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MBA-STNet: Bayes-enhanced Discriminative
Multi-task Learning for Flow Prediction

Hao Miao∗, Jiaxing Shen∗, Jiannong Cao, Fellow, IEEE , Jiangnan Xia, and Senzhang Wang†

Abstract—Crowd flow prediction, which aims to predict the in/out flows of different areas of a city, plays a critically important role in
many real-world applications including intelligent transportation systems and public safety. The challenges of this problem lie in both
the dynamic mobility patterns of crowds and the complex spatial-temporal correlations. Meanwhile, crowd flow is highly correlated to
and affected by the Origin-Destination (OD) locations of the flow trajectories, which is largely ignored by existing works. In this paper,
we study the novel problem of predicting the crowd flow and flow OD simultaneously, and propose a Multi-task Bayes-enhanced
Adversarial Spatial Temporal Network entitled MBA-STNet to effectively address it. MBA-STNet adopts a shared-private framework
which contains private spatial-temporal encoders, a shared spatial-temporal encoder, and decoders to learn the task-specific features
and shared features. To effectively extract discriminative shared features, an adversarial loss on shared feature extraction is
incorporated to reduce information redundancy. A Bayesian heterogeneous Spatio-temporal Attention Network is designed to learn the
complex spatio-temporal correlations and alleviate the problem of data uncertainty. We also design an attentive temporal queue to
capture the complex temporal dependency automatically without the help of domain knowledge. Extensive evaluations are conducted
over the bike and taxicab trip datasets in New York. The results demonstrate that the proposed MBA-STNet is superior to
state-of-the-art methods.

Index Terms—Flow Prediction, Multi-task Learning, Bayesian Neural Network, Adversarial Learning.
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1 INTRODUCTION

C ROWD flows including in- and out- flows reflect the
human mobility dynamics in different areas of a city,

as shown in Fig. 1(a). Such flows can be measured by
various human mobility data such as taxi trajectories, shared
bike trips, and subway check-in/out records. Crowd flow
prediction, which refers to predicting the sizes of crowds
entering or leaving a particular region of a city, plays a
vital role in various urban computing applications and has
attracted increasing research interest recently [1], [2], [3]. For
example, an accurate forecast of the traffic flow can facilitate
more effective traffic management and derive better travel
route planning [4].

Due to the significance of crowd flow prediction, a
considerable research effort has been devoted to developing
effective prediction models [4], [5], [6]. Existing approaches
mostly model the crowd flow in city regions as ”images”,
and then apply deep learning models that are effective in
image processing for future crowd flow ”image” prediction
[3], [7], [8]. However, many real-world applications not
only care about how many people will enter a region but
also need to know where the crowds come from, namely
the Origin-Destination (OD) of the flows (Fig. 1(b)). As
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Fig. 1. Illustration of crowd flow and flow OD, where each grid denotes a
region.

illustrated in Fig. 1, the crowd flows are highly correlated
to flow OD. It is obvious that the inflow of a region is
equal to the sum of OD flows ending in that region, and
the outflow of a region is equal to the sum of flow OD
starting from that region. OD prediction aims to predict
the number of passengers from one region to another [9],
[10]. Although they are highly correlated to each other,
most existing works conduct crowd prediction and flow
OD prediction tasks separately without considering their
mutual influence. In this paper, we aim to predict the crowd
flows and flow OD simultaneously under a unified multi-
task learning framework. Our insight is that the two tasks
are complementary to each other and share some common
latent features, by combining which the prediction perfor-
mance can be mutually enhanced.

However, this problem is non-trivial to address due
to the following challenges. There lacks an off-the-shelf
method that can effectively decompose the two types of data
into shared features and task-specific features for multi-task
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Fig. 2. Examples of spatial and temporal uncertainty in crowd flow
distribution, where the distributions are generated by kernel density
estimation (KDE) [11].

learning. Although some multi-task models are proposed
[12], they still suffer from the issue that the learned common
features and task-specific features are somewhat blended,
leading to information redundancy. In addition, data uncer-
tainties, including spatial uncertainty and temporal uncer-
tainty, are common in our flow data. An example of the un-
certainty in terms of crowd flow distributions in New York
is illustrated in Fig. 2. Fig. 2 (a) reveals that the spatial dis-
tributions in different regions (i.e., r6,6, r7,7, r7,8 on January
1, 2015) are different, even they are geographically close.
Fig. 2 (b) shows the temporal uncertainty through analyzing
the data distributions in different days (i.e., Jan. 1, Jan. 2
and Jan. 8, 2015) of the region r9,9. The data distribution
on Jan 1 (Thursday) is similar to that on Jan 8 (Thursday),
but there is a data fluctuation which is marked with a red
rectangle. Moreover, the blue rectangle shows there is a
distribution shift between the data on Jan. 1 and Jan. 2.
The data distribution fluctuation and shift both show the
existence of temporal uncertainty. Such data uncertainties
are not considered in existing multi-task learning methods,
which will lead to model performance degrade [13], [14].
Besides, the spatial correlations of the crowd flows are com-
plex, and sometimes do not follow the spatial smoothness
[1], [15]. With the development of public transportation,
the First Law of Geography: ”near things are more related
than distant things” may not fully reflect the spatial corre-
lations of the crowd flows in urban areas. It is necessary
to incorporate the semantic spatial correlations. Finally, the
temporal correlation of the crowd flows is also complex
and multi-scale, including temporal closeness, periodic and
trend properties. Existing approaches need to manually ex-
tract multi-scale temporal correlations separately, and then
fuse them together with a carefully designed information
fusion component.

To tackle the aforementioned challenges, we propose
a Multi-task Bayes-enhanced Adversarial Spatio-Temporal
Network entitled MBA-STNet to predict the crowd flows
and OD of the flows simultaneously. To better capture the
spatial correlations of the flow data, we propose to model
the raw flow trajectories as two types of data representa-
tions, semantic spatial-temporal graphs and flow images.
The semantic spatial-temporal graph is built adaptively
following the graph construction rules in AGCRN [16]. In-
spired by bayesian neural networks [13], a Bayes-enhanced
Heterogeneous Spatial-Temporal Attention Net (BHSTAN)
is proposed to first encode the graphs and images sepa-

rately, and then integrates them together for the aim of
overcoming the problem of data uncertainty, and fuse the
feature learning on semantic spatial-temporal graphs and
flow images. We jointly learn features of the two tasks under
a shared-private framework which generally decomposes
the task features into two feature spaces: one is task-specific
features, and the other is the shared features. To address the
issue that the shared space could contain some task-specific
features, while some sharable features could also be mixed
in private spaces [17], we propose to add an adversarial loss
for shared features and an orthogonality loss for private
features to make private features of different tasks more
distinguishable while shared features more similar. Finally,
to automatically capture the complex temporal correlations,
a temporal queue coupled with an attention mechanism
is also designed. The attentive temporal queue component
enables our model to store the latent feature representations
of historical crowd flows and OD of the flows in a long
period (several weeks), from which the most useful ones for
future prediction are attentively selected.

