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Abstract

Human dynamics is interdisciplinary research which has been extensively
investigated in various disciplines from different dimensions. As a result, it
leads to somewhat different research focuses like human mobility, interna-
tional and domestic migration, and population change. In this dissertation,
we focus on human dynamics in computer science which refers to human
activities and human interactions.

The rapid development of digital information technologies, like communica-
tion technology, sensing technology, and mobile technology, has enabled a
mobile and big data era for human dynamics research. These technologies
keep track of our lives with digital records of places we go, products we buy;
and people we meet. Human dynamics research with data from limited ob-
servations or confined experiments has transformed into tons of data records
on human communications, interactions, and activities in the naturalistic
environment.

In Chapter 2, we study the possibility of user profile inference using privacy-
sensitive audio. The contributions are three folds. First, we propose a
privacy-sensitive modality for gender identification. The effectiveness and
robustness are improved by ensemble feature selection and a two-stage classi-
fication. Second, an adaptive correlation-based multichannel VAD algorithm
for privacy-sensitive audio is proposed. Last, we bring new insights of gender
difference in interruption through analysis of group conversation in natural
settings.

In Chapter 3, we utilize the WiFi data to infer relational contextual informa-
tion. One of our contributions is an effective heuristic that could significantly
improve the detection performance of shopping groups. The heuristic indi-
cates APs under which groups appear more frequently and barely separate
should have larger weights in measuring customer similarity. The second
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contribution is to apply matrix factorization to detect groups without extra
clustering processes. Matrix factorization could properly handle data issues
in the measured similarity including noise filtering and data completion.
Besides, imposing a sparsity constraint to the factorization process could
derive the clustering results directly.

In Chapter 4, we explore the relative contextual information based on the
WiFi data and study the impact of human presence on wireless coverage.
We identified the correlation between wireless coverage and the number of
on-site people. Another contribution is the two observations of heuristics
which could improve room-level localization. On the one hand, the duration
of visit in different shops is different. On the other, different shops have
different popularity in attracting customers at different time slots. These
two features can be exploited to distinguish locations with similar wireless
fingerprints.
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Introduction

This chapter consists of four main sections: Background, Research Focus, Lit-
erature Review, and Thesis organization. Firstly, the background information
including human dynamics and privacy-sensitive data is introduced in Back-
ground. Then, in Research Focus, I elaborate on research challenges, general
methodologies, and the research framework. After that, two taxonomies of
existing works are presented in Literature Review. Lastly, Thesis Organization
reveals the overall structure of this dissertation.

1.1 Background

This section is to provide readers with essential knowledge of the motivation
and background of this dissertation. Two key concepts, including human
dynamics analytics and privacy-sensitive data, are highlighted.

1.1.1 Human Dynamics Analytics

To understand human dynamics, we firstly give the basic definition, then show
its development of different times, and lastly, provide some emerging trends
of human dynamics research from the perspective of computer science.

Definitions of human dynamics

Human dynamics is interdisciplinary research which roots in human history
[135]. It is defined in Wikipedia* as “a branch of complex systems research
in statistical physics whose main goal is to understand human behavior”.

With the flourish of modern technologies, human dynamics has now been
widely used and extensively investigated in various disciplines from different
dimensions [136]. As illustrated in Figure 1.1, many fields like geography,
psychology, and sociology define human dynamics from different perspectives
which leads to somewhat different research focuses. For example, in physics,

“https://en.wikipedia.org/wiki/Human_dynamics
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Fig. 1.1: Tllustration of human dynamics with related areas and confused notions.

the focus of human dynamics is the force of change and the dynamic spa-
tiotemporal relationships of the observed objects at both micro (individual)
and macro (group) perspectives [136]. The focuses in computational social
science are investigating social and behavioral relationships and interactions
through social simulation, modeling, network analysis, and media analysis
[79]. Computer scientists are interested in developing new spatial analytics,
data mining, and machine learning approaches to understand the disaggre-
gated data of human activities from web services, social media, and various
open data sources [175].

Without a commonly accepted definition, human dynamics has been con-
fused with many topics like social interactions, human mobility, human
relationships, socioeconomic activities, population change, international and
domestic migration, and other variants pertinent to human activities which
are shown in Figure 1.1. Human dynamics in this thesis is defined as combina-
tion of human activities and interactions according [175]. Human activities
are various things we do in our daily lives like talking, walking and shop-
ping, while human interactions emphasis more about the interplay within an
activity. For example, we may talk other people, which is a human-human
interaction. We may also talk to a social robot, which is human-computer
interaction on the other hand.

Studying human dynamics could help us gain a comprehensive understanding
of human societies including human activities like the evolving patterns over
time and space and human interactions like how social influence propagate,
and how people collaborate with each other. Besides, it also enables various
applications ranging from business intelligence to public health. In busi-

Chapter 1 Introduction



ness intelligence, we could predict organization sustainability via inspecting
gender inequality; improve service quality by examining facility utilization;
enhance marketing campaigns by looking into the composition of target
audiences. In public health, we could predict the spread of infectious disease
via analyzing social network; treat mental disorders through detecting early
symptoms.

Development of human dynamics

The term of human dynamics is borrowed from physics, which investigates
dynamics by studying objects’ motions and movements using mathematic
equations and physical laws. As one of the early proposers of “human
dynamics”, Finch emphasized the value of regional geography and indicated
that “forces of human dynamics” are not amenable to direct observation [38].
At that time (the 1930s), it was quite challenging to observe the forces of
human dynamics, let alone human dynamics. This was mostly due to the
deficiency of tools or technologies to collect the observational data, especially
at a large scale. Traditional data collection methods like interview and
survey methods are labor-intensive and time-consuming in collecting and
recording human activities and interactions. As a result, it is prohibited to
apply theoretical frameworks to examining human dynamics at a community
or society level.

With the rapid development of digital information technologies, including
information and communication technology, sensing technology, location-
aware technology, and mobile technology, tremendous convenience has been
brought into urban lives. More importantly, it has dramatically changed the
patterns of human activities and interactions [135]. Although the fundamen-
tal human needs remain almost the same as before, the ways we fulfill these
activities have changed significantly owing to these modern technologies. For
instance, online social networks and mobile social network have reshaped the
way people connect with friends through numerous services and information
available on the Internet. Laptops and smartphones are other examples which
changed the way we interact with the world. With an Internet connection
and appropriate devices, it is now feasible to conduct various office tasks
anywhere. When looking for a dining place, the recommendation made by
strangers from smartphone apps could often be a superb choice.

