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Abstract—The security issue of public WiFi is gaining more
and more concern. By listening to probe requests, an adversary
can obtain the SSID list of the APs to which a smartphone
previously connected, and utilizes this information to trick the
smartphone into associating to it. However, with the enhancement
of security level, most smartphones now do not proactively
disclose their SSID lists, making these attacks obsolete. In
this paper, we propose City-Hunter, an attacker that can lure
nearby smartphones without knowing their SSID information.
City-Hunter establishes and maintains an SSID database by
integrating both offline and online information. Meanwhile, it
smartly chooses some SSIDs to hit a smartphone according to
the past record and freshness. We evaluate the performance of
City-Hunter in different public places. The results demonstrate
that City-Hunter is able to successfully hit 12% ∼ 18%
smartphones without knowing their SSID information, which is
about 4 ∼ 8 times improvement compared to the similar attacks
like KARMA and MANA.

I. INTRODUCTION

Nowadays, with the explosive growth and popularity of

free public Wi-Fi available in dense urban areas including

airports, restaurants, and coffee shops, the security of using

public Wi-Fi is gaining more and more concern. According to

[1], 68% of public and unsecured Wi-Fi users fell victim to

cybercrime.

One major issue that can arise when attempting to use free

public Wi-Fi is of joining a rogue Wi-Fi access point (AP).

In such a case, an attacker clones an AP that a client has

previously connected to, tricks the client into associating to it,

and then obtains the client’s confidential data. This is generally

referred to as the evil twin attack (ETA) [2].

KARMA attack [3] is the most popular approach to

implement ETA. KARMA attack leverages the fact that mobile

phones keep a list of SSIDs of the wireless networks it has

connected to in the past on the Preferred Network List (PNL).

Every time the Wi-Fi interface is turned on, a mobile phone

periodically sends multiple probe requests (also referred to as

direct probe requests) which contain the SSIDs in the PNL.

After receiving a direct probe request, KARMA attacker will

reply with an appropriately crafted probe response mimicking

the SSID in the probe request to trick the device.

For example, if your mobile phone sends out a direct probe

request with the SSID ‘AP123’ (the SSID of an AP it has

connected to), KARMA attacker replies with a probe response

mimicking the SSID ‘AP123’. If this AP happens to be an

open AP, the following association and authentication will pass

easily and your mobile phone will automatically connect to it.

Due to the severity of ETA, a remarkable amount of work

has been done and most of the solutions are focusing on

how to detect the presence of the rouge APs [4][5][6][7]. In

the meantime, the Wi-Fi standard itself is keeping improving

the level of security and becomes more and more resilient

to different kinds of attacks including the ETA. We noticed

that to launch ETA, an adversary relies on the SSIDs of the

APs to which a client has previously connected. Therefore, a

viable approach is to change the way of how clients send probe

requests. This matches well with the current Wi-Fi protocols of

most Android and iOS operating systems. Most Wi-Fi clients

now only send 802.11 broadcast probe requests, generically

asking for available APs nearby [8]. These broadcast probe

requests do not contain any SSIDs. Upon receiving a broadcast

probe request from a nearby client, an AP sends a response

containing its own SSID. The client then looks at whether the

AP’s SSID is contained in its PNL and connects to the AP if

there is a match. From the discussion above, we can easily see

that without the SSID information, ETA like KARMA cannot

work well as before.

Correspondingly, an enhanced attack called MANA [9] is

recently proposed that is able to launch ETA under the current

Wi-Fi protocols. MANA leverages the fact that some unsafe

mobile devices still send direct probes containing SSIDs.

MANA stores these SSIDs and utilizes them to respond to

a broadcast probe from a client. If one of the SSIDs happens

to be in the PNL of the client, a successful hit occurs and the

client will be associated to the attacker.

As an illustration, we deployed a MANA and a KARMA

attacker in a canteen1. The two tests were carried out at the

same time and the distance between the two attackers is about

40 meters to avoid any interferences. Table I compares the

corresponding results from MANA and KARMA attackers.

We can see that, compared to KARMA attacker which

only associated 24 out of 614 mobile phones (with hit rate

h = 24/614 = 3.9%), MANA attacker has significantly higher

performance, connecting 46 out of 688 mobile phones (with

1Before doing any experiments described in this paper, we have obtained the
ethical and legal approval from the corresponding authority. All information
collected will be kept strictly confidential and will only be used for research
purposes. We are willing to provide the approval documents when required.
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hit rate h = 6.6%). The improvement mainly comes from

the fact that MANA successfully connected 16 clients sending

broadcast probe requests.

