, α = 0.05,
and D = 50 by using the FPI method with an initial M=500
and the minimum of M as 2982 with initial M=10,000 can be
calculated respectively. We can see that both M and its conver-
gent value I(M) are smaller than N . In fact, the main reason

whyM or I(M) is smaller than N is that the iteration function
is monotonically increasing concave. In addition, because I(M)
is a monotonically increasing concave function of M, the first
derivative of I(M) decreases gradually until its value is smaller
than a given threshold γ.

The partial derivatives of I(M) with respect toD, α, and ε are
calculated as

∂I
∂D

=
1

2Dε2 , (15)

∂I
∂α

= −
1

2αε2 , (16)

and
∂I
∂ε

= −
1
ε3 ln

D(M + 1)
α

. (17)

We can derive the results of

|
∂I
∂ε
| > |

∂I
∂D
| (18)

and

|
∂I
∂ε
| > |

∂I
∂α
| (19)

for

D > max{
αe
M + 1

,
αe

ε
2α

M + 1
}. (20)

Thus, Eq. (18) and Eq. (19) always hold for the positive integers
D and M and indicate that ε has a more significant impact on
M than D and α. Table 1 quantitatively illustrates the influence
ofD, α, and ε on the sample sizeM. It can be observed thatM
is more sensitive to the error threshold ε than to the data dimen-
sion D and significance level α. For some given D and α, we
can determine the theoretical sample size Mmin with a smaller
ε (e.g., 0.05) and the incremental sample size S with a larger ε
(e.g., 0.10) by calculating the practical sample size as explained
next.

4.2 Determination of practical sample size

The selection of the theoretical sample size M depends on the
data dimensionD, significance level α, and error threshold ε and
does not take the probability distribution into account. Thus, we
try to use the density estimation strategy to further optimize the
theoretical sample size. An initial training data set with Mmin

sample points and a validation data set are prepared

XV = {vl |vl = (vl1, vl2, · · · , vlD) , vld ∈ <,
d = 1, 2, · · · ,D, l = 1, 2, · · · ,L} (21)

by randomly choosing the sample points from the big data set X,
whereL is the number of sample points of the validation data set.
The practical sample size P can be determined using Algorithm
2. Below, we provide a discussion of that algorithm.
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Table 1: Influence ofD, α, and ε on sample sizeM

α=0.05,D=10 ε=0.05,D=10 α=0.05, ε=0.05

ε M α M D M

0.01 83132 0.01 2981 2 2284

0.02 18933 0.02 2832 4 2436

0.03 7931 0.03 2745 6 2524

0.04 4267 0.04 2683 8 2586

0.05 2634 0.05 2634 10 2634

0.06 1774 0.06 2595 12 2674

0.07 1269 0.07 2562 14 2707

0.08 949 0.08 2533 16 2736

0.09 734 0.09 2507 18 2761

0.10 583 0.10 2484 20 2784

For the training data set

X(i)
T = {a(i)

p

∣∣∣∣a(i)
p = (a(i)

p1, a
(i)
p2, · · · , a

(i)
pD) ,

a(i)
pd ∈ <, d = 1, 2, · · · ,D, p = 1, 2, · · · ,P(i)}

(23)

corresponding to the i-th (i = 0, 1, · · · ,I + 1) iteration, the esti-
mated p.d.f.

f̂ (i) (x) =
1
P(i)

P(i)∑
p=1

D∏
d=1

1
√

2πh(i)
d

exp[−
1
2

(
xd − a(i)

pd

h(i)
d

)2] (24)

can be constructed according to Eq. (4), where the rule-of-thumb
[22] bandwidth parameters h(i)

1 , h(i)
2 , · · · , h(i)

D
are determined as

h(i)
d = 1.06σ(i)

d [P(i)]−
1
5

= 1.06

√√√√√√√√√
1

P(i) − 1

P(i)∑
p=1

(a(i)
pd −

P(i)∑
q=1

a(i)
qd

P(i) )

2

[P(i)]−
1
5

(25)

The estimated error in Algorithm 2 is calculated as∥∥∥log2p(i+1) − log2p(i)
∥∥∥2

2

=

L∑
l=1

[log2 f̂ (i+1)(vl) − log2 f̂ (i)(vl)]
2 (26)