1.1 Background
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Modern technologies have not only introduced changes to human dynamics
but also enabled our capability of collecting the detailed data about hu-
man dynamics. As indicated by Pentland, when we enjoy the convenience
brought by those technologies we also leave behind many virtual “bread
crumbs”—digital records of places we go, products we buy, and people we
meet [112]. These bread crumbs could tell a more comprehensive and ac-
curate story of our daily lives than we could in the interview or survey. We
might carefully update Facebook status and deliver tweets according to some
standards of the day. On the contrary, digital bread crumbs could record
our behavior that actually happened in an authentic way. In general, these
digital records successfully transformed human dynamics research with data
from limited observations or confined experiments into tons of data records
on human communications, interactions, and activities in the naturalistic
environment. A mobile and big data era for human dynamics research has
arrived ever since [136].

Although the dilemma of lacking data has been alleviated by the mobile and
big data age, our knowledge about the implications of human dynamics to
the communities is still too shallow to answer important questions in human
dynamics. To make smart decisions for a better future of our communities and
societies, more efforts are required to gain insights into human dynamics.

Emerging trends of human dynamics

This subsection aims to list emerging questions of importance in human
dynamics according to the literature.

1. User privacy erosion: Due to the prevalence of 10T devices and social
media services, privacy concerns and information disclosure risks are
becoming a major concern for both researchers and the public. A
common privacy concern is the leakage of user locations when using
“check-in” functions in social media to reveal their physical locations
[86]. Another type of privacy concern relies in collecting spontaneous
data in a naturalistic environment since it requires recording video or
audio of people in unconstrained and unpredictable situations, both
public and private. There is little control over who or what might be
recorded. Private content and uninvolved parties could be recorded
without their consent [168]. To alleviate the privacy issues, methods
like obfuscation [144] might be helpful in hiding sensitive locations in

Chapter 1 Introduction



Big Data. Besides, privacy-sensitive data modality should be considered
with a priority in studying human dynamics.

. Incomplete user profiles: Conventional ways of data collection like
interview and survey could build a comprehensive user profile includ-
ing gender, age, occupation, and other demographics. However, many
datasets especially big data sources collected by IoT devices do not
contain such detailed demographic information. Without knowing de-
mographics, human dynamic research based on big data and social
media data might be biased. For example, as reported that the actual
users of social media services are mostly from the young generation.
Around 75% of Twitter users are in the age range of 15 ~ 25 7. There-
fore, data and messages collected from social media only represent a
small fraction of the whole population [150]. Further research work is
needed to infer demographics effectively and reliably in the mobile and
big data era.

. Missing contextual information: Every single human activity takes place
within a context. The focus of human dynamics research is not only just
about human but also the environment and the situation they interact
with. The environment always plays an essential role in understanding
human dynamics since it could influence and reshape human behaviors.
Based on the enumeration of context by Shaw and Sui [135], there are
at least three context spaces: relative space, relational space, and men-
tal space. First, relative context space contains the basic spatiotemporal
information of an individual. Second, relational context space is about
the various relationships among different entities. Third, mental con-
text space includes emotion, perception, motivation, etc. Unfortunately,
many data sources, especially those collected from natural settings,
lack such context information which hinders a better understanding of
human dynamics. Recent research interests in places and semantics are
good examples of deriving meanings behind human dynamics based on
the context.

Twww.beevolve.com

1.1 Background

5



6

1.1.2 Privacy-Sensitive Data

With the development of human dynamics, privacy is becoming a sensitive
yet import aspect. We first introduce what is privacy-sensitive data. Then the
motivation of using such data modalities are described. Lastly, we provide
some example privacy-sensitive data modalities used in this dissertation.

Definition of privacy-sensitive data

Privacy possesses different meanings in different situations. For an individ-
ual, the privacy concern usually arises from sensitive personally identifiable
information (PII)* which might result in crimes like identity theft if disclosed.
PII refers to data that could be traced back to an individual and lead to harm
to that person if disclosed. Typical PII include biometric data, personally
identifiable financial information (PIFI), medical information and unique
identifiers such as passport and social security number. For an organization,
privacy refers to any information that poses a risk to the organization if
discovered by the public or a competitor. Some of the typical information
are acquisition plans, financial data, trade secrets, supplier and customer
information.

European Community regulates personal data [36]

‘personal data’ shall mean any information relating to an identified
or identifiable natural person (‘data subject’); an identifiable
person is one who can be identified, directly or indirectly, in
particular by reference to an identification number or to one
or more factors specific to his physical, physiological, mental,
economic, cultural or social identity;

and specifies that data can be

kept in a form which permits identification of data subjects for no
longer than is necessary for the purposes for which the data were
collected or for which they are further processed. Member States
shall lay down appropriate safeguards for personal data stored
for longer periods for historical, statistical or scientific use.

*https://whatis.techtarget.com/definition/sensitive-informations
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The key thing is “identifiable”. As long as the data cannot be traced to an
individual, the regulations do not apply. Therefore, privacy-sensitive data
(or privacy-preserving data) in this thesis is defined as any information that
satisfies the following two requirements [29].

1. The data could not be used to trace back to an individual or an organi-
zation directly (Untraceability).

2. The data do not contain any private content that requires the consent
of the involved parties (Privacy).

However, absolute privacy cannot be guaranteed. Even though the data might
be processed with proper anonymization, researchers found that anonymity
cannot be promised. For example, MIT researchers studied credit card records
of 3 months from 1.1 million people and found that 4 spatiotemporal points
are enough to uniquely re-identify 90% of individuals [33]. Besides, knowing
the price of the transaction or the gender of the individual could further
increase the risk of reidentification.

Motivation of using privacy-sensitive data

As introduced in Section 1.1.1, privacy concern is increasingly serious, which
might be the greatest barrier to the development of human dynamics in the
mobile and big data era. There exist at least two reasons motivate us to use
privacy-sensitive data.

An obvious advantage is to alleviate the severity of privacy erosion, especially
for large-scale data collection. An example scenario is the shopping mall
where video surveillance is usually used for customer monitoring. But it
might be inappropriate to use the video data for customer analysis. The
capture video data has a high risk of privacy erosion since certain customers
could be recognized, which violates the requirement of anonymity. In this
case, WiFi data might be a better choice since it is more privacy-sensitive.
The detailed explanation is described in “examples of privacy-sensitive data
modalities”.

Another advantage is to raise the possibilities of studying human dynamics

in many private spaces. Previously, many experiments of human dynamics
are conducted in the controlled lab environment, which might not capture

1.1 Background
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the latent factors in the naturalistic environment. To capture the real-world
human activities, privacy is a big concern. With privacy-sensitive data, study
human dynamics in natural setting gradually come into reality.

Examples of privacy-sensitive data modalities

Although privacy cannot be guaranteed, its concern could be greatly reduced
by privacy-sensitive data. In the mobile and big data age, various data
modalities have been explored and some of them are naturally more privacy-
sensitive. For example, the WiFi data collected from smartphones are more
sensitive than video data in terms of privacy. Unlike individuals could be
recognized directly in video data, people are identified by virtual proxies,
MAC addresses of smartphones, in WiFi data. Since there is a gap between
the virtual proxy and the real identity, WiFi data is more privacy-preserving
than traditional video data.