To evaluate the actual performance of MANA on hitting

clients sending broadcast probes, we define the broadcast hit
rate, denoted as hb = nb

Nb
. hb defines that among Nb clients

sending broadcast probes, nb are finally connected. Note that

hb = 0 for a KARMA attacker since it cannot lure any clients

sending broadcast probes. However, the fact that hb = 3%
indicates that there still might be much room for MANA to

improve.

TABLE I: Comparing the results of KARMA and MANA

Attack
Total Direct/

Clients connected h hbprobes Broadcast
KARMA 614 85/529 24 (direct); 0 (broadcast) 3.9% 0
MANA 688 103/585 27 (direct);19 (broadcast) 6.6% 3%

Therefore, we ask the following questions: (1) Why MANA

has such a low hit rate for clients sending broadcast probes?

(2) Is it possible to launch an ETA with a much higher

performance than MANA?

To answer these questions, we first analyze the problems

of MANA based on tests in different public places. Then

we propose City-Hunter. The fundamental architecture of

City-Hunter, in some sense, is similar to MANA: upon

receiving a broadcast probe from a client, an attacker responds

with some previously stored SSIDs, hoping to hit the PNL of

the client. However, City-Hunter is different from MANA in

all of the major aspects: (1) the sources of SSIDs (2) the way of

maintaining these SSIDs, and (3) the way of selecting SSIDs

to hit a client. City-Hunter establishes and maintains an SSID

database by integrating both offline and online information.

Meanwhile, it smartly chooses SSIDs to maximize the hit rate.

We evaluate the performance of City-Hunter in public places

with different crowd density (the number of people per square

metre) and different mobility pattern (the average walking

speed of people). The results demonstrate that the average

broadcast hit rate hb of City-Hunter is 12% ∼ 18%, about

4 ∼ 8 times improvement compared to MANA.

II. RELATED WORKS

Recently years, how to launch and thwart an evil twin

attack (ETA) has attracted many attentions. KARMA attack

[3] is the most popular approach to implement the ETA.

Correspondingly, a remarkable amount of work has been done

to detect the presence of ETA. According to who will be

responsible for the ETA detection, existing solutions can be

classified into two categories. The works proposed in [6][7]

rely on the network operator which runs a system to detect

ETA. On the other hand, in [10][4][11][5][12], mobile clients

are responsible for detecting rouge APs.

Besides the detection of ETA, the current Wi-Fi protocols

of most Andriod and iOS operating systems have significantly

improved the level of security. Most Wi-Fi clients now only

send 802.11 broadcast probe requests which do not contain

any SSIDs. Without the SSID information, ETA like KARMA

cannot work well as before.

Correspondingly, an enhanced attack called MANA [9] is

proposed. MANA stores these SSIDs collected from unsafe

mobile devices which still send direct probes containing

SSIDs, and utilizes them to respond to a broadcast probe from

a client. However, the real deployment of MANA shows that

there is still much room for MANA to improve.

In this paper, we take an attacker’s perspective and focus

on finding the answer to the relatively low attacking rate

of MANA. Based on the analysis of MANA, we propose a

new attacking strategy, called as City-Hunter. The deployment

of City-Hunter demonstrates that it can achieve much higher

attacking rate compared to KARMA and MANA.

III. PRELIMINARY DESIGN

In this section, we wish to find out why MANA has low

efficiency to hit clients sending broadcast probes, then we

describe the corresponding solutions.

As we previously discussed, MANA implements two tasks:

(1) upon receiving a direct probe request, MANA adds the

contained SSID into the database; (2) upon receiving a

broadcast probe request, MANA responds with all the SSIDs

in the database. However, further analysis shows that there are

some problems when MANA implementing these two tasks.

A. Changing the way of sending SSIDs

Intuitively, a larger SSID database should help MANA hit

more clients than a smaller one. However, our experimental

results show a different story.

We utilize the data collected in our previous experiment in

the canteen. Fig. 1(a) shows the size of the SSID database

and the total number of clients that were connected. Note that

the latter only considers the clients sending broadcast probes,

which directly reflects the efficiency of the SSID database.

