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Abstract. Locating smartphone users will enable numerous potential
applications such as monitoring customers in shopping malls. However,
conventional received signal strength (RSS)-based room-level localiza-
tion methods are not likely to distinguish neighboring zones accurately
due to similar RSS fingerprints. We solve this problem by proposing a
system called feature-based room-level localization (FRL). FRL is based
on an observation that different rooms vary in internal structures and
human activities which can be reflected by RSS fluctuation ranges and
user dwell time respectively. These two features combing with RSS can be
exploited to improve the localization accuracy. To enable localization of
unmodified smartphones, FRL utilizes probe requests, which are period-
ically broadcast by smartphones to discover nearby access points (APs).
Experiments indicate that FRL can reliably locate users in neighboring
zones and achieve a 10% accuracy gain, compared with conventional
methods like the histogram method.
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1 Introduction

Locating smartphone users in an indoor environment will enable many ubiq-
uitous computing applications, ranging from context-aware applications [1] to
location-based services [2,3]. These applications usually require two types of
locations, namely geometric locations that are used for mapping and distance-
oriented applications; and semantic locations which attempt to represent logical
entities and their semantics [4,5]. The concept of semantic location was firstly
proposed by HP Labs [6] to address the significant deficiency of geometric loca-
tions for providing little context information in mobile web-services. Rooms are
typical representation of semantic locations. Getting the room information of
users is called room-level localization. Significant as room-level localization is,
little attention is paid to this area. Recent research on retail space [7,8] and smart
home [9] require room-level localization without modifying users’ smartphones,
which is both challenging and infusive.
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Due to the proliferation of WiFi APs, wireless indoor localization meth-
ods are becoming increasingly popular and attractive as there are no additional
infrastructural costs beyond the wireless APs. Currently, the room-level localiza-
tion methods can be divided into four categories. The first type utilizes channel
state information (CSI) of WiFi to discover users’ locations and states [7]. The
second type uses geometric localization methods. Examples are deterministic and
probabilistic fingerprinting methods [10,11]. The third type regards the room-
level localization as a classification problem, e.g., WHAM! [12], a rule-based
method [13] and the histogram method used in [9]. The last type integrates
WiFi data with other smartphone sensor data to improve localization perfor-
mance, like Ariel [14] and AurroundSense [15].

However, multiple users result in unpredictable changes of channel states,
hence CSI is unlikely to work for a large number of people [7]. Fingerprinting
[10,11] requires a large amount of training data, which is too labor-extensive to
carry out. Methods mentioned in the third type [9,13] solely rely on RSS feature
that attenuates in a highly nonlinear and uncertain way in real situations [16],
so it is hard to get high accuracy especially in the case where neighboring rooms
have similar fingerprints [12]. It is highly possible that the forth type methods
[14,15] are inapplicable as those systems need to install some apps in users’
smartphones to collect other sensor data.

To solve these problems, we propose a system called Feature-based Room-
Level Localization (FRL), which can accurately and reliably derive smartphone
users’ locations in the indoor environment. FRL is based on the observation
that different rooms have various internal structures and diverse human activi-
ties. Therefore, from the observation we extract related features (we call them
room features) and combine them with the RSS feature to conduct room-level
localization. Simple and direct as the main idea of our solution seems to be,
there remains some fundamental challenges to be carefully addressed. First of all,
how to acquire WiFi data without modifying users’ smartphones? Conventional
room-level localization methods often assume the data of users’ smartphones
are available, but it is not possible to directly access users’ smartphones and get
the required data in some application scenarios such as locating customers in
shopping malls. Besides, how to handle the problem raised by a small amount of
training data which downgrades the accuracy of localization models? Most of the
fingerprinting methods rely on complete training data to build accurate mod-
els. Lastly, how to extract features that relate to internal structures and human
activities? Extracting new features is non-trivial task and it usually requires
solid observations.

We tackle the first challenge by exploiting probe requests which are periodi-
cally broadcast by smartphones to collect WiFi data in a non-intrusive way. As
for the second challenge, we apply machine learning methods to derive labels
from unlabeled data. When it comes to the last challenge, although it is hard to
directly measure internal structures and human activities, different structures
result in different RSS fluctuation ranges and different human activities lead
to different dwell time. Based on this assumption, we measure RSS fluctuation
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range and user dwell time from a large amount of estimated labeled data. Ded-
icated experiments demonstrate the feasibility of combining different features
and indicate that FRL has better performance in terms of accuracy than state-
of-the-art methods.