We could also achieve privacy-sensitive modalities by appropriate processing
of traditional modalities. Take audio for example, assuming access to raw
audio is impractical for most real-world situations and impedes collecting
truly natural data [168]. An alternative is to collect privacy-sensitive audio
[81]. The microphone signal is sampled at 700 Hz and generates an average
amplitude reading every 50 milliseconds to ensure raw audio is not recorded
nor can it be reconstructed.

1.2 Research Focus

The main theme of the thesis is data-driven analytics of human dynamics
based on privacy-sensitive data. In this section, we will introduce the main re-
search challenges, general methodologies and a research framework covering
the works presented in this thesis.

Chapter 1 Introduction



1.2.1 Research Challenges & Methodologies

C1: Low quality of privacy-sensitive data

As introduced in Section 1.1.2, privacy-sensitive audio data has a much lower
sampling rate than normal raw audio and it is further processed with a mean
filter. Actually, most privacy-sensitive data could alleviate the privacy concern
since they are significantly less informative. Even for WiFi data, it is naturally
sparse and noisy as the timing of sending wireless packets is opportunistic
and wireless signal is vulnerable. These indicate privacy-sensitive data are
usually low-quality in terms of data granularity and data purity.

One of the challenging issues caused by low data resolution is the difficulty
to extract adequate and effective features for high-level applications. For
example, it is barely possible to extract popular voice features like pitch
and first formant from privacy-sensitive audio data. Other issues like data
missing and noisy readings also pose serious challenges. Take the WiFi data
for instance, without appropriate processing, it is difficult to calculate a
similarity between pairwise smartphone users.

To address the aforementioned challenging issues, we propose the following
approaches as a general guidance.

* Integrate knowledge from other domains and devise new features. An
example is presented in Chapter 2 where we extracted conversational
features rather than voice features to identify gender. As indicated in
sociology literature [122, 181, 50, 104], the way people take turns and
interrupt each other could also reveal their gender information.

* Fuse data from multiple sources since additional information are usually
beneficial. As illustrated in Chapter 4, we use a probabilistic approach to
locate customers based on the WiFi data. However, due to the sparsity
of the data, it is difficult to achieve satisfactory performance. Therefore,
we fuse the Pol data and derive a more accurate prior probability.

C2: Dynamics of human behavior

Human behavior is dynamic in nature. We all know that different people
may behave differently. Even for the same person, his or her behaviors

1.2 Research Focus
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keep changing. People may behave differently in different situations due
to environmental, personal, and behavioral factors. A typical example is
the shopping behavior. When shopping with companions, some people
choose to walk together through the whole process, while other people
might get separated from their companions from time to time. Take the
conversation behavior of a group of people as another example. People
usually interrupt each other during a conversation. However, researchers
find that interruption is more evenly distributed in same-gendered group
conversations [103]. Besides, customers’ indoor mobility patterns also reveal
dynamic characteristic. Group customers have different Pol preferences from
individual customers.

The variation in human behavior poses a serious challenge to the effectiveness
and robustness of system performance, sometimes even results in a new
research problem. For instance, in gender identification, the dynamics of
conversational behavior significantly influence the performance since the
extracted conversational features have large variations and are thus difficult
to capture group dynamics. For social group detection, as group customers
happen to separate sometimes, it is difficult to address shopping group
detection with conventional detection methods since their assumption is that
a social group do not separate. This makes shopping group detection a new
research problem.

To address the dynamics of human behavior, an effective way is to infer the
contextual information first. As described in Introduction, every single human
activity takes place within a context, the environment and the situation people
interact with. This contextual information could affect human behavior and
could thus partially explain the dynamics of human behavior. An example
is shown in Chapter 2, we infer the gender composition as an extra input
for gender identification since the composition plays a latent role in people’s
turn-taking behaviors and interruption patterns.

1.2.2 Research Framework

As shown in Figure 1.2, the research framework consists of 6 layers. On the
bottom two layers, we collect PS data from different human activities and
interactions including talking, walking and shopping. In certain scenarios, we
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Fig. 1.2: Research framework.

also need to fuse other information like Pol and Blue-tooth data to improve
system performance.

To clean the raw data and make preparation for extracting features, we
need to address some common data issues including outliers, data missing,
and data imbalance in Preprocessing Layer. For example, to address data
missing and noisy readings in the WiFi data, we have to remove outliers and
apply certain data completion techniques like matrix factorization. More
details could be found in the following three chapters. Feature Engineering
Layer is to extract effective features from the processed raw data. In some

scenarios, we need to rely on the related domain knowledge to devise features.

Take the voice based gender identification as an example, voice features
are mostly used. But we also found that communication styles could also
reflect gender difference from sociology literature and devise conversational
features. In Research Issue Layer, we mainly address user profile inference
and contextual information inference as both issues are increasingly popular
in studying human dynamics. Lastly, in Analytics Applications Layer, we focus
on different tasks like gender identification, group detection, and wireless
coverage estimation.

1.2 Research Focus
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Fig. 1.3: The three work in the 3D design space.

Figure 1.3 illustrates the location of the three works in the same 3D design
space. The three dimensions are human activities (e.g., shopping and talking),
contextual information (relative context, relational context, and mental
context), and input modalities (e.g., WiFi and PS audio). For example, GINA
use PS audio data to study talking behavior in the relational space.

1.3 Literature Review

Due to the immense efforts on human dynamics, there are various taxonomies
of literature. In this thesis, we review existing works from the perspectives
of modeling emphases and input modalities, respectively. The taxonomy
of modeling emphases, the dimension of time and space, is a direct and
classical way of literature review. Besides, to illustrate the significance and
necessity of privacy-sensitive data in studying human dynamics, we also show
a taxonomy of different data modalities.

1.3.1 Taxonomy of Modeling Emphases

A direct and natural way of examining the development of human dynamics is
based on the modeling emphases: time or space. Time information could be
effortlessly recorded owing to the system clock of every digital device. One of
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the most notable work is done by Barabdsi. In his work [9], he found that the
distribution of human activities is not random over time. The occurrences of
human activities follow the Pareto distribution which is found in many areas
ranging from communication to entertainment. More specifically, human
activities occur rapidly in bursts followed by extended periods of inactivity.
According to Barabasi, Pareto statistics reflect some fundamental and generic
features of human dynamics among various human activity patterns [175].

After that, the research focus of various human dynamics studies became
modeling the timing, frequency, waiting time of human activities and inter-
actions. For example, Zhou et al revealed the origin of power-laws in the
ratings of movies and presented a systematic exploration of the time intervals
between two consecutive ratings of movies [180]. Gongalves and Ramasco
analyzed web logs generated by university students [47] and Oliveira and
Vazquez focused on the inter-event time of interactions [111].