We can see that in this 30-minute test, both of these two

curves increase steadily with time. This however indicates that

the increase of SSID database does not help MANA hit more

clients. To observe it more clearly, we define the real-time

broadcast hit rate as hr
b =

nr
b

Nr
b

. hr
b shows that within a certain

time window, nr
b out of Nr

b clients are successfully hit by the

SSIDs in the database. hr
b reflects the real-time efficiency of

the SSID database. hr
b in this test is shown in Fig. 1(b), in

which we calculate hr
b for every 2-minute time window. From

Fig. 1(b), there is no salient evidence to show that the increase

of the size of SSID database can help to improve the efficiency

of the SSID database.

After further analysis, we found the reason. According to

IEEE 802.11 standard, after having sent a probe request, a

client will wait for about 10ms for a first probe response,

and if no probe response is received within 10ms, it waits

for another 10ms. This means that for an AP working on a

certain channel, a client can only wait at most 10ms after

receiving a first probe response. Considering transmitting one

probe response from an AP to a client takes about 0.25ms
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Fig. 1: (a) The size of the SSID database and the corresponding number of clients that were connected to the attacker using

the SSID database. (b) The real-time broadcast hit rate hr
b .

[13], a mobile client hence can only receive about 40 probe

responses in one scanning period from a certain AP.

From the discussion above, we can see that in MANA’s way

of sending the SSID database all at one time, only the first 40

SSIDs can be received by the client. This is one of the most

important reasons of the low efficiency of MANA. There is

a simple solution to handle this problem: upon receiving a

broadcast probe request from a client, the attacker will reply

40 SSIDs in the database that have not been sent to this client
before. This requires that the attacker should record the MAC

addresses of all the clients it tried to connect but failed in the

past, and maintains an un-tried SSID list for each of them.

We can expect that by effectively utilizing more SSIDs, the

hit rate can be improved.

B. Incorporating more SSIDs

MANA purely relies on received direct probes to establish

its SSID database. The consequences are twofold. First, the

size of SSID database is small at the initial stage, and may

also increase slowly if MANA attacker is deployed in a less

crowded area. Second, the efficiency of SSID database is

purely determined by the ‘quality’ of received direct probes,

which we cannot control in real conditions. We may end

up with a large database but the contained SSIDs have low

probability to hit other clients.

Intuitively, if we can obtain, using sources other than direct

probes, some popular SSIDs that may exist in the NPLs of

many mobile phones, then adding these SSIDs in the database

can help to improve the hit rate. Fortunately, information

of these SSIDs can be found from Wireless Geographic

Logging Engine (WiGLE) [14], whose database contains all

the wireless networks with their geographic locations.

With data from WiGLE, shall we incorporate all SSIDs

found in the WiGLE? The answer is negative. Doing this way

can generate a very large SSID database. As only 40 SSIDs

can be tested for each broadcast probe received, it is quite

possible that a MANA attacker does not have a chance to send

a large number of SSIDs to a certain client, even the latter is

in a relatively static environment like canteens. Therefore, we

only select part of the SSIDs in the WiGLE.
The selection is based on the following two criteria. First,

SSIDs of APs which are geographically near to the attacker are

selected. This is based on the assumption that many mobile

phones passing by the attacker may have connected to the

nearby APs before. In City-Hunter, we simply select 100 the

SSIDs near to the attacker.
Second, we also found that some SSIDs, although their APs

are not located close to the attacker, have high probability

to hit the nearby clients. There are two types of APs under

this category. SSIDs of the first type have APs city-wide

distributed. Among the examples are the SSIDs of some small

but popular brand-shops, like ‘7-Eleven’ and ‘Starbucks’.

For example in Hong Kong, 924 APs have the same SSID

‘7-Eleven Free WiFi’. SSIDs of the second type have APs

located in some important areas like large railway station,

airport, and shopping centers. For example, 231 APs have the

SSID ‘#HK Airport Free WiFi’ in Hong Kong airport. This

SSID can have high hit rate since many people have been to

the airport and connect to the APs.
For the SSIDs belong to the second type, we simply count

the number for their APs in the whole city and select those

with high counts. Finally, we should note that only SSIDs

belong to free APs from WiGLE are selected, which allows

further association and authentication to be implemented

automatically without user interaction.