To summarize, our main contributions are as follows.

• We propose a novel bayes-enhanced adversarial
multi-task learning framework to collectively and
simultaneously predict the crowd flows and OD of
the flows. Under a shared-private feature learning
framework, the proposed approach can effectively
couple the two highly correlated tasks to share com-
plementary spatial-temporal knowledge.

• An adversarial loss and a discriminative orthogonal-
ity loss are integrated into the multi-task learning
framework to reduce feature redundancy, so that
features in different latent spaces are more distin-
guishable.

• A Bayes-enhanced heterogeneous spatial-temporal
attention net is proposed to integrate the local and
global spatial features from the flow images and
semantic spatial temporal graphs, and alleviate the
influence of data uncertainty. To automatically cap-
ture the complex temporal correlations, an attentive
temporal queue is designed to select the most rele-
vant historical data representations for prediction.

The proposed MBA-STNet is an extended version of
MT-ASTN [15] which was proposed in our earlier paper
published at CIKM2020. In a nutshell, We replace Het-
erogeneous Spatio-Temporal Network in MT-ASTN with a
newly designed Bayesian Heterogeneous Spatio-Temporal
Attention Net in order to fuse feature learning of graphs and
images and relieve the influence of data uncertainty. The
construction of semantic graphs in [15] is labor-intensive,
we improve it by constructing an adaptive semantic spatio-
temporal graph for global spatial dependencies capturing,
which is capable of reflecting the global mobility patterns of
crowds with the training of the model. We also re-conduct
most of the experiments and add several experiments to
demonstrate the superiority of MBA-STNet.

The remainder of this paper is organized as follows.
Section 2 will review related works. Section 3 will give
some important notations and a formal problem definition.
Section 4 will show the model framework and introduce our
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methodology. Evaluations are given in Section 5. Finally, this
paper is concluded in Section 6.

2 RELATED WORK

This work is highly relevant to the research topics of crowd
flow prediction and OD prediction. Next, we will review
related works from the two aspects.

2.1 Crowd Flow Prediction
Crowd flow prediction, which has attracted rising interest
due to the increasingly available urban data and rich appli-
cations, has been studied for many years [3], [6], [18]. Tra-
ditional crowd flow prediction models are mostly statistics-
based approaches such as ARIMA [19], [20] and SVR [21].
The major limitation of the above statistics-based traffic flow
prediction models is that the complex temporal and spatial
correlations of spatio-temporal data are hard to be captured
due to their limited learning capacity.

With the advances of deep learning techniques, vari-
ous deep neural network models are broadly applied and
have achieved much better performance than traditional
statistics-based shallow models, such as ST-ResNet [3], Con-
vLSTM [7] and DCRNN [8]. Wang et al. [2] provided a
comprehensive review of recent progress in applying deep
learning techniques for spatio-temporal data mining. A line
of studies applied CNN to capture the spatial correlation
by treating the traffic flow data of the entire city as images.
Another line of research is combining CNN model and RNN
model to capture both spatial and temporal correlations
[22]. Yao et al. [1] proposed a Spatial-Temporal Dynamic
Network (STDN) model for road network based flow pre-
diction. Cheng et al. [23] Proposed the DeepTransport model
which combined CNN and RNN to capture the spatial
temporal traffic data within a transport network.

Recently, more and more studies focus on using graph
neural networks [24] for spatio-temporal data prediction [8],
[25], [26]. Li et al [8] proposed the Diffusion Convolutional
Recurrent Neural Network (DCRNN) to model the traffic
flow as a diffusion process on a directed road graph, which
is a deep learning framework for traffic flow forecasting. Yu
et al. [27] proposed STGCN model, which applied ChebNet
graph convolution and 1D convolution to extract spatial
dependencies and temporal correlations. Bai et al. [16] pro-
posed an adaptive graph convolution recursive network
(AGCRN), which used node adaptive parameter learning
and data adaptive graph generation modules to enhance
the traditional graph convolution network to automatically
capture the fine-grained spatio-temporal correlation in traf-
fic sequences.

Even though the above mentioned methods have
achieved great performance, these works consider crowd
flow prediction as a single task, but ignore the impact of
flow OD.

2.2 OD Prediction
Origin-Destination (OD) prediction [28], [29], [30] can ben-
efit many real applications such as ride-hailing services
and traffic management. Traditional methods mostly used
regression based approaches or statistic-based approaches

to predict or estimate the dynamic vehicle OD matrix in
a transportation network [31]. Researchers focus more on
region-level flow OD prediction rather than the vehicle
OD prediction on a road network, and more advanced
techniques are used such as deep learning and tensor factor-
ization models. Wang et al. [10] proposed Grid-Embedding
based Multi-task Learning model namely GEML to predict
the number of passengers from one region to another. Liu et
al. [9] studied the taxi origin-destination demand prediction,
and proposed a contextualized spatial-temporal network
which can model the local spatial context, temporal evolu-
tion context, and global correlation context. [29] developed
a deep learning model called multi-scale convolutional long
short-term memory network (MultiConvLSTM) to predict
the future travel demand and the OD flows. Zhang el at.
[32] proposed a channel-wise attentive split-convolutional
neural network for OD flow forecasting, which explicitly
considers the unique characteristics of the urban rail transit
system.

However, most existing works consider OD flow predic-
tion and crowd flow prediction as two separate problems
and ignore the high correlation between them. Although
Zhang et al. [12] proposed a multi-task deep learning model
MDL which can predict the flows at the nodes and transi-
tions between nodes in a spatial-temporal network simulta-
neously. MDL simply concatenates the features of different
tasks without distinguish which features are shared and
which one should be task-specific. How to effectively extract
the shareable features and perform the predictions of OD
and crowd flows collectively still remains an open problem.

3 NOTATIONS AND PROBLEM DEFINITION

In this section, we will first give some notations to help us
state the studied problem. Then a formal problem definition
will be given.
Definition 1. Cell region The city under study is divided

into a m × n grid map based on the longitude and lati-
tude. Each grid is an equal-sized cell region. We denote
all the cell region asR = {r1,1, . . . , ri,j , . . . , rm,n}, where
ri,j represents the i-th row and j-th column cell region
of the grid map.

Definition 2. Corwd flow image Let P be a collection of
crowd flow trajectories. Given a cell region ri,j , the
corresponding inflow and outflow of the crowds in time
slot t can be defined as:

xtin,i,j =
∑
Tr∈P

|{l > 1|gl−1 /∈ ri,j ∧ gl ∈ ri,j}|

xtout,i,j =
∑
Tr∈P

|{l > 1|gl ∈ ri,j ∧ gl+1 /∈ ri,j}|
(1)

where Tr : g1 → g2 → ... → gTr
is a trajectory at time

slot t in P , and gl is the geospatial coordinate; gl ∈ ri,j
means gl is within region ri,j ; | · | denotes the cardinality
of a set. Following [3], we denote the inflow and outflow
of all the cell regions in t as a crowd flow image X t ∈
Rm×n×2, where X ti,j,0 = xtin,i,j ,X ti,j,1 = xtout,i,j .