With the rapid development of social networks, the ability to get mobile users’
physical location information drives human dynamics development from the
temporal dimension to the spatial dimension. As one of the most accessible
social media data, Twitter data have simulated various researchers to explore
the space dimension in human dynamics. For example, Vosoughi et al studied
the spread of true and fake news online in a network space [155]. Others
also examined semantics meanings of individual visits [6], international and
domestic migration patterns [176]. Many researchers also utilize the detailed
phone call records to examine human dynamics, like the daily rhythms of city
life [3], work—-home commuting patterns [76], and distribution of human
convergence or divergence [37].

While research of human dynamics in the time dimension reveals the law
of burst and heavy-tailed distributions of human activities, research in the
space dimension remains exploratory, descriptive, or forensic [175].

1.3.2 Taxonomy of Input Modalities

During the development of human dynamics, different data modalities have
been explored including traditional modalities like records from survey, video,
and audio as well as emerging ones like WiFi data, phone call records, and
social media data.

1.3 Literature Review
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Different modalities usually have unique advantages in certain scenarios.
With increasing awareness of privacy concerns, privacy-sensitive modalities
should be preferred when multiple modalities are available. Take crowd
density estimation as an example which aims to infer the quantity of people
in a given area. Both video [117] and WiFi data [162] are feasible options,
the latter should be of higher priority. As mentioned WiFi is more privacy-
sensitive than video since user identity could be directly revealed in the video
surveillance.

Video

Video is among the most popular modalities used for human dynamics due
to its prevalence. In areas like biometric research, researchers are interested
in understanding and interpreting human behavior in complex environments
using video [150]. The most basic steps to understand human dynamics is the
ability of tracking individuals in video sequences. Besides, video surveillance
is also used for large-scale crowd analysis [124].

For gender identification, vision-based approaches exploit information from
the face and whole body (either from a still image or gait sequence) to
recognize human gender. It is usually based on appearance differences like
face and body, and behavior differences like gait [108].

For group detection, vision-based approaches regard group detection as a
task of clustering a set of users’ trajectories into disjoint subsets [45, 142].

Audio

Audio is another common modality for understanding human dynamics,
focusing on the perspective of communication and interaction. Researchers
could examine emotion and information flow within an organization could
be captured through communication [168, 81].

For gender identification, voice-based methods rely on discriminative features
extracted from human voices. The intuition is that different genders have
different acoustic characteristics due to physiological differences (like glottis,
vocal tract thickness) [4] and phonetic differences [141]. The most frequently
used features are pitch [60] and first formant [119], which are closely related
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to voice sources and vocal tract, respectively. Generally, the pitch and the
formant frequencies of females are higher than that of males.

WiFi

WiFi data is becoming increasingly popular due to the penetration of smart
devices like smartphones. Media Access Control (MAC) address of each WiFi-
enabled device is a proxy of each smartphone user. Since the WiFi data could
be collected in a passive and non-intrusive way, many researchers utilized
WiFi data to study human dynamics in many real-life scenarios [71, 56].

For group detection, WiFi probe is increasingly popular. The probe contains
significant information like timestamp, smartphone MAC address, RSSI, and
Service Set Identifier (SSID), which enables a wide range of applications like
passive tracking [35, 139], crowd counting[128, 169], and facility utilization
analysis [114]. Compared to other approaches, probe-based approaches do
not require high deployment cost or user intervention. SSID and RSSI are
two frequently used information to detect groups. Cunche et. al. [31, 10,
24] link different smartphones through SSID similarity.

Other modalities

As mentioned in Section 1.3.1, social media data and phone call records
provided great opportunities for human dynamic research in the space dimen-
sion, like international and domestic migration patterns [176], distribution
of human convergence or divergence [37], and the daily rhythms of city life

[3].

For group detection, sensor-based approaches use wearable devices or install
apps on smartphones to collect users’ behavioral data. Groups are detected
through correlation analysis of multiple sensor data. For instance, MIT re-
searchers use specially designed wearable devices called “Sociometric Badges”
[109, 110] to measure group behavior through face-to-face interaction and
physical proximity. Some research works [70, 84, 131] combine several
sensor modalities (WiFi, accelerometer, compass, etc.) to measures users’
similarity.

1.3 Literature Review
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1.4 Thesis Organization

The rest of the dissertation is organized as follows. The next following three
chapters contain independent research works focusing on human dynamic
using privacy-sensitive data. For each work, it has a general outline like in-
troduction, system overview, system design, experimental evaluation, related
works, and conclusion of that work.

In Chapter 2, we introduce a data mining system (GINA) that could identify
the gender information of a group of people using their privacy-sensitive
audio data. Chapter 3 presents a shopping group detection system (SNOA)
which are based on WiFi data. Chapter 4 describes a data-driven approach
for evaluating the quality of wireless networks. The last chapter concludes
the whole dissertation.
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GINA: Group Gender Identification
Using Privacy-Sensitive Audio
Data

Group gender is essential in understanding social interaction and group
dynamics. With the increasing privacy concerns of studying face-to-face
communication in natural settings, many participants are not open to raw
audio recording. Existing voice-based gender identification methods rely
on acoustic characteristics caused by physiological differences and phonetic
differences. However, these methods might become ineffective with privacy-
sensitive audio for two main reasons. First, compared to raw audio, privacy-
sensitive audio contains significantly fewer acoustic features. Moreover,
natural settings generate various uncertainties in the audio data. In this
chapter, we make the first attempt to identify group gender using privacy-
sensitive audio. Instead of extracting acoustic features from privacy-sensitive
audio, we focus on conversational features including turn-taking behaviors
and interruption patterns. However, conversational behaviors are unstable
in gender identification as human behaviors are affected by many factors
like emotion and environment. We utilize ensemble feature selection and a
two-stage classification to improve the effectiveness and robustness of our
approach. Ensemble feature selection could reduce the risk of choosing an
unstable subset of features by aggregating the outputs of multiple feature
selectors. In the first stage, we infer the gender composition (mixed-gender
or same-gender) of a group which is used as an additional input feature
for identifying group gender in the second stage. The estimated gender
composition significantly improves the performance as it could partially
account for the dynamics in conversational behaviors. According to the
experimental evaluation of 100 people in 273 meetings, the proposed method
outperforms baseline approaches and achieves an F1-score of 0.77 using
linear SVM.
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2.1 Introduction

Group gender plays an essential role in understanding social interaction and
group dynamics [149, 116]. It is also the foundation of promising research
like gender inequality [39] and gender difference [179]. With the prevalence
of studying spontaneous face-to-face communication in natural settings [140,
14, 147], it becomes unprecedentedly important to identify group gender
through privacy-sensitive audio data. Because face-to-face conversation is a
dominant and the richest communication modality available to humans [12,
167]. Such communication could capture real emotions and represent true
information flow within an organization [168, 81].