C. Experiment result
In this section, we show the performance of City-Hunter

after incorporating the two improvements described above.
Experiment in the canteen. We carried out a 30-minute

experiment in the canteen where we tested KARMA and

MANA. Table II shows the results of City-Hunter. For

comparison, the results for MANA deployed in the canteen

are also illustrated.
In this test, City-Hunter received probes from 626 mobile

phones, and successfully connected 120 out of them. The

hit rate h = 19.1%. Compared to MANA which has h =
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TABLE II: Comparing the results of MANA and City-Hunter

incorporating the two improvements

Attack
Total Direct/

Clients connected h hbprobes Broadcast
MANA 688 103/585 27 (direct);19 (broadcast) 6.6% 3%
City-Hunter 626 85/541 34 (direct);86 (broadcast) 19.1% 15.9%

6.6%, City-Hunter has a significantly higher hit rate. This

improvement is due to the SSID database of City-Hunter, using

which City-Hunter has successfully hit 86 out of 541 clients

(hb = 15.9%). In contrast, using its SSID database, MANA

only hit 19 out of 585 clients, with hb = 3%.

Why City-Hunter has a higher hb than MANA? This can be

attributed to the two improvements we described previously.

The effect of the first improvement, changing the way of

sending SSIDs in the database, can be illustrated in Fig. 2(a).

The figure shows the number of SSIDs that have been sent

to each of the connected clients. We can see that for these

connected mobile phones, the number of SSIDs that have been

tried ranges from 20 to 250, with an average of 130. As a

comparison, in MANA, at most 40 SSIDs are received for

each client. Sending more SSIDs to a client obviously can

improve the hb of the attacker.

The effect of the second improvement, incorporating SSIDs

from WiGLE, can be observed by the fact that among 86

connected clients sending broadcast probes, 64 (about 74%)

are hit by the SSIDs from WiGLE.

Experiment in the subway passage. We carried out another

experiment in the subway passage, and the results are shown in

Table III. We can see City-Hunter deployed in the passage has

much lower performance than in the canteen. The key problem

is the low efficiency of the SSID database in the passage: the

broadcast hit rate hb in the passage is only about 4.1%, much

lower than 15.9% in the canteen.

TABLE III: Performance of City-Hunter in the subway passage

Scenarios
Total Direct/

Clients connected h hbprobes Broadcast
Subway Passage 1356 178/1178 37 (direct);49 (broadcast) 6.3% 4.1%

Why in the passage City-Hunter has a much lower hb?

Further analysis shows that it is due to the different movement

patterns of the people in these two conditions. In the canteen,

most people near the attacker are sitting still, and therefore

more SSIDs can be tried for each client. While in the passage,

considering people nearby are keeping moving, City-Hunter

normally is not able to send as many SSIDs to the clients as

in the canteen, and its hb is therefore lower.

As a demonstration, Fig. 2(b) shows the histogram of the

number of SSIDs that have been tested for all the 1178 mobile

phones sending broadcast probes in the subway passage. We

can see that for most clients (about 70%), only 40 SSIDs have

been tested; and 80 SSIDs have been sent to 22% clients.

Compared to the case in the canteen where on average 130

SSIDs have been tested for each connected mobile phone, the

number of SSIDs sent in the passage is much smaller.

We can see that City-Hunter is not able to work well in an

area where people are constantly moving. This problem will

be addressed in the next section.

IV. ADVANCED DESIGN OF CITY-HUNTER

In this section, we will describe the architecture of the final

City-Hunter that we designed.

A. System overview and design principles

In an place where people are moving continuously, an

attacker normally is only able to test a limited number of

SSIDs for a client. Therefore, upon receiving a broadcast probe

from a client, it is natural that the SSIDs which have higher
probability to hit the client should be sent earlier. This is

the key idea for City-Hunter to improve its hit rate when

deployed in a subway passage-like environment. Then we have

one question to answer: given an SSID, how do we estimate

the its probability to hit a client?

We argue that an SSID should have a higher chance to hit

a client if one of the following criteria is satisfied:

• Popular in WiGLE: The SSID has many APs located near

the attacking location or are city-wide distributed.

• Good record of hit: Using this SSID, the attacker has

successfully hit many clients after deployment.

• Good freshness: It is not long since the SSID’s latest

successful hit.