Definition 3. Flow OD matrix We define the flow OD matrix
at time slot t as Dt ∈ RN×N , where N = m × n is
the number of regions and each element dti,j denotes the
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Fig. 3. Framework of proposed MBA-STNet model, which contains four parts: Data Converting, ST Encoder, ST Decoder, and Prediction.

sizes of flows starting from i-th cell region and ending
at j-th cell region of R.

Definition 4. Flow OD image Given the flow OD matrix
Dt ∈ RN×N at time slot t, we construct the flow OD
imageMt ∈ Rm×n×N with N = m × n channels. Each
channelMt(:, :, i) denotes the size of trajectories staring
from i-th region and ending to all the other regions.

Based on the above definitions, we formally define the
studied problem as follows.
Problem Definition 1. Given the crowd flow images and

the flow OD images {X t,Mt|t = 1, . . . , T} in the cell
regions R over T time slots, and the external context
data E (e.g.Weather, holiday, etc.), our goal is to predict
{X T+1,MT+1} simultaneously.

4 METHODOLOGY

Fig. 3 shows the framework of the proposed MBA-STNet,
which consists of four major steps: Data Converting, Spatio-
Temporal (ST) Encoder, Spatio-Temporal (ST) Decoder and
Prediction. In the data converting step, we convert the
raw flow trajectories to crowd flow images, flow OD im-
ages, and semantic spatial-temporal graphs. This step will
be introduced in detail in Section 4.1. In the ST encoder
step, the shared-private framework is adopted for jointly
encoding features of the two tasks. As a popular multi-
task learning framework, shared-private framework aims
to separate shared features from task specific features. As
shown in the fig. 3, the designed ST encoder consists of a
shared encoder, and two private encoders for two tasks re-
spectively. The ST encoder contains several stacked Bayesian
Heterogeneous Spatial-Temporal Attention Net (BHSTAN)
layers. We first design Heterogeneous Spatio-Temporal At-
tention Net (HSTAN) to fuse feature learning of flow/OD
images and semantic ST graphs, which will be introduced

in Section 4.2 in detail. For overcoming the problem of
data uncertainty, we incorporate the idea of bayesian neural
network into HSTAN and further propose BHSTAN layers
whose parameters conform to a specific distribution (e.g.,
Gaussian Distribution) to make the model more general
and robust. Specifically, we assume the distribution of input
data conforms to a specific distribution, and then train the
proposed BHSTAN with parameters multiply sampled from
this distribution. In order to extract pure shared features of
the two tasks, we propose to use adversarial learning to
train the shared ST encoder. An orthogonality loss Lorth is
also proposed, which aims to prevent the extracted private
features from mixing with common features. We will elabo-
rate this step in Section 4.3.

Next, the task-specific features and shared features are
fused and input into ST decoder. ST decoder includes the
components of temporal queue, long-term attention and
Conv3D layers. To capture the complex temporal dependen-
cies of the crowd flows including smoothness and period-
icity, we design a novel component called temporal queue
to store the latent data representations in a past long time
period. Then, a conditional long-term attention mechanism
is designed to automatically capture the most relevant his-
torical data representations from the temporal queue to the
current prediction. External features including weather and
holidays are also incorporated into the attention model as
external conditions. This step will be introduced in Section
4.4. Finally, several Conv3D layers are stacked to generate
the final prediction on the future crowd flow image and OD
image simultaneously. The overall objective function for the
multi-task prediction will be described in Section 4.5.

4.1 Data Converting
Based on the Definitions 2-4, we need to first convert the raw
flow trajectories P to crowd flow images, flow OD images
and semantic ST graphs. Following [3], [12], we first model
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Fig. 4. Converting flow OD matrix to Flow OD image.

the crowd flow images with the size m × n × 2 as time-
varying spatial maps which can be represented as time-
ordered sequence of tensors so that convolution operations
can be applied for feature learning. Similarly, we first con-
struct the flow OD matrices with the size K × K based
on the origin and destinations of the raw trajectories, where
K = m×n. Then we convert flow OD matrices into flow OD
images, which are represented as three-dimensional tensors
with the size m× n×K as shown in Fig. 4. The reason that
we convert a flow OD matrix to a flow OD image are two-
fold. First, the data format of a flow OD image (m× n×K)
is consistent with that of a crowd flow image (m × n × 2),
and thus multi-task learning can be performed on the two
data with similar neural network architecture to facilitate
shareable feature learning. Second, convolution operations
can be conducted on the flow OD images to learn local
spatial features. As the crowd flow data may not follow
the spatial smoothness property, the data representations of
crowd flow images and flow OD images are not effective to
explicitly reflect the global spatial correlations. For example,
assume ri is a residential area and rj is a central business
district. Although ri and rj may be geographically far away
from each other, the crowd flows between them can be
high, because people living in ri need to go to rj for work.
To capture the global crowd flows, we also construct the
adaptive semantic ST graphs Gt = {V,At}, inspired by
AGCRN and GraphWaveNet [16], [33]. The nodes V are the
cell regions, and the adaptive adjacency At represents the
similarity between each pair of region nodes. To achieve the
adaptive adjacency, we first randomly initialize a learnable
node embedding: EA ∈ RN×de for all nodes, where de
denotes the dimension of node embedding, and each row
of EA represents the embedding of a specific node. Then we
can infer the semantic spatial dependencies between each
pair of nodes by multiplying EA and ETA as follows:

A = Softmax(ReLU(EAE
T
A)) (2)

where Softmax is used to normalize the adaptive matrix.
Note that the adaptive semantic adjacency matrix changes
over time. This process is similar as constructing the graph
based on nodes similarity.

4.2 Heterogeneous Spatial-Temporal Attention Net

As images and graphs are represented as different data
structures, they cannot be processed by a unified neural
network structure. To address this issue, we propose a het-
erogeneous Spatial-Temporal Attention network (HSTAN),

as shown in Fig. 5 to learn the data representations of
images and graphs separately, and then fuse them together.
In addition, to address the challenge of data uncertainty,
we follow the idea of bayesian deep learning methods and
incorporate it into HSTAN.
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Fig. 5. Illustration of the proposed HSTAN.

Given a specific time slot t, HSTAN adopts Conv2D
layers to learn the latent representation htimage for crowd
flow and flow OD images, and stacked GCN layers to learn
the latent representation htG for the semantic ST graph.
Here, we use 2-dimensional convolutions on the tensors of
crowd flow images and flow OD images to capture the local
spatial correlations. To more broadly capture the spatial
correlations, we construct a hierarchical semantic ST graph
representation learning with GCN. The two types of data
representation are integrated by the following formula

htint = htimage ⊕ htG (3)

where ⊕ is the feature addition operation across channels.
Finally, to capture the temporal correlations, we input the
integrated representations over T time slots to the multi-
head self-attention mechanism as follows.