Gender identification using privacy-sensitive data is based on ethical and
practical needs. Collecting truly spontaneous conversation requires recording
people in unconstrained and unpredictable situations, both public and private.
There is little control over who or what might be recorded. Private content
and uninvolved parties could be recorded without their consent - a scenario
that, if raw audio is involved, is always unethical and sometimes illegal.
Therefore, assuming access to raw audio is impractical for most real-world
situations and impedes collecting truly natural data [168]. An alternative is
to collect privacy-sensitive audio [81]. The microphone signal is sampled at
700 Hz and generates an average amplitude reading every 50 milliseconds to
ensure raw audio is not recorded nor can it be reconstructed.

Existing voice-based gender identification methods rely on distinctive acoustic
characteristics caused by physiological differences (like glottis, vocal tract
thickness) and phonetic differences [141, 4]. Those features are extracted
from raw audio. Various identification systems have been proposed with
different acoustic features and classification models [60, 119, 1, 75, 4]. The
most frequently used features are pitch [60] and first formant [119] which
are related to voice sources and vocal tract, respectively.

Despite extensive efforts on voice-based methods, existing solutions might
become ineffective with privacy-sensitive audio for two main reasons. First,
compared to raw audio, privacy-sensitive audio is too coarse-grained and it
is extremely hard to extract valuable acoustic features from it. Moreover, due
to natural settings, privacy-sensitive audio contains various uncertainties like
background noises. These uncertainties pose serious challenges for existing
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methods. For example, estimating fundamental frequency with different
levels of noises is difficult [4].

In this chapter, we aim to achieve group gender identification using privacy-
sensitive audio (GINA). Instead of extracting acoustic features from privacy-
sensitive audio, we focus on conversational behaviors. The rationale is that
conversational behaviors could reflect gender difference. Many sociology
studies have reported explicit relationships between gender and conversa-
tional behaviors including turn-taking behaviors and interruption patterns
[122, 181, 50, 104]. Take the length of speaking turns as an example, women
have shorter speaking turns [123]. Also, men are more likely to interrupt
women than the opposite [178]. Different from previous studies whose data
are collected in laboratories, we conduct extensive experiments using data
collected in natural settings and observe similar patterns. For example, we
find that the average turn length of women (2.6 seconds) is shorter than
that of men (3.2 seconds). Besides, contrary to most existing findings on
interruption, we find that women interrupt men more often than vice versa.

The vision of GINA, however, entails two significant challenges when applied
to real conditions. 1) Transforming privacy-sensitive audio into voice activities
encounters problems including low-resolution audio and unexpected dynamics
of spontaneous conversation. On one hand, the low-resolution audio hinders
extracting acoustic features. This makes existing approaches, like multi-
class classification, ineffective. On the other, spontaneous conversation in
natural settings contains various uncertainties. For example, unpredictable
noise and people movement could affect the robustness of existing methods.
2) Although conversational behaviors reflect gender difference to some extent,
their instability reduces the robustness and effectiveness of gender identification.
People’s conversational behaviors are affected by many factors including
internal factors (like emotions) and external factors (like gender composition
of the meeting [103, 171]). For example, people behave differently when in
mixed-gender and same-gender groups [103]. This results in unstableness
and even inconsistency of conversational behaviors and thus affects the
performance of gender identification.

To address the first challenge, we propose a correlation-based multichannel
voice activity detection (VAD) algorithm. Traditional approaches try to
separate voice signals from other people (crosstalk) because crosstalk imposes
negative effects on voice applications. However, we observe that crosstalk

2.1 Introduction
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is beneficial as it generates correlation in privacy-sensitive audio. Based on
the observation, we could identify moments when only one person speaks.
Then we extract their speaking features to detect voice activities adaptively.
For the second challenge, we have made two efforts. To reduce the variance
of the performance, we adopt ensemble feature selection which reduces the
variance of F-score by over 10%. It is often reported that several different
feature subsets may yield equally optimal results, and ensemble feature
selection may reduce the risk of choosing an unstable subset [126, 130].
To improve the general identification performance, we propose a two-stage
classification method. In the first stage, we predict one of the external factors
(gender composition) as an additional input feature for gender identification
in the second stage. This approach could improve F-score by over 10% because
gender composition could partially explain the dynamics of conversational
behaviors.

According to our experimental evaluation of 100 people in 273 meetings,
with a total length of 438 hours, GINA improves the performance of baseline
approaches by 8.5% on average. GINA could achieve an F1-score of 0.77 using
linear SVM. The contribution of this chapter is summarized as follows.

* We propose a privacy-sensitive modality (conversational behaviors)
for gender identification. The performance is improved by ensemble
feature selection and a two-stage classification method.

* An adaptive correlation-based multichannel VAD algorithm for privacy-
sensitive audio is proposed.

* We analyze group conversation in natural settings and bring new in-
sights of gender difference in interruption.

The remainder of this chapter is organized as follows. An overview is intro-
duced in Section 2.2. We elaborate on design details of the proposed system
in Section 2.3. Section 2.4 illustrates the experimental evaluation of the data
collected in real-life scenarios. Related works are introduced in Section 2.5,
and we conclude this work in the last section.

2.2 System Overview

In this section, we give an overview of GINA. As illustrated in Figure 2.1,
the proposed system consists of four main components, including Privacy-
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Fig. 2.1: Overview of GINA.

Sensitive Data Collection, Voice Activity Detection, Conversational Feature
Extraction, and Group Gender Identification.

GINA is motivated by the ethical and legal issues arising from studying spon-
taneous face-to-face conversation. To this end, we exploit electronic badges
[81] to collect privacy-sensitive audio data in Privacy-Sensitive Data Collection.
We briefly introduce this component as it is not our main contribution. More
details could be found in [81]. After collecting the badge data, it is processed
with the devised multichannel VAD algorithm in Voice Activity Detection. This
step mainly transforms privacy-sensitive audio data into voice activities or
conversational behaviors. In Conversational Feature Extraction, we extract
two kinds of features, namely turn-taking features and interruption features,
for group gender identification. These features could be further divided into
individual level, meeting level and group level. We also demonstrate the
effectiveness analysis of those features and new insights of gender difference
in interruption patterns. Lastly, we introduce the proposed the two-stage
classification method in Group Gender Identification. It is related to two
classifiers: composition classifier and gender classifier. In the composition
classifier, we predict the latent information of gender composition as an
additional group level feature. Because people’s conversational behaviors
vary in groups with different gender composition (mixed gender and same
gender). Then we apply ensemble feature selection to three different levels
of features to select stable feature subsets. Finally, we exploit the gender
classifier to identify group gender based on the selected features.