The first two statements are self-explanatory and will not be

justified for brevity. The third requirement about freshness is

obtained from our observation. We found that if an SSID just

successfully hits a client, then within a short period of time,

it has a relatively high probability to hit more clients. Further

analysis reveals that this is because many people walking

together have certain kinds of social relationship (e.g. families,

friends). As a result, their mobile phones usually share some

SSIDs in common. Therefore, if an SSID has just hit one

person, it has higher probability to hit his/her companions.

To evaluate an SSID’s probability for a potential hit, a

straightforward strategy is to first assign three values, one for

each of the three criteria, and then take the linear combination

as the indicator of the probability of the SSID to hit a client.

However, this requires careful tuning of many parameters

including the values for three criteria and the coefficients of

combing these values afterwards. Instead, we use the following

method to incorporate these three types of information.

The basic idea is that when selecting SSIDs to hit a client,

we select from two buffers, one containing a number of SSIDs

with good popularity and the other includes a few SSIDs with

good freshness. Here the popularity of an SSID is initially set

by WiGLE and then updated according to its hit record after

the attacker is deployed. The freshness of an SSID is purely

determined by its latest time of hit.

Fig. 3 shows the logic flow of how City-Hunter addresses

broadcast probes. Note that for the direct probes, City-Hunter

utilizes the same approach as in KARMA and details are

omitted. From Fig. 3, we can see that City-Hunter implements

the following four steps:
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Fig. 2: (a)The number of SSIDs that have been sent to each of the connected mobile phones in the canteen, (b)The histogram

of the number of SSIDs that have been tested for all the 1178 mobile phones sending broadcast probes in the passage.
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Fig. 3: The logic flow of City-Hunter.

1. Database initialization. This step generates an SSID

database before the attacker is deployed. Some SSIDs from

WiGLE are added into the database. Each SSID is given a

corresponding weight indicating its popularity in WiGLE.

2. On-line database updating. This step is to maintain

the SSID database by adding new SSIDs into the database or

updating weights of SSIDs after the attacker has been deployed

on site. The weight of each SSID is initially determined by

WiGLE and then updated according to its actual hit record.

In addition, we maintain a fixed-sized buffer which contains a

certain number of SSIDs with recent hit record. To summarize,

we can say that we maintain two databases, one ranked by

popularity, and the other ranked according to freshness.

3. SSID selection and buffer size adjustment. This step

is to select the SSIDs for responding to a broadcast probe.

From the previous two databases, we obtain two buffers,

one containing SSIDs with good popularity, and the other

with good freshness. In addition, subject to the limit of

total size (40), we wish the size of the two buffers can be

adjusted automatically according to the real conditions. We

399166

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:45:01 UTC from IEEE Xplore.  Restrictions apply. 



will describe this part in detail in Section IV-C.

4. Sending SSIDs to broadcast probes. This step is to

send the selected SSIDs to respond to the broadcast probe.

Then we go to the step 2 and the procedures repeat. In the

following sections, we will describe some details of the four

steps above.

City-Hunter shown in Fig. 3 only sends 40 SSIDs that can

maximize the hit rate. Therefore, it is mostly suitable for areas

like subway passage where people have high mobility pattern.

For conditions where City-Hunter has chance to send more

than 40 SSIDs to a client, we modify it slightly in the similar

way as described at the end of Section III-A. City-Hunter

records the MAC address of all the clients it tried to connect

and the corresponding SSIDs that have been sent this client.

Upon receiving a probe request, it will reply 40 SSIDs in the

database that have not been sent to this client before.

B. Database initialization and updating

Having added SSIDs from WiGLE into the database, we

need to assign an initial weight for each SSID. A natural

way of assigning the weight is according the number of APs.

This way of assigning weight seems to appropriate for SSIDs

with APs distributed city-wide like ‘7-Eleven Free Wifi’, but

can underestimate some SSIDs with APs located in some

important functional areas of a city. For these SSIDs, although

the number of corresponding APs may be limited, the high

hit rate of these SSIDs in our tests indicates a greater weight

should be assigned than using the APs’ number. For example,

there are 231 APs with the SSID ‘#HK Airport Free WiFi’.

According to the number of the APs, this SSID only ranks 13,

but the hit rate of using this SSID is constantly among top 5

in all of our tests carried out in Hong Kong.