The incremental data set ∆X
( j)
T , j = 1, 2, · · · ,I + 1 is com-

posed of S sample points that are randomly drawn from the big
data set X. In the implementation for experiments presented in
this paper, the big data set is partitioned into three parts, i.e., the
initial training data set withMmin sample points, the validation

Algorithm 2 Practical sample size determination

1: Input: The incremental sample size S, an initial training
data set X(0)

T , a validation data set XV, and a stopping thresh-
old ξ > 0;

2: Output: The practical sample size P;
3: Calculate the theoretical sample sizeMmin using Algorithm

1;
4: Initialize the iteration number I = −1;
5: Estimate the p.d.f. f̂ (0)(•) based on the training data set X(0)

T ;
6: Calculate the predicted output vector p(0) = ( f̂ (0)(v1),

f̂ (0)(v2), · · · , f̂ (0)(vL)) of XV;
7: repeat
8: I ← I + 1;
9: Update the training data set X(I+1)

T ← X(I)
T ∪ ∆X(I+1)

T ,
where ∆X(I+1)

T is an incremental training data set with S
sample points;

10: Update the practical sample size

P(I+1) =Mmin + (I + 1) × S. (22)

11: Estimate the p.d.f. f̂ (I+1)(•) based on the training data set
X(I+1)

T ;
12: Calculate the predicted output vector p(I+1) = ( f̂ (I+1)(v1),

f̂ (I+1)(v2), · · · , f̂ (I+1)(vL));
13: until

∥∥∥log2p(I+1) − log2p(I)
∥∥∥2

2 ≤ ξ

14: Obtain the practical sample size P = P(I).

data set with L sample points, and the incremental data set with
Q RSP data blocks, where

Q =

⌊
N −Mmin − L

S

⌋
� I + 1. (27)

Then, the data block sampling scheme can be used to gradually
increase the size of the training data set rather than the data point
sampling scheme.

5 Experimental settings and results

This section presents a series of experiments that were con-
ducted to validate the feasibility, rationality, and effectiveness
of DEM for determining the sample size of RSP data blocks.
Ten multiple-mode-and-multiple-dimension p.d.f.s were used to
generate synthetic data sets. The number of p.d.f. modes are 10
and 20 and the number of p.d.f. dimensions are 10, 30, 50, 70,
and 90. Each p.d.f. is expressed with the multivariate Gaussian
mixture model, where the necessary parameters including com-
ponent weights, mean vectors, and covariance matrices can be
obtained from the DEM Data Sets folder of our BaiDuPan on-
line storage space 1) using the extraction code “fbbp”. In addi-

1) https://pan.baidu.com/s/1Vj0jHdSl3q99ygqnFWKt3A
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Fig. 5: Comparison of p.d.f. estimations for the 10-mode-and-50-dimension synthetic data set
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Fig. 6: Comparison of p.d.f. estimations for the 20-mode-and-50-dimension synthetic data set
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(a) 10-mode-and-50-dimension synthetic data set

DEM

(b) 20-mode-and-10-dimension synthetic data set
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(c) 20-mode-and-30-dimension synthetic data set

DEM

(d) 20-mode-and-50-dimension synthetic data set

DEM

(e) 20-mode-and-70-dimension synthetic data set

DEM

(f) 20-mode-and-90-dimension synthetic data set

Fig. 7: Relationship between the sample size and KL divergence
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tion, the data used in the experiments can be obtained from this
online folder. All methods were implemented with the Python
programming language and experiments were run on a worksta-
tion equipped with an Intel(R) Xeon(R) CPU E5-2630 v2 run-
ning at 2.60 GHz with 12 Core(s), 24 logical processor(s) and
125 GB of main memory.

5.1 Feasibility validation of DEM

A first experiment was done to assess the ability of Algorithm
1 to converge for determining the theoretical sample size. For
different parameter value pairs of significance level α and data
dimension D, the theoretical sample size (M) was initialized
to 10,000 and 200,000 for ε = 0.01, and 500 and 10,000 for
ε = 0.05, respectively. The convergence of Algorithm 1 for dif-
ferent error thresholds is illustrated in Fig. 1. It can be observed
that as the number of iterations increased, the small theoretical
sample size gradually increased while the large theoretical sam-
ple size gradually decreased, until convergence. These experi-
mental results confirm that the iteration function shown in Eq.
(14) is reasonable and helpful to determine an optimal theoreti-
cal sample size.