The remainder of the paper is structured as follows. We describe the main
idea of FRL design in Session 2. Session 3 elaborates on the architecture of FRL
and the functionality of different parts. In Session 4, we present a case study
in which different methods are applied in a real-world indoor test environment.
Session 5 introduces existing and related works. The conclusions are summarized
in the last session.

2 System Overview

This paper proposes a system called FRL (Feature-based Room-Level Localiza-
tion), which combines the RSS feature and room features for room-level local-
ization. FRL utilizes probe requests to periodically collect users’ WiFi data as a
data sequence. The sequence will be partitioned into snippets based on smooth-
ing and partition rules. Every snippet consists of some data units, for each of
which, FRL exploits the histogram method to derive a potential result. After
that, FRL uses a voting-based decision fusion strategy for every snippet. If the
top two results are neighboring zones and the difference of their votes is under
the threshold, then the feature-based localization method will be leveraged to
pick up the more possible result.
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Fig. 1. A example of two rooms Fig. 2. WiFi data in two rooms

Figure 1 illustrates how FRL works. The floor plan is split into 6 zones with
two neighboring rooms (zone 1 is an office and zone 2 is a photocopy room)
and two APs. Note that corridors can be represented as more than one zone
depending on the need of the application. For each zone, a small amount of
(around 10 data units) training data will be collected, i.e., RSS of all APs.
Figure2 is a segment of WiFi data in two rooms. As the RSS feature of two
rooms are quite similar and most of them have overlaps, traditional localization
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methods like [11] or [12] are poor at handling this situation. However, we find
that different rooms have diverse internal structure and human activities in those
rooms are also different. As the example depicts, zone 1 is large than zone 2,
so it is highly possible that the RSS fluctuation ranges of zone 1 are also larger
than that of zone 2. Besides, zone 1 is an office where most of the people dwell
for hours, while zone 2 is a photocopy room in which people usually only stay
for a few minutes. Therefore we conclude that different rooms have different
distributions of RSS fluctuation range and user dwell time. Besides, the room
features could be used in room-level localization to improve the accuracy. The
challenging part is how to extract related features from WiFi data.

3 Design of FRL

FRL consists of two modules (data collection and location inference) and two
phases (training phase and testing phase). Figure 3 depicts the overall work flow
of FRL. In data collection module, it collects three kinds of data for training
and testing. In data processing module, localization models will be built based
on the labeled and unlabeled data. The training phase is to extract the binary
classifier and smoothing and segmentation rules from labeled data and train
feature-based localization method from unlabeled data. The testing phase is to
locate users from the collected WiFi data.
Details of data structures are listed below:

~ Semantic location set L (I; represents i** semantic location):
L={li,l,...L,}, [L| =n
— AP set A (a; stands j" AP):
A={a1,a9,...;an}, |Al=m
— Labeled data LD (estimated labeled data has the same structure):

LD = {(time;, RSS_vector;,1;)|0 < i < p, l; € L, RSS_vector; = (rssi1,...,788im)}

Transferred labeled data TD:

TD = {prob-vector;,label | 0 < i < p, label € {true, false}, probvector; = (pi1, ..., Pim )}

— Unlabeled data UD:

UD = {(time;, mac, RSS_vector;) |0 < i < q, l; € L, RSS_vector; = (881, ...,7SSim) }

— Snippet of unlabeled data SD;:

UD = SD; USDy U ... U SDy,
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Fig. 3. The architecture of FRL

3.1 Data Collection

As described in Fig. 3, FRL collects labeled data and unlabeled data for training,
test data for locating users in real scenarios. To collect the data in a non-intrusive
way, FRL exploits probe requests. Probe requests are frames that are broadcast
by smart phones to discover nearby APs. Recent research demonstrates great
potential of applying this technique in tracking [17,18], crowd density estima-
tion [19,20] and uncovering social relationships [21]. To sniff probe requests, we
choose OpenWrt (an embedded operating system based on Linux kernel) as the
firmware of the router. After configuration, routers can capture probe requests
in the air and store the data on the external storage. Although different smart
phones have diverse settings of probe requests [17], generally smartphones will
broadcast probe requests every minute. That means in real world, FRL can
locate users carrying smartphones every minute, which is adequate for many
monitoring applications.