The reason for the high hit rate of these SSIDs with limited

APs lies in their location: The APs of these SSIDs are located

in hot areas that many people may have visited. This indicates

that a more accurate way of assigning initial weight should

not only consider the number of APs, the number of people

(including residents, tourists, commuters, etc.) around these

APs must also be included. Therefore, we need something

like a heat map of the city, with the heat value at a location

reflecting the number of people at that location. For a certain

SSID, we find out the heat values at the locations of all its

APs, add them together, and take the summation as the final

heat value for this SSID. An SSID with a large heat value

generally has APs located in crowded areas, and hence has

higher probability to hit a client.

However, such a heat map is not readily available.

Using district-level population distribution of a city is too

coarse-grained and can even be biased since commuters and

tourists are not taken into consideration.

We take the following approach to generate a heat map.

The information of a number of people in a certain area is

estimated by the number of panoramio photos of the area

that people posted to Instagram. We assume that the number

of photos of an area posted roughly reflects the number of

people there. Fig. 4 shows the heat map we generated for

two districts of Hong Kong (Kowloon and Lantao Island).

The green areas have few photos and the red areas have more

photos geotagged. From Fig. 4(a), we can see some red areas

in Kowloon include iSQUARE and the ONE, the two large

shopping malls in Hong Kong. In Fig. 4(b), Hong Kong airport

is a hot area in Lantao Island. All these red areas on the heat

map are crowded places with a large number of people. The

fact justifies the applicability of our proposed approach.

Table IV compares the top 5 SSIDs ranked by the number

of APs and the top 5 SSIDs with the largest heat value. We can

see that by considering the number of people, ‘#HKAirport

Free WiFi’ now is in the top 5. Another SSID that is upgraded

into top 5 is ‘Free Public WiFi’. This SSID has about 400 APs

mostly deployed in various crowded locations.

TABLE IV: The top 5 SSIDs selected using different criteria

Rank Top 5 SSIDs with Top 5 SSIDs with
maximum APs maximum heat values

1 -Free HKBN Wi-Fi- Free Public WiFi
2 7-Eleven Free Wifi #HKAirport Free WiFi
3 -Circle K Free Wi-Fi- -Free HKBN Wi-Fi-
4 CSL FREE 3Y5 AdWiFi
5 CMCC-WEB 7-Eleven Free Wifi

With the heat value of a SSID, we determine its weight

using the ratio method proposed in [15].We first rank the 200

SSIDs selected according to their heat values. The top SSID

will be assigned with weight 200 and the lowest SSID will

be assigned with weight 1. The same rule also applies to the

selected 100 SSIDs that are nearby to the attacking location.

After deploying City-Hunter, its database will be updated

by adding new SSIDs into the database and by adjusting

the weight of SSIDs according to the real conditions. The

updating occurs in the presence two conditions: (1) an SSID

just successfully hits a client sending broadcast probe, and (2)

the attacker receives an SSID contained in a direct probe.

C. Dynamic buffer size adjustment

Selecting a SSID in the database to respond to a

broadcast probe should consider both its popularity and

freshness. City-Hunter maintains two buffers. One buffer,

called Popularity Buffer (PB), contains SSIDs with highest

weight in the SSID database and the other buffer, called as

Freshness Buffer (FB), contains SSIDs with recent hit. The

problem then becomes under the constraint of total size 40,

how to determine the size of PB and FB. Moreover, instead of

setting fixed sizes like 35 v.s. 5, we feel it is more appropriate

that the size of the two buffers can be automatically adaptive to

the real conditions that may change with time and locations.

In other words, we need to balance the popularity and the

freshness according to real conditions.

Our current problem of selecting SSIDs to hit a client, in

some aspects, is similar to cache algorithms which decide

which pages should be stored in the cache to maximize the

hit ratio (defined as the frequency of a searched-for item is

actually found in the cache). Furthermore, most of the classic

cache algorithms, when updating the items in the cache, also
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(a) Kowloon (b) Lantao Island

Fig. 4: The heat map generated for three districts of Hong Kong. (a) Kowloon, and (b) Lantao Island.

consider the freshness (generally called as recency) and/or the

popularity (called as frequency) of items. In particular, the

Adaptive Replacement Cache Algorithm (ARC) [16] is able to

balance between recency and frequency dynamically according

to the real workload patterns.

Inspired the ARC, we design the following approach to

adaptively adjust the size of the PB and FB. The key idea

lies in the two ghost lists of PB and FB (see step 3 in Fig. 3).