Then, the influence of the significance level α, data dimen-
sion D, and error threshold ε for determining the optimal theo-
retical sample size was evaluated. The experimental results are
provided in Fig. 2, where the parameters were set as D = 50,
ε = 0.05, and α = 0.01, 0.02, · · · , 0.10 for Fig. 2(a); α = 0.01,
ε = 0.05, and D = 1, 2, · · · , 100 for Fig. 2(b); and α = 0.01,
D = 50, and ε = 0.01, 0.02, · · · , 0.10 for Fig. 2(c). These exper-
imental results demonstrate the aforementioned conclusion that
the theoretical sample size is more sensitive to the error threshold
ε than to the significance level α and data dimensionD because
the variation range of theoretical sample sizes corresponding to
ε is obviously larger than the ones corresponding to α and D.
This experiment provides useful insights on how to determine
the sample size in practice.

5.2 Rationality validation of DEM

Another experiment was carried to test the convergence of Al-
gorithm 2 and the p.d.f. estimation performance of a data sub-
set having the practical sample size. For the 10-mode-and-50-
dimension and 20-mode-and-50-dimension synthetic data sets,
we first checked the 2-norm of the p.d.f. logarithm and the vari-
ation tendencies of the estimated error as shown in Eq. (26),
as the number of iterations in Algorithm 2 increased. Then,
we compared the estimated p.d.f.s with the true p.d.f., where
the unknown p.d.f. was constructed by applying the Scipy API

scipy.stats.gaussian_kde 2) with the rule-of-thumb bandwidth.
The learning parameters were set as follows: initial sample size
ofM = 100, 000, error threshold ε = 0.05 and significance level
α = 0.01 for determining the theoretical sample size with Algo-
rithm 1, ε = 0.1 and α = 0.05 to determine the incremental sam-
ple size with Algorithm 2, the validation data size L = 10, 000,
and stopping threshold ξ = 10−6. Figs. 3 and 4 show the con-
vergence ability of Algorithm 2 for the two selected mixture dis-
tributions. It can be observed that Algorithm 2 converged as the
iteration number increased, i.e., the 2-norm of the log(p.d.f.) and
estimated error tend to gradually stabilize. This indicates that
Algorithm 2 is appropriate for determining the optimal sample
size of RSP data blocks.

In addition, we plotted the contour maps of the true p.d.f.s,
and the estimated p.d.f.s based on the RSP data blocks with
theoretical sample size and practical sample size. Four dimen-
sion pairs (#3,#41), (#11,#12), (#14,#39), and (#16,#44) were
selected for this comparison. The comparative results are pre-
sented in Figs. 5 and 6. It can be seen that the estimated p.d.f.s
based on the RSP data blocks with practical sample size are
closer to the true p.d.f.s than the estimated p.d.f.s based on the
RSP data blocks with the theoretical sample size. We also cal-
culate numerical values to compare the p.d.f.s. The kullback-
Leibler (KL) divergence [23, 24] is used to measure the difference
between two p.d.f.s. The model parameters of the true p.d.f.s are
provided in the aforementioned BaiDuPan. The Python imple-
mentation of the KL divergence is available in the source code
repository 3). It was found that the p.d.f.s estimated based on
the RSP data blocks with practical sample sizes have smaller
KL divergences than the p.d.f.s estimated based on the RSP data
blocks with theoretical sample sizes. The KL divergences corre-
sponding to the theoretical sample size and practical sample size
are 1,738.030 and 1,693.005 in Fig. 5, while the KL divergences
corresponding to the theoretical sample size and practical sample
size are 2,104.779 and 2,014.266 in Fig. 6. This indicates that
Algorithm 2 is able to determine the proper sample size based
on the theoretical sample size found by Algorithm 1.