Detailed information of collected data is listed in Table 1. Collecting labeled
data requires plenty of manpower, while collecting unlabeled data barely con-
sumes any human resources. Therefore, FRL firstly collects a small amount of
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Table 1. Details of collected data

Data type Structure Purpose Required Amount Manpower SRaartv;pllng

Labelled Data Time, RSS Vector of APs, Label Training Small Needs 4 seconds

Unlabeled Data Training Large No Need N/A
Time, MAC, RSS Vector of Aps

Test Data Testing No Requirement  No Need N/A

labeled data and a large amount of unlabeled data. Then FRL adopts traditional
localization method to estimate labels for unlabeled data and utilizes a classifier
to filters out snippets whose accuracy is above the threshold. As for test data,
the quantity mainly depends on specific applications.

3.2 Location Inference

FRL inferences locations via traditional localization method and feature-base
localization methods. It consists of three steps to train necessary rules and meth-
ods for localization. Firstly, it trains a classifier to filter out snippets from unla-
beled data. Secondly, smoothing and segmentation rules will be extracted to
partition unlabeled and test data into snippets. Lastly, we extract room features
from unlabeled data with the help of the rules, conventional localization methods
and the classifier.

FRL choose the histogram method, for the reason that using a histogram of
signal strength for fingerprints in a zone may offer a good compromise between
a single average and storing large number of fingerprints needed for improved
accuracy [9]. The method requires a fixed set of bins, i.e., a set of non-overlapping
intervals that cover the whole range of the variable from the minimum to the
maximum RSS value. The width of the bins, denoted as w, is an adjustable
parameter, which affects the performance. The outputs the method is a vector
prob_vector; indicating the possibilities of all zones.

Then FRL exploits the histogram method to labeled data and Cost-Sensitive
Binary Classifier is to identify snippets from unlabeled data over the thresh-
old. FRL gets transferred labeled data after applying the histogram method to
labeled data. Based on transferred labeled data, FRL identifies true positive
cases, which means real labels and estimated labels are both true. In order to
transfer unlabeled data to labeled data with high accuracy, FRL adopts cost-
sensitive learning, which makes optimal decision based on a misclassification
costs [22].

Smoothing and Segmentation Rules is to remove outliers, smooth data
sequence, and partition unlabeled data and test data into snippets. We follow the
practice proposed in [12], which declares that a sharp change in signal data indi-
cates that the user is likely to move from one zone to another. In addition, FRL
merges small neighboring snippets because localization based on small snippets
is not reliable. Figure 4 is an example showing how smoothing and segmentation
works. The four cut-off points are chosen according to the accumulative changes
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Fig. 4. Example of smoothing and segmentation

of apl, ap2, apl and ap2 sequentially in a time window, as their accumulative
changes all exceed the predefined threshold.

Feature-Based Localization Method provides another way for room-level
localization. Feature-based localization method consists of two features, RSS
fluctuation range and user dwell time. Both of the two features adopt the his-
togram method like RSS feature. Basically, FRL uses the result of the histogram
method as the final result. If the top two zones of the histogram method are
neighboring zones and the difference of their probabilities is below a threshold,
then feature-based localization method will be applied to give the final result.

4 Implementation and Experiment Results

FRL is mainly implemented in Python with some C code and shell scripts. The
system is tested in our department, in a area of 8m by 20m, with 11 zones
separated and 3 APs installed, the layout and AP installation are shown as
Fig.5. Basically, |L| = 11, |A] = 3. For labeled data, |LD| = 110, i.e., each
zone has 10 training data units. We collect unlabeled data for one week, [UD| =
693, 231, including 2,162 different devices and most of their data sequences are
too short to use. For test data, we get four volunteers with smartphones in the
test environment for one day and ask them to record their activities (start time,
end time, locations). Finally we get 105 snippets and |TD| = 1,408. We compare
the performance of FRL with KNN, the histogram method, and the random
selection method.

First of all, we leverage test data to evaluate the performance of smooth-
ing and segmentation rules. After applying the segmentation rules, we get 121
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snippets. We define the correctness of snippets by two measurements, offset and
length. Offset means the difference between start points of real snippets and
derived snippets. Length represents the size of the snippets. Experiment results
indicate the rules can identify 85 % the snippets whose errors of offset and length
are below 5 %.