The ghost list of PB contains SSIDs which are less popular

than those in PB, and the ghost list of FB contains SSIDs that

are less fresher than those in FB. When selecting SSIDs, some

SSIDs in the two ghost lists are also included. Furthermore,

the performance of SSIDs in the two ghost lists (whether we

have a successful hit using these SSIDs) will be utilized for

adjusting the size of PB and FB. For example, if we have a

successful hit using an SSID in the ghost list of PB, this is a

sign that the PB is to small, then the size of the PB is increased

by one. Considering the constraint of 40, the size of FB will

be decreased by one at the same time. Likewise, a hit using

an SSID in the ghost list of FB will increase the size of FB.

With this mechanism, City-Hunter adapts itself to the

different conditions. If currently people near the attacker are

walking in groups and share similar SSIDs in their PNLs, it

would have more hits in the ghost list of the FB and thus the

size of FB will increase, favoring more to SSIDs with recent

hit. And vice versa, if people nearby do not have certain kinds

of relationship, it would have more hits on the ghost list of

PB and thus the size of PB will be increased, favoring more

to SSIDs with high popularity.

In City-Hunter, the size of both ghost lists is 20. Each time

when choosing SSIDs, besides selecting SSIDs in the PB and

FB, we randomly select 2 SSIDs (10%) from each of the ghost

lists to replace the lowest two in the PB and FB.

V. EXPERIMENTS AND EVALUATION

A. The evaluation in different areas

We prototype City-Hunter with the commodity Raspberry

Pi. The transmission power is set to be 100 mW. We deployed

City-Hunter in four different places. The first two places are

the subway passage and the canteen described in Section, and

the last two places are a shopping center and a railway station.

People in these areas have different mobility patterns: In the

subway passage, almost all the people are moving relatively

fast. While in the canteen, most people are static or moving

with low speed. People in the last two places have a hybrid

mobility pattern in the sense that some of them are relatively

static while others are moving fast.

In each place, a number of tests were carried out at different

time slots from 8am to 8pm. Each test last about 1 hour.

Note that the database of City-Hunter were initialized before

each test. The results are shown in Fig. 5. The four upper

figures of Fig. 5 show the number of the clients whose

probes were received in these places. These clients are further

classified into four categories: those sending broadcast probes

that were finally connected/not connected, and those sending

direct probes that were finally connected /not connected. The

bottom figures of Fig. 5 show the hit rate h and broadcast hit

rate hb in these tests.

For example, from the first stacked bar shown in upper

figure of Fig. 5(a), we can see that in the passage test from

8am ∼ 9am, City-Hunter received probes from a total of

2562 clients. Furthermore, from top to bottom, the stacked

bar shows that for clients sending broadcast probes, 312 were

finally connected and 1968 were not; for clients sending

direct probes, 66 were connected and 216 were not. The

corresponding hit rate h = 14.7%, and the broadcast hit rate

hb = 13.6%. From Fig. 5, we have the following observations.

First, the number of clients whose probes were received

(indicated as the height of bars in Fig. 5) in these tests shows
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Fig. 5: The performance of City-Hunter in (a) a subway passage, (b) a canteen, (c) a shopping center, and (d) a railway station.

salient temporal pattern. For example, subway passage tests

have two peaks corresponding to the two rush hours 8am ∼
9pm, and 6pm ∼ 7pm, respectively; and tests in the canteen

show three peaks during typical mealtime.

Second, in all tests, the overall hit rate h is always larger

than the corresponding broadcast hit rate hb. This is due

to the fact that it is much easier for City-Hunter to trick a

client sending direct probes than to connect a client sending

broadcast probes.

Third, City-Hunter performs differently in these places. For

example, the average hb is 12% in the subway passage while is

17.86% in the canteen. The average hb for the shopping center

and the railway station is about 14% and 16.6%, respectively.

We believe that the difference is mainly due to different

mobility patterns. In a place where people are static or with

low mobility, City-Hunter can sent more SSIDs to try to hit

their mobile phones, and therefore can achieve higher hb.

Finally, at a certain place, City-Hunter performs differently

at different time slots. Particularly, it is interesting that both h
and hb, especially the latter, are higher in the rush hours. This

pattern is salient in Fig. 5(a), and can still be observed in the

remaining three figures. We suspect that there are two reasons.