2.3 System Design

2.3 System Design
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2.3.1 Privacy-Sensitive Data Collection

As indicated in [168], it is a large problem to assume access to raw audio
recordings in collecting spontaneous face-to-face conversational data. There-
fore, we adopt a platform that uses a privacy-sensitive data collection style
[81]. The platform exploits electronic badges [80] which embed multiple sen-
sors like RFID, Bluetooth, and microphone to monitor face-to-face interaction
of badge wearers.

The badge samples the microphone signal at 700 Hz and creates an average
amplitude reading every 50 milliseconds. The averaged amplitude generally
reflects the fluctuation of badger wears’ volume. In one second, every badge
generates 20 volume data points. We call the timespan of one second as
a frame. The collected badge data is privacy-sensitive as no raw audio is
recorded and the audio cannot be re-generated from the stored samples.

2.3.2 Voice Activity Detection

Multichannel voice activity detection (VAD) is to detect whether a user in a
channel speaks or not. Privacy-sensitive though the badge data is, it brings
new challenges in VAD due to the low resolution of the badge data and
unpredictable dynamics of spontaneous conversation in natural settings.

One type of traditional VAD is based on multi-class classification. Related
features are extracted from raw audio first and then classification models like
Hidden Markov Model [164] or Gaussian Mixture Model [113] are utilized to
detect voice activities. However, most of the features could not be extracted
from the privacy-sensitive audio data. Besides, it might be difficult to adapt
to scenarios without training data.

Another type of methods regards VAD as blind source separation and solves
it using independent component analysis (ICA) [99]. However, ICA assumes
stationary mixing of the signal, i.e., requires participants to remain fixed at
locations. This constraint is hard to satisfy in natural settings as participants
would walk around and show some demos during the meeting. Apart from
this, it is also difficult to find thresholds to separate speech and noise on the
de-mixed signals, which are not resilient to different environments.
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Traditional approaches try to separate voice signals from other people (crosstalk)

because crosstalk imposes negative effects on voice applications. However,
we find that crosstalk is beneficial as it generates correlation in privacy-
sensitive audio. When only one badge wearer speaks, other people’s badge
signals are highly correlated with the speaker’s badge signal due to crosstalk.
Voice signal from different people could be regarded as independent random
variables. Without the effect of crosstalk, the correlation of voice signals from
two speakers should obey a zero mean normal distribution. Given a set of
participants P within a meeting, the badge data S; of wearer i in a frame
could be represented as:

S;=Vi+ X ¢V, +ipa + pe 5 # 1

Local e e
speech Crosstalk Noise

where V; is the voice signal from the wearer in the same frame, ¢;; is a
attenuation factor of voice over the distance between wear ¢ and j, p; and
p. are device and environmental noise respectively. The badge signal is a
mixture of local speech (voice from the badge wearer), crosstalk (voice from
other participants), and noise (device and environmental noise). When only
participant ¢ speaks during frame k, the badge signal of S;(k) and S;(k)
could be reduced to Equation 2.1. It is clear that approximated S;(k) and
approximated S;(k) are linearly correlated.

(2.1)

{Sz(k> = Vi(k) + p = Vi(k)
Sj(k) = ¢ - Vi(k) + p = ¢ - Vi(k)

Based on the observation, we propose a correlation-based multichannel VAD
algorithm as shown in Algorithm 1*. The algorithm takes the badge data
F, from a whole meeting as input and derives voice activities F, for all
participants. It consists of three main steps. We extract a set of all frames by
the union of each participant’s frames (line 2). The first step (line 3 ~ 6) is
to find a subset of frames F, that only one wearer speaks or only one local
speech exists (denote as genuine speak information). The selection criteria
are two-fold. First, the person p must has the highest mean volume to make
sure his badge signal is not caused by crosstalk. Second, other people’s badge
signal are all highly correlated with the person p which ensures p is the only

“The code: https://github.com/HumanDynamics/openbadge-analysis
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Algorithm 1: Correlation-based multichannel VAD.

Input :P: a set of participants in a meeting;

Fy: a directory of badge data for all participants;
Output : F,.: a directory of voice activities for all participants
Initialize empty directories: Fg, Fu, Fr;

F « |, Fo(1)(frame); // F is a set of all frames in the meeting
/* Step 1: Detect genuine speak information */
foreach frame k € F do

p argmax(mean(Si(k))) ,i,p € P;

ifVj € P, corr(p, j) > 0 then
| Add frame k to Fy(5);

/* Step 2: Detect all speak information */
C <+ get-clf-rules(F4); // Find classification rule for each person
foreach frame k € F do
foreach p € P do
if mean(Sy) > C(p, ‘mean’) or std(S,) > C(p, std’) then
| Add frame k to Fu(3);

/* Step 3: Detect real speak information */
Fr(p) = F4(5) U Fal(9);
foreach frame k € Uz Fa(l) do

if Vi, j(j # i) € P,corr(S;(k),S;(k)) > 0 then

p  argmin (mean (Si(k)),mean (Sj(k))) ,peEP;

Remove frame k from F(p);

Function get-clf-rules (Fy);
Input :F,: A directory of frames when only one person speaks
Output : C A directory of classification rules for each person
foreach p € P do
D (p, ‘mean’) «+ distribution of mean volume in a frame when p talks;
D, (p, ‘mean’) < distribution of mean volume when p remains silent;
D¢ (p, std’), Ds(p, ‘std’) « distributions of standard deviation of volume;
C(p, ‘mean’) + intersection of D¢ (p, ‘mean’) and D (p, ‘mean’) C(p, ‘std’) < intersection of D¢ (p, ‘std’)
and D (p, std’)

return C

speaker. Parameter 6 is a threshold of correlation to detect crosstalk. We
further discuss this parameter in Experimental Evaluation.

The second step (line 7 ~ 11) detects all frames that a person is likely to
speak by applying classification rules learned from F, (all speak information).
Given F,, we could identify frames of two situations for a person: talking
and silence. Through comparison of both situations, we could identify cutoff
points of the statistical features (mean and variance) of the volume.

Since the detected voice activities could be caused by crosstalk, the last step
(line 12 ~ 16) is to remove such false activities (real speak information).
The voice signal of two speakers are expected to be random independent
variables, so do their badge data. For pairwise wearers, if their badge signals

Chapter 2 GINA: Group Gender Identification Using Privacy-Sensitive Audio Data
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Fig. 2.2: An example result of multichannel VAD on a meeting with four
participants between 18:12:50 and 18:13:50.
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Fig. 2.3: Tllustration of conversational features. Underlined bold text represent
turn-taking features, the other bold text represent interruption features.

are strongly correlated (correlation > ), we remove the frame for the wearer
who has the weaker volume as it might be caused by crosstalk.

An example result of multichannel VAD is illustrated in Figure 2.2. The first
four sub-figures reveal the badge data collected from four participants. It
is clear that participants’ badge signals in the box exceed their cutoff point
of mean volume. However, these false activities are just caused by crosstalk
from the blue participant. The last sub-figure illustrates the detected voice
activities for all participants.