Table 2. Comparison of different classifiers

Cost-sensitive with Random forest Naive Bayes Logistic
Random forest
True positive cases 428 184 132 52
Accuracy 58.24% 71.31% 63.92% 69.03%
Precision 95.54% 41.07% 29.46% 11.61%

Then we use test data to evaluate the performance of the cost-sensitive binary
classifier. Among all 1,408 test data units, there are 428 true positive cases, 20
false positive cases, 392 true negative cases, and 568 false negative cases. Table 2
shows detailed information of four classifiers, and the cost-sensitive classifier
with random forest outperforms other classifiers in terms of precision and true
positive cases. The cost-sensitive classifier improve the precision by increasing
the number of true positive cases while reducing the number of false positive
cases.

The performance of the system is evaluated by the 1% ranked zone. Due to
space limitation, here we only show the final results of those methods. Figure 6
shows the overall accuracy of different methods. It is obvious that among all
localization methods, FRL achieves the highest accuracy. FRL targets at the
cases where the top two results are neighboring zones and have similar votes.
Then it leverages the features of RSS fluctuation range and user dwell time to
give the final result. Through the experiments we find that FRL is effective in
handling neighboring zone problem and improves the accuracy of such cases
by 50 %.
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Fig. 6. Results of the experiment

5 Related Works

Currently, room-level localization methods can be divided into four categories.
The first type methods rely on channel state information (CSI) of WiFi to dis-
cover users’ locations and states [7]. These methods even do not require users
to carry smartphones, they exploit the information of how a signal propagates
from the transmitter to the receiver to locate users. The problem is that multiple
people will result in unpredictable changes of channel states, hence it cannot be
used to detect large number of users.

The second type focuses on geometric localization approaches, such as deter-
ministic and probabilistic fingerprinting [10,11], that are also applicable for
room-level localization determination. This kind of methods work quite well
in static environment as it automatically take into account obstacles such as
walls and furnitures [9]. On the contrary, dynamic factor cannot be reflected
such as the change of layout, the number of people. RADAR [11] is a classic
fingerprinting approach. Although it is not intended for room-level localization,
the idea is also applicable here. RADAR consists of training phase and testing
phase. During the training phase, a fingerprint database will be constructed. In
the testing phase, one or more reference points in the fingerprint database will
be chosen to estimate the real location. Simple and effective as this approach
is, it is barely applied in practice, as constructing fingerprint database is too
labor-extensive and boring to be done.

The third type is designed for room-level localization but most of them have
troubles in handling neighboring zone with similar fingerprints. Correa et al.
[9] utilize k-nearest-neighbor (KNN) with Euclidean distance measurement for
indoor localization. According to their experiments, they conclude that only
room-level granularity accuracy can be consistently achieved in wireless finger-
printing method. But the accuracy is influenced by the number of people moving
around. WHAM! [12] is a nice work utilizing connectivity of semantic locations
to resolve localization ambiguities. The system records users’ historic location
information, when current estimated location(s) are not unique, the system will
make a choice based on the relation with previous locations. For example, the
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last location of a user is A, current estimated locations are B and C, but accord-
ing to the floor plan, B is reachable while C' is unreachable from A, then the
system will return B as the estimated location. To some extent, this approach is
effective, but most of the time, estimated locations are close to each other and all
connect to the previous location. Besides, the experiments of WHAM! indicate
it requires carefully tuned parameters to handle the situation where two rooms
are separated by a thin wall. Another work is a rule-based WiFi localization
method [13]. The authors find that the relative relation of RSS from different
APs is more stable then absolute RSS. Based on this observation, they formu-
late the problem as a Hidden Markov Model (HMM) problem with the semantic
locations as hidden states. But in some scenarios, such as shopping malls, with
lots of customers moving around, the relative relation is changing frequently over
time, thus this method could also be ineffective in real situations.

The forth type methods exploit other smartphones sensor data along with
WiFi data to locate users. Ariel [14] utilizes gyroscope to collect WiFi data
when users are in still. AurroundSense [15] exploits multiple sensors including
the sound sensor, the accelerometer and the camera to construct ambience fin-
gerprints. As it is not possible to get other sensor data without modifying users’
smartphones, so these methods are inapplicable.

6 Conclusion

In this paper, we present a system called feature-based room-level localization
(FRL). To addresses the deficiency caused by similar fingerprints of neighboring
zones, FRL combines RSS feature and room features. In addition, FRL leverages
probe requests to locate users without modifying their smartphones. The system
is tested in a real scenario of 8 m by 20 m with 9 rooms and 3 APs. Experiments
indicate that FRL can achieve a 10 % overall accuracy gain and 50 % accuracy
gain in neighboring-zone situations, compared with conventional methods like
the histogram method.
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