First, in rush hours when we have many people nearby, the

SSID database can accumulate a large amount of SSIDs from

direct probes within a short period of time, thus achieving

higher hit rate. Second, in rush hours we may have more

people walking in groups, and hence City-Hunter has more

chance to use a recent SSID to hit one’s companions.

To evaluate the effect of some designs in City-Hunter, such

as using WiGLE or combining popularity with freshness, we

further breakdown the SSIDs that successfully hit the clients

sending broadcast probes. According to the source of these

‘successful’ SSIDs, they can be classified as from WiGLE,

or from direct probes. These SSIDs can also be classified as

those from the popularity buffer (and its ghost list), and from

the freshness buffer (and its ghost list).

Fig. 6 shows the detailed breakdown of the SSIDs in these

tests. For example, the first two stacked bars in Fig. 6(a)

correspond to the passage test during 8am∼ 9am. The first

bar shows that among the 312 SSIDs that hit clients sending

broadcast probes, 243 are from WiGLE and 69 are from direct

probes. The ratio between two numbers, 243/69 = 3.5, is
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Fig. 6: The breakdown of the SSIDs that successfully hit the clients sending broadcast probes when City-Hunter is deployed

(a) in a subway passage, (b) in a canteen, (c) in a shopping center, and (d) in a railway station.

shown on top of the bar. The second bar shows how these

312 SSIDs can be classified as from the popularity buffer and

the freshness buffer. The ratio between them is also shown on

top of the bar. From the breakdown of these SSIDs, we have

the following observations.

First, compared to the direct probes, WiGLE contributes

more SSIDs that make successful hit. Similarly, compared

to the freshness buffer, more successful SSIDs are sent from

popularity buffer.

Second, although WiGLE is more important than direct

probes in contributing successful SSIDs, the contribution from

the latter is higher during rush hours than in non-rush hours.

For example in Fig. 6(a), the contribution from direct probes

and from WiGLE is 1:3.5 during 8am∼9am, but decreases

to 1:5.1 for 9am ∼10am. This may be because City-Hunter

receives more direct probes in rush hours, and they are more

likely to hit nearby people walking in groups.

Third, although popularity buffer contributes more

successful SSIDs than the freshness buffer, the percentage

of their contributions is different at different places. In the

railway passage, the contribution from freshness buffer and

from the popularity buffer is between 1:6.3 ∼ 1:9.9, while

increases to 1:3∼1:5.2 in the canteen. The reason might be

that in canteen, many people eating together have some social

relationship and hence share common SSIDs. Therefore,

SSIDs in the freshness buffer have a relatively higher chance

to hit a client. On the contrary, most commuters in subway

passage do not have such a strong pattern.

B. Further improvement in some particular conditions

We notice that in some conditions, there are several potential

approaches to further improve the performance of City-Hunter.

First, we observed that a client which has established a

connection with an authenticated public AP barely sends out

the probe request frames, which prevents the malicious from

launching attacks to it. In order to address this issue, we can

adopt an attack method called de-authenticated attack [17] to

disconnect the clients from the AP and force them to initialize

a new scanning process. This approach enables City-Hunter to

work well in conditions where many people are already being

connected to some local APs.

Besides, we noticed that iOS initially stores the SSIDs of

mobile carriers’ APs in the PNLs. For example, an iPhone

that subscribes the service of the mobile carrier PCCW will

automatically connect to the carrier’s APs (SSID:PCCW1x)

even the user has not used any public Wi-Fi services

before. Therefore, we could efficiently lure the iOS users

who subscribe those mobile carriers’ services by adding the

corresponding SSIDs into the database. Note that the SSID

information of mobile carrier generally cannot be obtained

from WiGLE, or from direct probes.
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VI. CONCLUSION

In this paper, we introduce City-Hunter, a new attacking

approach that can lure nearby mobile devices efficiently and

stealthily in crowded urban areas. City-Hunter establishes an

SSID database using the online AP distribution information

and maintains the database in a real-time manner. Meanwhile,

it chooses the most probable SSIDs to hit a client according to

real conditions. We evaluate the performance of City-Hunter

in different places at different time slots, and the results

demonstrates the performance of City-Hunter. At last, we

should emphasize that existing techniques to detect evil twin

APs, either solutions relying on the network operator, or

client-based solutions deployed on users devices, can still work

as effective countermeasures for the City-Hunter.
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