5.3 Effectiveness validation of DEM

Another experiment was done to compare the sample size of the
proposed density estimation-based method (DEM) with those of
the Slovin formula, population estimation method (PEM), pop-
ulation mean estimation method (PMEM), and the bag of little
bootstraps (BLB) method for ten multiple-mode-and-multiple-
dimension probability distributions. The parameters of the

2) https://docs.scipy.org/doc/scipy/reference/generated
3) https://gitee.com/nick-stu/dds
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Table 2: Details of ten multiple-mode-and-multiple-dimension probability distributions

Probability distribution Mode R DimensionD Sample number N Data size

10-mode-and-10-dimension p.d.f. 10 10 1,000,000 239 MB

10-mode-and-30-dimension p.d.f. 10 30 1,000,000 716 MB

10-mode-and-50-dimension p.d.f. 10 50 1,000,000 1.2 GB

10-mode-and-70-dimension p.d.f. 10 70 1,000,000 1.7 GB

10-mode-and-90-dimension p.d.f. 10 90 1,000,000 2.1 GB

20-mode-and-10-dimension p.d.f. 20 10 1,000,000 239 MB

20-mode-and-30-dimension p.d.f. 20 30 1,000,000 716 MB

20-mode-and-50-dimension p.d.f. 20 50 1,000,000 1.2 GB

20-mode-and-70-dimension p.d.f. 20 70 1,000,000 1.7 GB

20-mode-and-90-dimension p.d.f. 20 90 1,000,000 2.1 GB

DEM, Slovin formula, PEM, PMEM, and BLB method are sum-
marized as follows.

• DEM: initial sample size M = 100, 000, error threshold
ε = 0.05 and significance level α = 0.01 for determining
the theoretical sample size using Algorithm 1, ε = 0.1 and
α = 0.05 for determining the incremental sample size with
Algorithm 2, validation data size L = 10, 000 and stopping
threshold ξ = 10−6;
• Slovin: E = 0.05;
• PEM: E = 0.05, P = 0.5, and α = 0.01;
• PMEM: E = 0.05, α = 0.01, and σ2 is the minimum value

of variances corresponding to all data dimensions;
• BLB: ν = 0.6.

For each distribution, a series of big data sets were randomly
generated. The sample number and data size for each dataset
are listed in Table 2. For each distribution, 10 dependent data
sets including 1,000,000 samples were randomly generated and
the KL divergences between the true p.d.f. and estimated p.d.f.s
corresponding to different sample size determination methods
were calculated. The average sample sizes and KL divergences
are presented in Table 3.

It is found that (1) all methods that yield a smaller sample size
than DEM (i.e., Slovin, PEM, or BLB) provide a worse p.d.f.,
which leads to obviously larger KL divergences than DEM, and
(2) the method that generates a slightly better KL divergence
than DEM (i.e., PMEM) yield a significantly larger sample size
than DEM. For the Slovin formula, PEM, or BLB method, the
sample sizes depend on the empirical parameters and are deter-
mined without considering information about the specific prob-
ability distribution of the big data. Although PMEM considers
the variances of the big data set, it is easy to obtain extremely

large sample sizes when variances are very large.
In addition, we analyzed the relationship between the sample

size and KL divergence for six representative probability distri-
butions. The sample sizes were varied from 100 to 1,000,000
samples using a step of 100. The experimental results are re-
ported in Fig. 7. It can be observed that the KL divergences
between the true p.d.f.s and estimated p.d.f.s gradually decrease
as sample sizes are increased. The samples sizes determined by
DEM, the Slovin formula, PEM, PMEM, and the BLB method
are also marked on the convergence curves. It can be seen that
the sample sizes determined by DEM are basically located at the
convergence points of KL divergence curves. This indicates that
the proposed DEM is an effective and efficient sample size de-
termination method.