[ht−T+1, · · · , ht] = MultiHeadAttn([ht−T+1
int , · · · , htint])

(4)
where MultiHeadAttn represents multi-head self-attention
mechanism.

Finally, to solve the problem of data uncertainty, we
construct bayes-enhanced heterogeneous spatial-temporal
attention net (BHSTAN) by borrowing the idea of bayesian
neural network which considers the weights of the CNN,
GCN and self-attention mechanism conform to a specific
distribution. The formula is as follows.

ht = BHSTAN(X t,Gt,Wbayes) (5)

where Wbayes represents learnable parameters.

4.2.1 Learning Spatial Dependencies with CNN and GCN

To fully capture spatial dependencies of crowd flow and
flow OD data, especially local and global spatial correla-
tions, we employ 2-dimensional convolutional neural net-
work (CNN) [34] and Graph Convolutional network (GCN)
[24].

We first model the crowd flow and flow OD in city
regions as ”images”, that the modeling process can be seen
from the definition 2 and definition 4. When we get the
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”images”, the local spatial correlations can be learned by
CNN. The corresponding formulas are as follows:

htimage,flow = CNN(X t,Wflow)

htimage,OD = CNN(Mt,WOD)
(6)

where htimage,flow and htimage,OD represent latent represen-
tations of crowd flow image and flow OD image at time
slot t respectively, CNN(·) represents the CNN operation,
Wflow,WOD are learnable parameters.

However, CNN is not enough for full spatial feature
learning, especially learning global spatial correlations. To
solve this problem, we create semantic spatio-temporal
graphs and then use spectral convolutions [24] on the con-
structed semantic ST graphs, which can be formulated as
follows:

htG = f�(N t, At) = σ(D−
1
2 ÃtD−

1
2N tW t) (7)

where f�(·) is GCN operation, N t and At are node em-
beddings and adaptive adjacency of graph Gt, Ãt is At

with added self-connections, Dii =
∑
j Ã

t
ij is the degree

matrix, and W t represents the learnable weight matrix.
Specifically, the learned i-th global spatial hidden features
can be formulated as follows:

htG,l = σ(D
1
2 ÃtD

1
2htG,l−1W

t
l ) (8)

where hG,0 is equal to X t,W t
L is the trainable matrix of filter

parameters in the l-th graph convolutional layer.

4.2.2 Learning Short-term Temporal Dependencies with
Self-attention Mechanism
Besides the spatial correlations, flow forecasting also in-
volves complex temporal dependencies [3], [35]. We input
the extracted spatial features into Multi-head Self-Attention
mechanism [36] as follows for short-term temporal feature
learning. There are three important components: Query(Q),
Key(K) and Value(V), which are all aforementioned learned
spatial representations htint. This attention mechanism is
compued by concatenating the output matrix of each atten-
tion head and projecting it by W :

MultiHeadAttn(·) = Concat(head1, · · · , headi) ∗W
headi = Attention(QWQ

i ,KW
K
i , V W

V
i )

Attention(Q,K, V ) = Softmax(
QKT

√
dk

) ∗ V
(9)

where W is the parameter matrix, WQ
i , WK

i , WV
i are the

linear transformation parameters of the query, key, and value,
respectively.

4.2.3 Bayes-enhanced Heterogeneous Spatial-Temporal
Network
To alleviate the problem of data uncertainty and make
our framework more robust, we incorporate the idea of
Bayesian Deep Learning [13], [14] into ST Encoder, espe-
cially the HSTAN. In the traditional deep learning models,
the weights are always fixed which are randomly initialized
in the beginning of the model training, and makes the model
very sensitive to the input data. In this paper, the raw flow
trajectories data were collected by location-based devices,

such as GPS. It is inevitable that such devices sometimes fail
in some extreme cases, such as sensor failure and poor net-
work signal, which will result in collecting uncertain data. If
we train the model with these uncertain data, the model per-
formance will be degraded. Bayesian deep learning methods
(BNNs) assume that weight of each layer is not fixed but
conforms to a distribution and then sample weights from
the distribution with the model training, which will make
the model more robust.

From the point of probability theory view, a traditional
neural network (e.g., CNN, GCN) with one or multiple
layers is a probability model Pr(y|x,w), where w represents
the collection of all weights of all layers. Under the tradi-
tional way of inference, the training of fixed value w follows
the maximum likelihood estimation with the training set
D = {yi|xi}, i.e.,

w∗ = argmaxw logPr(D|w)

= argmaxw
∑
i

logPr(yi|xi,w) (10)

If we introduce regularization term to avoid overfitting,
the optimal parameters follow the maximum a posterior
probability [37]:

w∗ = argmaxxwlogPr(D|w) + logPr(w)

= argmaxwlogPr(w |D)
(11)

But when we consider the parameters of neural network
layers following the posterior distributions embedded in
the training set, the probabilistic model can exploit data
uncertainties and estimate distributions based on Bayesian
inference [38].

Following previous work [13], [39], we modify the neural
network (i.e., CNN, GCN and Self-attention mechanism) in
a Bayesian way, denoted generally by y = fw (x) where
parameters actually follow the posterior distributions of the
training set, to cope with data uncertainties. We use zero-
mean Gaussian as the prior distribution over the parameter
space Pr(w) which can bring about the benefit of regular-
ization [40], [41]. Although it is still an open problem to
select the prior for the Bayesian neural network, previous
works [40], [41], [42] demonstrated that the standard normal
distributions is a suitable choice and has achieved promising
performance in many tasks. Therefore, we use standard
normal distribution as our prior. Note that we employ the
posterior distribution to generate samples instead of prior
distribution. According to Bayes theorem, the posterior dis-
tribution can be obtained by

Pr(w |D) =
Pr(D|w)Pr(w)

Pr(D)
(12)

Nonetheless, equation 12 is intractable due to the high com-
putation complexity. To overcome this problem, we employ
variational inference to approximate the posterior Pr(w |D)
through a variational distribution q(w |Θ) parameterized by
θ through minimizing the Kullback-Leibler (KL) divergence
between q(w |Θ) and Pr(w |D).

θ∗ = argminθKL[q(w |θ)||Pr(w |D)]

= argminθ

∫
q(w |θ)log q(w |θ)

Pr(w)Pr(D|w)
dw

= argminθKL[q(w |θ)||Pr(w)]− Eq(w |θ)[logPr(D|w)]
(13)
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We denote KL Loss LKL as follows:

LKL = KL[q(w |θ)||Pr(w)]− Eq(w |θ)[logPr(D|w)] (14)

Borrowing the idea of Monte Carlo optimization method,
the KL Loss LKL could be further written as:

LKL =
n∑
i=1

logq(w i|θ)− logPr(w i)− logPr(D|w i) (15)

where w i is the sampled weight of the i-th input data. The
full related theoretical analysis could be seen in [13], [43].