2.3.3 Conversational Feature Extraction

After Voice Activity Detection, privacy-sensitive audio data is transformed
into voice activities. From the detected voice activities, we define and extract
two kinds of conversational features, turn-taking features and interruption
features, which are shown in Figure 2.3.
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Fig. 2.4: Effectiveness analysis of turn-taking features. (a) ~ (d) PDFs of different
features; (e) ROC curves of features.

Turn-taking features

Turn-taking features include turn length (how long a person’s turn lasts),
the percentage of turn occurrence (how frequently a person speaks), pause
between consecutive turns, and gap since last speak as indicated in the
literature [122].

Through analysis of the data collected from MIT Sloan Fellows program (See
Section 2.4), we find that some of these features might not be effective.
Figure 2.4(a) ~ (d) depict the probability density functions (PDFs) of four
different features. As shown in Figure 2.4(a), females have shorter turn
length than males. According to Figure 2.4(b), females have larger turn-
taking variations. Besides, there seem no significant gender difference in gap
since last speak and turn pauses as indicated by Figure 2.4(c) and (d).

To compare the effectiveness of those turn-taking features in gender identifi-
cation, we exploit Receiver Operating Characteristic (ROC) curve, which is
usually used to illustrate the diagnostic ability of a binary classifier system as
its discrimination threshold varies. The curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold
settings. As shown in Figure 2.4(e), it is clear that the effectiveness of turn
length is much better than the others.

Chapter 2 GINA: Group Gender Identification Using Privacy-Sensitive Audio Data
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Fig. 2.5: Analysis of who interrupts who with PDFs of four-class interruption and
results of Mann-Whitney U test for different types of interruption. (a) Type I
interruption; (b) Type II interruption; (c) Type I and Type II interruption.

Interruption features

According to literature, interruption consists of cooperative and disruptive
interruption which could reflect gender difference [146, 178]. Cooperative
interruption is usually words of agreement and support or anticipation of how
other people’ sentences and thoughts would end. Disruptive interruption, on
the other hand, is described as having a tendency to switch the topic or take
the floor. The detailed description of interruption and gender difference is
stated in Related Work (Section 2.5.2).

However, cooperative and disruptive interruption might be too complex and
difficult to detect without context information. In Figure 2.3, we define
two roles in interruption. An interrupter is a person who starts his turn

before others’ turns finish while an interruptee is a person that is interrupted.

Besides, we also define two types of interruption. Type I interruption is
more likely to be a mixture of unsuccessful interruption and cooperative
interruption, while Type II interruption is mostly successful interruption.

After analyzing the collected data, we find that generally women interrupt
men more frequently which is contrary to the most existing findings in
sociology studies [181, 178]. The analysis of interruption consists of three
parts, who interrupts who, interrupter, and interruptee.

Who interrupts who: There are four classes of interruption, namely FM
(female interrupt male), MF, MM, and FF, in a mixed-gender group meeting.
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Fig. 2.6: Analysis of inters under three types of interruption.

Given the fact that the numbers of both genders are different, we calculate
interruption ratios as shown in the matrix.

Int ti ti
nterruption ratios Irr | _Irm I7p: Number of FF interruption
! — Iyp : Ty I7: Number interruption started by females
[} I
MF ] MM Iy Np ' IyNy N r: Number of females in group
I I

The normalized interruption ratio is a normalization of each ratio over their
total sum. As shown in Figure 2.5, we plot PDFs of four classes of interruption
in three different situations. To show the relation of pairwise classes of
interruption, we resort to Mann-Whitney U test which is a nonparametric
test. The null hypothesis of the test is equally likely that a randomly selected
value from one sample will be less than or greater than a randomly selected
value from a second sample. We derive interesting results that in different
situations, the relations of four-class interruption are also different. For all
interruption, the relationship of four-class interruption is FM > MF > MM >
FF. For Type I interruption, the relationship mostly holds except there is no
significant difference between MF and MM. The PDFs of Type II interruption
indicate that there is no significant difference in Type II interruption between
female interrupt male and male interrupt female.

Interrupter: The role of gender as interrupters is analyzed in Figure 2.6. We
show PDFs of male and female interrupters under three different types of
interruption. The normalized interrupter ratio is simply calculated using the
percentage of male or female interrupter over all interrupters. We could
find that females are more likely to initiate interruptions especially Type I
interruption. This is reasonable since a significant part of Type I interruption
is cooperative interruption which is favored by women.

Chapter 2 GINA: Group Gender Identification Using Privacy-Sensitive Audio Data
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Interruptee: Similar to the analysis of interrupters, we also analyze inter-
ruptees. The results in Figure 2.7 indicate males are far more likely to be
interrupted in different types of interruption.

Turn-taking behaviors and interruption patterns could both reflect gender
difference. Therefore we devise three levels of features based on turn-taking
and interruption. Figure 2.8 includes different levels of features we use.
Features start with an ‘M’ is a meeting level feature, ‘G’ indicates group
level features, while the rest are individual level features. For example,
feature itper len I means the average length of Type I interruption when a
participant acts as an interrupter. Feature itpee occr means the occurrence of

interruption when a participant acts as an interruptee. Feature itp-diff is the
difference between itper occr and itpee_ occr.

We also show the importance of those features in Figure 2.8. A Random Forest
of 100 trees is used to evaluate their importance on an artificial classification
task. Each bar represents the importance of a certain feature, along with
its inter-tree variability. We could notice two things. First, it is nontrivial
to select a subset of features that are very informative. Second, almost all
the features have a large deviation in different trees. This also reflects the
instability of conversational behaviors.
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Fig. 2.9: An illustration of ensemble feature selection and the two-stage
classification in an iteration of cross-validation.

2.3.4 Group Gender Identification

The last step is to predict group gender based on the extracted features.
Specifically, it consists of the following 2 steps: ensemble feature selection
and two-stage classification which are illustrated in Figure 2.9. First of
all, in an iteration of k-fold cross-validation, we choose (k — 1) folds as
training data and the rest fold as test data. The input data (X) consists
of three counterparts, individual level feature, meeting level feature, and
group level features: X = {X?! Xmeet X9rourl The label (Y) consists of two
parts, composition and gender: Y = {Ym Y9rderl Each fold contains
the data from one or more groups. Second, we further separate the training
data into n folds for training ensemble feature selector F . The selector
Fj is applied to select a subset of features for both training (Xj,.,) and
test (X},,,) data respectively. Lastly, the training data is used to train two
classifiers (composition classifier and gender classifier). During the testing,
the estimated composition (Yio,”) and selected input data (X/,,,) are fed

gender

into the gender classifier to infer genders (YY.%").