5.4 Application of DEM on real-world data sets

We selected two large-scale real-world data sets, i.e., the
28-dimensional HIGGS data set4) with 11,000,000 sample
points and the 27-dimensional HEPMASS data set 5) having
10,500,000 sample points to further validate the availability of
DEM for the case of an unknown p.d.f.. Because the true p.d.f.
of real-world data is unknown, the DEM’s performance cannot
be evaluated by measuring the KL divergence between the true
p.d.f. and the estimated p.d.f.. Hence, two continuous-valued at-
tributes were selected for each dataset to estimate their empirical
distribution functions (EDFs) for demonstrating the rationality
of the sample sizes. The theoretical sample size and incremen-
tal sample size are determined with parameter pairs α = 0.01,
ε = 0.02 and α = 0.05, ε = 0.05, respectively. The experimental

4) https://archive.ics.uci.edu/ml/datasets/HIGGS
5) https://archive.ics.uci.edu/ml/datasets/HEPMASS
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Fig. 8: Simple size (P = 79, 606) determination on the HIGGS data set
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Fig. 9: Simple size (P = 99, 348) determination on the HEPMASS data set

results are summarized in Fig. 8 and Fig. 9.

For each attribute, we estimated a series of EDFs for increas-
ing sample sizes and checked the change of average probability
calculated with the estimated EDF. The average probability is
represented with the average value of probabilities correspond-
ing to the sample points selected from a fixed sample point in-
terval. In Fig. 8 and Fig. 9, we can see that (1) the average
probability estimated with the EDF is convergent with the in-
crease of sample size and (2) the practical sample size deter-
mined by the proposed DEM is consistent with the sample size
to guarantee the convergence of the average probability. Table
4 shows the change of average probability when the sample size
is increased with a step of 10,000. We can see that the error be-
tween two average probabilities calculated with EDFs is smaller
than a given threshold of 10−4. For example, the average prob-
abilities estimated with EDFs corresponding to sample sizes P
and P+10,000 are 0.57200 and 0.57207 for attribute #7 of the

HIGGS data set. It is worth noting that it is unnecessary to re-
quire identical values for two sample sizes (i.e., EDF’s sample
size and DEM’s sample size) when the population size is very
large. The small difference between the EDF’s sample size and
that of the DEM is acceptable for big data approximate compu-
tation in the real-world applications. This experiment demon-
strates that the proposed DEM is also effective for real-world
data sets with unknown p.d.f..

6 Conclusion and future work

This paper proposed a new and effective density estimation
method (DEM) to determine the sample size of random sam-
ple partition (RSP) data blocks. There are two main compo-
nents in DEM, i.e., the theoretical sample size and practical sam-
ple size. The former is calculated by solving the multivariate
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Dvoretzky-Kiefer-Wolfowitz (DKW) inequality and the latter is
determined by minimizing the training error of kernel density
estimator (KDE) constructed on RSP data blocks as the sample
size is increased. The exhaustive experiments on a series of big
data sets demonstrated the feasibility, rationality, and effective-
ness of DEM.

In future work, we explore the following three research di-
rections. First, we will implement the spatial distribution-based
sample size determination method for RSP data block genera-
tion for big data. Second, we will derive an upper bound on
the number of RSP data blocks based on the sample size deter-
mined by DEM for specific real-world applications. Third, we
will devise a sample size determination method for large-scale
mixed-attribute data sets.
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Appendixes

Appendix A. Convergence of I(M)

If the condition 1) holds, we can derive

M <
α exp

(
2ε2N

)
D

− 1. (28)

Let B (M) represent the right term of Eq. (28). For the big data
set, B (N) will become very large when the value of N is large
enough. For example, B (N) = 1.404 × 10214 for α = 0.05,
ε = 0.05, D = 50, and N = 100000. The result ofM < B (N)
can be easily derived.

For the condition 2), the derivative of I(M) with respect toM
is calculated as

|I′(M)| = |
dI (M)

dM
| =

1
2ε2 (M + 1)

. (29)

If 1
2ε2(M+1) ≤ 1, we can derive

M ≥
1

2ε2 − 1 (30)

which is easy to satisfy. For example, 1
2ε2 −1 = 199 for ε = 0.05.

Thus, we can easily find a γ ∈ (0, 1) such that |I′(M)| ≤ γ holds
for anyM ∈ [1,N].
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Table 4: Average probabilities of EDFs with different sample
sizes

Sample size
HIGGS HEPMASS

Attrib #7 Attrib #11 Attrib #1 Attrib #7

P 0.57200 0.57350 0.71586 0.62498

P+10,000 0.57207 0.57365 0.71592 0.62513
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