To summarize, Bayesian neural network samples
weights from a trained distribution N (µ, σσT ) to alle-
viate the problem of data uncertainty. We assume the
weights of CNN, GCN and self-attention mechanism con-
form to a specific distribution, and then convert to Bayesian
CNN (BCNN), Bayesian GCN (BGCN), and Bayesian Self-
attention Mechanism (BAttention). And then construct a
Bayesian Heterogeneous Spatial-Temporal Attention Net
(BHSTAN) which will be used in Spatio-temporal Encoder.
The entire process can be expressed as:

htimage = BCNN(X timage,Wimage)

htG = BGCN(X tG,WG)

htG : RB×1×N×C → RB×1×m×n×C

htint = htimage ⊕ htG
[ht−T+1, · · · , ht] = BAttention([ht−T+1

int , · · · , htint])

(16)

where B represents batch size, N is equal to m× n.

4.3 Spatio-Temporal (ST) Encoder
The crowd flow images, flow OD images and the semantic
graphs are input into ST Encoder. ST Encoder contains a
shared ST Encoder for shared feature learning, and two
private ST Encoders for task-specific features learning of
the two tasks. As images and graphs are represented as
different data structures, they cannot be processed by a
unified neural network structure. To address this issue, we
adopt above-mentioned BHSTAN layers to first learn the
data representations of images and graphs separately and
then fuse them together as shown in Fig. 5. Each encoder
consists of stacked BHSTAN layers.

Shared ST encoder aims to learn the common features
that are shared by all the tasks. Inspired by the work [44],
we also adopt adversarial learning to help the shared ST
encoder extract pure shared features to reduce information
redundancy. The purpose of the two private encoders is to
learn task-specific features of the two tasks. After learning
the shared features and task-specific private features, or-
thogonality constraint upon them is incorporated to make
them more separable.

Adversarial loss Ladv Generative Adversarial Networks
(GANs) [45] are currently popular deep learning based gen-
erative models and are widely explored in diverse domains.
The goal of GANs is to learn a generative data distribution
PG(x) that is similar to the real data distribution Pdata(x)
via an adversarial learning process, which can be achieved
by optimizing such a min-max game

Min
G

Max
D

(Ex∼Pdata [logD(x)] + Ez∼p(z) [log(1−D(G(z)))])

(17)

where G(·), D(·) are generator and discriminator, respec-
tively.

Inspired by adversarial networks, we introduce the ad-
versarial learning procedure to the shared ST encoder to
extract pure shareable features. The general idea is that as
the shared ST encoder extracts features that are invariant to
both tasks, a task classifier cannot reliably distinguish the
tasks based on such features. Based on this idea, the shared
features can be learned through optimizing such a min-max
function.

Ladv =
1

L
min
θs

max
θD

 L∑
i=1

m∑
j=1

yi,j logDis
(
hi,jshared

)
(18)

where yi,j is the ground-truth task label indicating the type
of the task, and hi,jshared is the hidden state learned by shared
Encoder. Dis

(
hi,jshared

)
= Softmax

(
Whi,jshared + b

)
repre-

sents task discriminator, where W is a learnable parameter
matrix and b is the bias vector. Here we use shared features
hi,jshared, and we want to maximize the classification error.
The basic idea is a min-max optimization. Given the shared
features, the shared ST encoder generates a representation
to mislead the task discriminator Dis(·). At the same time,
Dis(·) tries its best to classify which task the features come
from.

Orthogonality Constraint. An issue of the adversarial
learning method for shared feature learning is that it cannot
guarantee that all the shared features can be fully extracted
by the shared ST encoder. That means some shared features
may also appear in private feature space. To address this
issue, besides adding the shared feature based task discrimi-
native loss LPP , we further add the orthogonality constraint
as follows to encourage the shared and private encoders to
extract different aspects of the inputs so that the two types
of features are orthogonal to each other.

Lorth =

m∑
i=1

||HT
i,sharedHi,private||2F (19)

where || · ||2F is the squared Frobenius norm. Hi,shared is
the shared feature matrix and Hi,private is the task-specific
feature matrix for the i-th task.

4.4 Spatio-Temporal Decoder

The learned shared features and task-specific private fea-
tures are then input into the ST decoder to decode the data
representations for prediction. As show in the right part of
Fig. 3, the ST decoder first integrates the shared features
and task-specific features for each task, and then inputs the
features into an attentive temporal queue module, followed
by a Conv3D layer. First, we integrate the shared features
and private features as follows.

htall = htshared + htprivate (20)

where ’+’ represents sum operation across channels. Then,
the feature htall is input into Temporal Queue coupled with an
attention mechanism to learn the temporal dependency.
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Fig. 6. Illustration of attentive temporal queue.

4.4.1 Temporal Queue

Given a data sequence, existing neural networks including
RNN and LSTM can only capture the short-term tempo-
ral dependency, but are less effective to learn long-term
dependency, which is common in many spatial-temporal
data prediction problem. Especially, in our task the temporal
correlations of the crowd flows are multi-scale including
smoothness, periodicity and trend. In order to automatically
capture the complex temporal dependencies, we design a
novel temporal queue which can store the latent features
of a long period of time (e.g., several months). Then an
attention mechanism is used to decide which previous time
slots should be more attentive and the corresponding latent
features are more helpful to predict the future. Fig. 6 shows
the architecture of attentive temporal queue with length l,
which is long enough to enable the model capture the long-
term dependency. Note that the temporal queue always
stores the most recent latent features in the past l time slots.
It can dynamically dequeue the old features and enqueue
the most recent ones when the queue is full.

4.4.2 Conditional Multi-head Self-Attention

Here we adopt the multi-head self-attention, which is a
famous attention mechanisms used in Transformer [36].
Compared with other attention methods, self-attention can
learn long-range dependencies from our designed temporal
queue which contains a long sequence of historical latent
features. Multi-head attention allows the model to jointly
attend to information from different representation sub-
spaces at different positions, and thus is more effective
and robust. By considering the external context features
including weather conditions and holidays, we design the
conditional multi-head self-attention, which has three im-
portant components: Query, Key, and Value. This attention
mechanism is computed by concatenating the output matrix
of each attention head and projecting it by W :

MultiHead = Concat(head1, . . . , headi) ∗W

headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

) (21)

where W is the parameter matrix, WQ
i , WK

i , WV
i are

the linear transformation parameters of the query, key, and
value respectively. Two fully-connected layers are stacked
to learn representation of external features upon et, where
et is external features at time slot t. We can view the first
layer followed by an activation function as an embedding
layer. The second layer is used to map low to high di-
mensions that make the shape of learned features Et the
same as ht. At each conditional attention head, the hidden
state with external information stored in temporal queue

Algorithm 1 Multi-task Bayes-enhanced Adversarial Spatio-
Temporal Attention Network

Input: {X t,Mt|t = 1, . . . , T}: Crowd flow and flow OD
images; E: External features;

Output: MBA-STNet model
1: Dtrain → ∅
2: for t ∈ T do //T is available time set
3: put an training instance ({X t,Mt, Et|t ∈ [t, t+ T )},
{X t+1,Mt+1}) into Dtrain // T is the length of time slot

4: end for
5: while not converge do
6: Sequentially select a batch of instances Dbatch from
Dtrain

7: Sitem ← 0
8: for Sitem < SMAX do // SMAX is the number of

bayes sampling
9: Sample weights θ from a specific Gaussian distri-

bution
10: htprivate,flow ← Flow private feature learning by

FlowEncoder(·)
11: htprivate,OD ← OD private feature learning by

ODEncoder(·)
12: htshared ← Flow and OD Shared feature learning

by SharedEncoder(·)
13: htall,flow, h

t
all,OD ← integrated flow and OD fea-

ture learning by Eq.20
14: Store historical learned feature into temporal

Queue
15: Hflow, HOD ← Flow and OD long-term temporal

feature learning by conditional multi-head attention
16: ˆX t+1 ← Conv3D(Hflow)

17: ˆMt+1 ← Conv3D(HOD)
18: Update θ based on Eq. 24.
19: end for
20: Return the learned MBA-STNet model
21: end while

Hi =
(
[ht−l+1, Et−l+1], . . . , [ht, Et]

)
where Et is the exter-

nal features in time slot t and [, ] denotes the concatenation
operation of the two types of features, is projected onto the
query, key, and value spaces.

Finally, we calculate the output matrix of the weighted
sum of value tensors which is formulated as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

) ∗ V. (22)

4.5 Overall Objective Function

In the final prediction step, we aim to minimize the predic-
tion error of the two tasks as follows.

Ltask =
1

m

m∑
i=1

√√√√ 1

L

L∑
j=1

||Ŷ i,j − Y i,j ||2 (23)

where m is the number of tasks, L is the training sample
size, Ŷ i,j is the prediction and Y i,j is the ground truth.

The final loss contains four parts: prediction loss of
the two tasks Ltask, KL loss LKL, adversarial loss Ladv ,
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TABLE 1
Dataset description

Dataset NYCBike NYCTaxi
Longitude -74.02∼-73.95 -74.02∼-73.95
Latitude 40.67∼40.77 40.67∼40.77

Time span 1/1/2015∼31/12/2015 1/1/2015∼31/12/2015
Time interval 1 hour 1 hour
Grid map size (16, 16) (16, 16)

Trajectory data
# of trips 9 million 160 million

# of time intervals 8,754 8,754
External features

Weather conditions precipitation, snow, temperature, etc.
Days weekday, weekend, holiday etc.

and orthogonality constraint loss Lorth. We combine them
together and the overall loss function is as follows.

Lall = Ltask + Ladv + Lorth + γ ∗ LKL (24)

where γ is set to 0.01 in this paper. In addition, the
network model is trained with backpropagation and the
adversarial training is optimized via gradient reversal lay-
ers [44]. The pseudo-code of the algorithm is shown in
Algorithm 1, where FlowEncoder(·), ODEncoder(·) and
SharedEncoder(·) represent Crowd flow ST Encoder, Flow
OD ST Encoder and shared ST Encoder, respectively. The
time complexity of this algorithm is O(nlogN).

5 EXPERIMENT

5.1 Dataset and Experiment Setup

5.1.1 Datasets

We select two large datasets that are widely used in crowd
flow prediction for evaluation: BikeNYC, and TaxiNYC. The
details of the datasets are introduced as follows.

NYCBike This dataset contains more than 9 million bike
trips in New York from January 2015 to December 2015.
In total, NYCBike has established over 600 bike stations
and 10,000 bikes in New York. Each bike trip contains the
trip duration, start/end station IDs, start/end timestamps,
station Latitude/Longitude and bike ID. For this dataset, we
use the first 11 months data for training and validation, and
the last month data for testing.

NYCTaxi This dataset contains over 160 million taxicab
trip records in New York from January 2015 to December
2015. On average, there are about 13 million trip records
each month. Each taxi trip record includes fields capturing
pick-up and drop-off dates/times, pick-up and drop-off
locations, trip distances, itemized fares, rate types, pay-
ment types, and driver-reported passenger counts. For this
dataset, we also use the first 11 months data for training and
validation, and the last month data for testing.

We also use some external features including weather
conditions and holidays. The weather conditions include
precipitation, snow, temperature, wind speed, etc. Whether
the day is weekday, weekend or holiday is also considered
as the people mobility patterns on holidays and regular days
are quite different. The data description on the two datasets
and external features are shown in Table 1.

5.1.2 Baselines
We compare the proposed MT-ASTN with the following 6
baseline methods, including both single-task learning and
state-of-the-art multi-task learning methods.

• ARIMA Auto-Regressive Integrated Moving Aver-
age (ARIMA) is a classic statistics-based method for
time series prediction.

• ConvLSTM [7] ConvLSTM is a variant of LSTM
which contains a convolution operation inside the
LSTM cell. ConvLSTM considers both geographi-
cal spatial and temporal dependency of the spatial-
temporal data, and is widely used in many spatial-
temporal prediction tasks.

• STResNet [3] It is a state-of-the-art neural network
based single-task learning model for urban crowd
flow prediction. It stacks convolutional layers and
residual unites to capture the spatial and short/long-
term temporal dependencies. External features are
also incorporated into ST-ResNet.

• STDN [1] Spatio-Temporal Dynamic Network
(STDN) is a state-of-the-art unified framework to
learn the dynamic similarity between locations and
long-term periodic temporal shifting for urban traffic
flow prediction.

• GEML [10] Grid-Embedding based Multi-Task
Learning (GEML) is a multi-task learning framework
that predicts the flow OD matrix and crowd flows
simultaneously. It uses grid embedding and multi-
task LSTM to capture the spatial-temporal represen-
tations of the crowd flow data.

• MDL [12] MDL is a multi-task learning framework
for predicting both the node flows and edge flows on
a spatial-temporal network.

• MT-ASTN [15] MT-ASTN is a recent state-of-the-
art multi-task adversarial spatial-temporal network
model to predict crowd flow and flow OD simulta-
neously.

To further evaluate whether the key components used in our
model are useful to the studied problem, we also compare
the full version MBA-STNet with the following variants.

• MBA-STNet (Lbayes) This model removes the KL loss
for Bayesian deep learning. Through comparing with
it, we test whether the incorporation of Bayesian as-
sumption is helpful to defeat the influence of uncer-
tainty data and improve the prediction performance.

• MBA-STNet (Ladv) This model drops the adversar-
ial loss Ladv . Through comparing with it, we test
whether the proposed adversarial learning can help
extract better shared features and thus improve the
prediction performance.

• MBA-STNet (Gra) This model removes the features
of the semantic ST graphs. Through comparing with
this model, we test whether integrating the semantic
ST graphs can enhance the features of crowd flow
images and flow OD images, and thus improve the
model performance.

• MBA-STNet (Que) This model removes the temporal
queue from the ST decoder. Attention is only applied
on the input data sequence. Through comparing with

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 07,2022 at 02:32:30 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2
RMSE and MAE comparison among different methods

Model RMSE MAE
NYCBike NYCTaxi NYCBike NYCTaxi

Crowd flow Flow OD Crowd flow Flow OD Clowd flow Flow OD Crowd flow Flow OD
ARIMA 21.821 0.964 68.709 1.844 16.521 0.148 42.623 2.545

ConvLSTM 6.997 0.120 23.169 0.551 3.482 0.050 11.344 0.320
STResNet 4.889 0.138 23.840 0.234 2.364 0.027 12.538 0.118

STDN 6.491 0.127 21.169 0.159 1.794 0.021 8.637 0.074
GEML 6.344 0.147 22.073 0.670 2.828 0.014 10.449 0.136
MDL 8.715 0.154 21.492 0.153 4.250 0.041 11.750 0.095

MT-ASTN 2.995 0.074 12.299 0.087 1.413 0.011 6.417 0.030
MBA-STNet 2.905 0.067 7.157 0.082 2.227 0.061 5.976 0.059
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Fig. 7. Loss curve of MBA-STNet on the two datasets.

it, we test whether the temporal queue is useful for
our model to capture the complex temporal correla-
tions of the crowd flows.

5.1.3 Implementation details

We implement our model with Pytorch framework on
NVIDIA Quadro RTX 8000 GPU. The model parameters
are set as follows. The data size of crowd flow images is
6 × 16 × 16 × 2 for both datasets, where 6 is the previous
time slot length used for prediction, 16×16 is the size of the
cell regions, and 2 is the number of channels representing
inflow and outflow. The input data size of flow OD image
is 6 × 16 × 16 × 256, where 256 is the number of channels
which is also the number of cell regions. The learning rate
and batch size are set to 0.000001 and 32, respectively. The
CNN and AGCN in HSTN model of ST Encoder contain 3
layers whose structure is 6× 16× 16× 16, 6× 16× 16× 32
and 6 × 16 × 16 × 64. We use one layer Conv3D in ST
Decoder for crowd flow image prediction, whose structure
is 1×16×16×2. The structure of Conv3D in ST Decoder for
flow OD prediction is 1×16×16×256. The baseline methods
are implemented based on the original papers or we use the
publicly available code. The parameters of baseline methods
are set based on the original papers.

5.1.4 Evaluation metrics

We adopt Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) as the evaluation metrics defined as
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Fig. 8. RMSE and MAE comparison with variant methods.

follows:

MAE =
1

n

n∑
t=1

|X̂ t+1 −X t+1|

RMSE =

√√√√ 1

n

n∑
t=1

||X̂ t+1 −X t+1||2
(25)

where X̂ t is the prediction and X t+1 is the ground truth.

5.1.5 Convergence of the algorithm
Fig. 7 shows the training loss curves of the algorithm on
the two datasets. One can see that MBA-STNet converges
after about 180 epochs on both datasets, which shows it
converges quickly. The loss curves drops smoothly, and
there are still a few fluctuations on the loss during training.
This is mainly because the data used for training is nor-
malized. In addition, the zero-mean distribution we used as
prior brings about the benefits of regularization [40], [41].
In the following experiment, we train MBA-STNet on both
datasets 200 epochs.

5.2 Comparison with Baselines

Table 2 shows the comprehensive performance comparison
among different methods over the two datasets. The best
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Fig. 9. RMSE and MAE comparison with different size of training data.

results are highlighted with bold font, and the best results
achieved by baselines are underlined.

It shows that the newly proposed MBA-STNet achieves
the best results in most cases. It shows that traditional
statistics based method ARIMA achieves the worse per-
formance among all the methods in both cases. It is not
surprising because ARIMA only uses the time series data
of each region, but ignores the spatial dependency. On
NYCBike dataset, compared with the best results achieved
by baselines, MBA-STNet reduces RMSE of crowd flow
prediction and flow OD prediction from 2.995 (MT-ASTN)
to 2.905 which surpasses the MT-ASTN by nearly 3%, and
from 0.074 (MT-ASTN) to 0.067, respectively. On NYCTAxi
dataset, MBA-STNet improves the RMSE of the two tasks
from 12.299(MT-ASTN) to 7.157, and from 0.087 (MT-ASTN)
to 0.082 (5.7% improved), respectively. Both are significant
improvements. On crowd flow prediction, the drop of RMSE
on NYCTaxi is also remarkable from 12.299 to 7.157.

Table 2 illustrates that RMSE and MAE on NYCBike
are almost all much smaller than NYCTaxi. It is reasonable
because the bike trips can only be the bike trips are much
sparser than taxi trips. In addition, the OD of bike trips can
only be the bike stations deployed in fixed locations, and
thus is much easier to predict than taxi trips. This result
verifies that MBA-STNet is more effective than existing
state-of-the-art single- and multi-task learning approaches
on the two prediction tasks.

5.3 Comparison with Variation Models
To examine whether the components in MBA-STNet are all
helpful to the prediction task, we compare MBA-STNet with
its variants MBA-STNet (Lbayes), MBA-STNet (Ladv), MBA-
STNet (Gra), MBA-STNet (Que). The results are shown in
Fig. 8. One can see that the Bayesian training, the adversarial
loss, the semantic ST graph features and temporal queue
are all useful to the model as removing any one of them will
increase the prediction error. On NYCBike dataset, the graph
features seem more important on both tasks because the pre-
diction error increases remarkably when these features are
ignored which follows the MT-ASTN. On NYCTaxi dataset,
the bayesian training is more important in both crowd flow
prediction and flow OD prediction tasks. Combining these
components together achieves the lowest RMSE and MAE,
demonstrating that all of them are useful to the studied
problem.

5.4 Single-task vs Multi-task Learning
To test whether multi-task learning can improve the per-
formance of each task, we compare MBA-STNet with the

TABLE 3
Single- and multi-task learning comparison

Dataset Methods Crowd Flow Flow OD
RMSE MAE RMSE MAE

NYCBike SBA-STNet 3.312 2.786 0.074 0.073
MBA-STNet 2.905 2.227 0.067 0.061

NYCTaxi SBA-STNet 8.500 7.408 0.117 0.094
MBA-STNet 7.157 5.976 0.061 0.059

single-task version of MBA-STNet named SBA-STNet. The
single-task model SBA-STNet has the similar network struc-
ture as MBA-STNet shown in Fig. 3. The difference is that
SBA-STNet performs crowd flow prediction and flow OD
prediction separately without learning the shared features.
Thus SBA-STNet does not need the adversarial learning to
extract shared features. The comparison result is shown in
Table 3. It shows that the RMSE and MAE values achieved
by multi-task learning MBA-STNet are lower than that of
the SBA-STNet, which demonstrates the proposed multi-
task learning model can capture and transfer task invariant
features across tasks, and thus improve the performance of
both tasks. One can also see that performance improved
on flow OD prediction is more significant than on the
crowd flow prediction on both datasets. The learned shared
features help more on the flow OD prediction task, reducing
RMSE of NYCTaxi from 0.117 to 0.061 and NYCBike from
0.074 to 0.067.
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Fig. 10. RMSE comparison with various HSTAN layer numbers

5.5 Ablation Study

To evaluate the effects of training data amount, length
of time slots, parameter sensitivity analysis, sizes of cell
regions and length of temporal queue, we perform the
ablation studies as follows.

5.5.1 Effects of training data amount
To study the effect of training data amount on the model
performance, we conduct experiments by sampling differ-
ent amount of data in NYCBike datasets. To test how the
amount of training data influences the prediction perfor-
mance on the crowd flow and flow OD prediction tasks, we
conduct the experiment with 1 month, 3 months, 6 months
and 10 months data for training. The results are shown in
Fig. 9. One can see the RMSE decreases from around 7.176
to 2.905 over NYCBike with the increase of the training data
amount for flow prediction. It can also be seen that the
RMSE decreases from around 0.241 to 0.067 over NYCBike
for OD prediction as the training data increase. It shows that
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TABLE 4
Performance comparison with different time slots over NYCTaxi

Time Slots Input Prediction
RMSE MAE RMSE MAE

1 step 33.327 26.347 7.157 5.976
3 steps 16.352 12.942 13.620 10.770
6 steps 7.157 5.976 17.459 13.832

more training data can lead to better prediction performance
as more useful knowledge can be learned.

5.5.2 Effects of length of time slots

We then evaluate the performance of the methods on dif-
ferent historical input time slots, as well as the prediction
time slots (i.e., multi-step prediction). To test the effect of
the time slot number to the model performance, we set
the historical step size as 1, 3, 6 to predict the crowd flow
and OD flow in the future 1 hour over NYCTaxi dataset.
The results are shown in Table 4. One can see the RMSE
decreases from 33.327 to 7.157 for flow prediction, which
shows that the model performance presents an increase
trend with the increase of the input time slot number. In
addition, we also test the performance of the methods on
multi-step prediction. We set the historical step size as 6 to
predict the crowd flow and OD flow in the future 1, 3, 6
steps over NYCTaxi dataset, respectively. From Table 4, one
can see with the increase of future prediction steps, MAE
increases from 5.976 to 13.832, which is still comparable with
baselines. The results show the effectiveness of temporal
queue for long-term prediction.

5.5.3 Parameter sensitivity analysis

We next study how sensitive the model is on the deep neural
structure (e.g., HSTAN Layers). We only give the RMSE
comparison on both crowd flow and flow OD prediction
tasks over NYCTaxi and NYCBike datasets. Fig. 10 shows
the performance bars under different number of HSTAN
layers. One can see that the performance on crowd flow and
flow OD prediction first drops significantly and then slightly
rises up with the increase of HSTAN layers. It shows that 3
layers of HSTAN is a reasonable setting in this experiment.
More layers will degrade the model performance as it will
lead to a more complex model with more parameters which
thus may result in overfitting.

5.5.4 Sizes of cell regions

It is possible that the size of cell regions can affect the
model performance. We conduct experiments under differ-
ent settings of cell region partition (i.e., 4 × 4, 8 × 8, 12 ×
12, 16×16, 32×32). Fig. 11 shows the RMSE comparison on
crowd flow prediction over NYCTaxi and NYCBike datasets.
One can see RMSE decreases from 4.327 to 2.905, and then
increases to 3.053 over NYCBike when cell regions become
more fine-grained. It shows that appropriate cell region
division will lead to better model performance as it brings
more spatial knowledge. But when the partition becomes
more fine-grained, the model performance will degrade due
to data sparsity.
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Fig. 11. RMSE comparison with different size of cell regions.

TABLE 5
Performance comparison with different length of Temporal Queue

Dataset Length Crowd Flow Flow OD
RMSE MAE RMSE MAE

NYCBike
1 day 3.456 2.988 0.231 0.151
7 days 3.190 2.673 0.133 0.122
15 days 2.905 2.227 0.067 0.061

NYCTaxi
1 day 12.596 11.197 0.288 0.206
7 days 8.690 7.558 0.144 0.105
15 days 7.157 5.976 0.061 0.059

5.5.5 Length of temporal queue
From MT-ASTN [15] and Fig. 8, it can be easily found that
temporal queue which is used to extract long-term features
is very effective for both crowd flow and flow OD prediction
tasks. We finally study the influence of the length of tempo-
ral queue on model performance. We conduct experiments
under different settings of temporal queue length (e.g., 1
day, 7 days, 15 days) which can be shown in table 5. Due
to the restriction of the device performance (i.e., GPU mem-
ory), we set the maximum length of the temporal queue
to 15 days. From Table 5, it shows the model performance
improves with the increase of temporal queue. One can see
that RMSE decreases from 3.456 (1 day) to 2.905 (15 days)
on crowd flow prediction, and from 0.231 (1 day) to 0.067
(15 days) on flow OD prediction over NYCBike. The results
show the temporal queue is effective for both tasks as it can
encode long-term temporal dependencies well.

5.6 Case Study
5.6.1 Visualization on prediction vs ground truth
To further intuitively illustrate how accurately our model
can predict the crowd flows, we visualize the predicted
crowd flows and the ground truth in one figure as depicted
in Fig. 12. Due to space limitation, we show a case study
on one month crowd flows of region r8,8. From top to
down, the four figures show the taxi inflow, taxi outflow,
bike inflow and bike outflow, respectively. One can see that
the red curves of prediction can accurately trace the blue
curves of the ground truth including sudden changes, which
demonstrates the effectiveness of the proposed model. The
figure also shows that the two crowd flow datasets present
obvious periodical change characteristics, which is consis-
tent with the people mobility patterns in cities. Our model
can perfectly capture the periodicity of the data, which is
largely due to the usage of the proposed attentive temporal
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Fig. 12. Prediction vs ground truth on region r8,8 (top to down: taxi
inflow, taxi outflow, bike inflow and bike outflow).

queue. The result also shows that the designed attentive
temporal queue component is effective to complex temporal
trends from the long-range temporal data.

6 CONCLUSION

In this paper, we proposed a novel Multi-task Bayes-
enhanced Adversarial Spatio-Temporal Network model to
jointly predict crowd flows and flow OD. By adopting a
shared-private feature learning framework, common fea-
tures shared by both tasks are effectively extracted through
an adversarial shared feature learning model. The orthog-
onality constraint between shared and private features
were also incorporated to further decompose shared and
private features. Considering the complex spatial spatial-
temporal correlations and data uncertainty, the proposed
spatial-temporal network utilized a designed BHSTAN and
an attentive temporal queue for effective spatial-temporal
correlations capturing. Extensive evaluations on two real
large datasets showed that the proposed model mutually
enhanced the performance of both tasks. In the future, It
would be also interesting to further design a new strategy
to solve the problem of memory explosion when cell regions
become more fine-grained.
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