Ensemble feature selection

As introduced in Introduction, although conversational behaviors could re-
flect gender difference, such behaviors are unstable sometimes inconsistent.
The potential reasons for those changes rely on the complex nature of human
dynamics. Many factors could affect people’s conversational behaviors includ-
ing internal factors like emotions and external factors like gender composition
of a meeting [103].

Chapter 2 GINA: Group Gender Identification Using Privacy-Sensitive Audio Data



To improve the performance of using conversational behaviors, feature selec-
tion is essential. The objectives of feature selection are usually three-fold: im-
proving the prediction performance, providing faster and more cost-effective
predictors, and facilitating a better understanding of the underlying process.
Furthermore, to handle the instability of conversational behaviors, we adopt
ensemble feature selection (EFS). The idea of ensemble feature selection re-
sembles ensemble learning. It is often reported that several different feature
subsets may yield equally optimal results in large feature or small sample
size domains. EFS could reduce the risk of choosing an unstable subset [49].
Besides, the representational power of a particular feature selector might
constrain its search space such that optimal subsets cannot be reached. With
EFS this problem could be alleviated by aggregating the outputs of several
feature selectors [49].

Among several ways of ensemble, we adopt homogeneous ensemble [130]. It
is not only easy to implement, but also more fair to evaluate its effectiveness
with the standalone feature selector. Homogeneous ensemble applies the
same feature selection method to different training data. As illustrated in
Figure 2.9, we separate the training data into n folds and apply n feature
selectors of the ensemble E = {F,,F,,--- |F,} to each (n — 1) folds of
training data. Each selector F; outputs a weight vector (f;) of all features
with f/ representing the weight of the j-th feature. To derive a general weight
vector fx from all weight vectors, we use an average as shown in Equation
2.2. Lastly, a subset of features is selected with the mean feature weight of fz
as a threshold.

. (2.2)

Two-stage classification

We find gender composition, one of the external factors, could be inferred
accurately using meeting level features. Therefore, we propose a two-stage
classification method as shown in Figure 2.9. In the first stage, we infer the
latent information of gender composition and treat it as an additional input
feature for group gender identification in the second stage. In both stages, we
choose popular classification models like linear SVM and Random Forest.

In the first stage, we leverage meeting level features of each group to pre-
dict its gender composition. Each participant in the meeting has two roles,
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interrupting others (as interrupter) and being interrupted by others (as inter-
ruptee). The variance of the difference between interrupter and interruptee
in a meeting (M _var_itp-diff) is a good indicator of gender composition.
Same-gendered groups tend to have smaller variance. Because interruption
is reported more evenly distributed in same-gendered groups [103]. In the
second stage, we combine the selected features and the inferred gender
composition as input to predict gender for the whole group.

2.4 Experimental Evaluation

2.4.1 Settings

Setup

The privacy-sensitive audio data is collected from spontaneous face-to-face
meetings of MIT Sloan Fellows class of 2016/17 for about 4 weeks. 100 out of
the 110 students participated in the study, including 31 females and 69 males.
They came from 35 different countries and had an average age of 37.41 +-4.45
years (mean =+ standard deviation) as well as an average work experience of
13.78 4= 4.24 years. All participants gave written informed consent about their
participation in the study.

Great importance is attached to group collaboration in the MIT Sloan Fellows
program. Therefore, Sloan Fellows are assigned to study groups of four or five
students before the program starts. The guideline of the group assignment
ensures if it is a mixed gender group there are at least 2 students of the same
gender. There are 21 study groups including 5 same-gender groups and 15
mixed-gender groups. These groups are consistent over the whole program,
and the students within these groups regularly meet to study and work on
the courses together. They are free in how often and how long they meet.

Dataset

During the experiment, we collect 273 effective meetings with a total length
of 438.25 hours from 21 groups. We show the number of meetings and their
duration for each group in Figure 2.10. On average, each group had 13
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Fig. 2.10: Stacked histogram of number of meetings and meeting duration for all
study groups.
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Fig. 2.11: Illustration of baseline approaches.

meetings, but still, some groups had no more than 5 meetings. Besides, over
half of those meetings last for more than 100 minutes.

2.4.2 Evaluation

Baseline approaches

To evaluate the effectiveness of ensemble feature selection and gender com-
position, we propose two other approaches as baselines. The detailed config-
uration of the approaches are illustrated in Figure 2.11.

Feature selection techniques can be divided into three categories based on
how they interact with the classifier. Filter methods directly operate on
the dataset by providing a feature weighting, ranking or subset as output.
The advantage of being fast and independent of the classification model
but at the cost of inferior results. Wrapper methods perform a search in
the space of feature subsets, guided by the outcome of the model (like
classification performance on cross-validation of the training set). Their
results are reported better than filter methods, but at the cost of an increased
computational cost. Lastly, embedded methods use internal information of
the classification model to perform feature selection (e.g., use of the weight
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vector in support vector machines). They often provide a good trade-off
between performance and computational cost [125]. Therefore, a decision
tree based embedded feature selection method is used.

Evaluation metrics

Gender identification is essentially a binary classification problem. We use
metrics based on precision, recall, and F1-score to evaluate the performance
of the proposed system. When the target label is male (i.e., X is set to male),
precision, recall and F1-score for male is calculated as follows.

. tp Truth X X
precision(p) = P 5 5 oo | £
_ _tp = P Target label
recall(r) " tp+fn § X {female, male}
. T ~
Fl-score =2 2= 9X fn | tn | . Nontar
get
pr a X abel

Considering the imbalance in numbers of females and males, we use a
weighted version of those metrics. The weighted F1-score is calculated with
Equation 2.3 where Sr is the support of female or the number of true female
instances and F1 is the F1l-score for females. The weighted precision and
weighted recall are derived in a similar way.

SF SM

Fl=—"F P14 —2M .
Sp+Sy  F T Sp+ Sy

Fly (2.3)

Parameter selection

Parameter # in Voice Activity Detection (Section 2.3.2) is a threshold for
detecting crosstalk. Different values of 0 lead to different genuine speak
information (F,, in Section 2.3.2).

Generally, large 6 could derive better accuracy because the frames selected
as genuine speak (F,) becomes more strict. However, it will also lead to
large deviation as the number of frames in F, decreases. On the contrary,
small # will result in more false detections of genuine speak and thus reduce
the accuracy but the number of frames are more than adequate. Given
two distributions D,(p, ‘mean’) (distribution of mean volume when p talks)
and D(p, ‘mean’) (p remains silent), the larger their distance measured in
KL divergence the better. As shown in Figure 2.12, with the increase of 6,
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composition detection with different models.

the mean distance also increases with while the number of genuine speak
frames decreases. This is a trade-off between accuracy and deviation, we
experimentally set # = 0.5 in our scenario.

Performance of gender composition detection

We evaluate the performance of gender composition detection with 10-fold
cross-validation. Because the number of groups is small, we repeat the cross-
validation process for 5 times and show the average performance in Figure
2.13. Naive bayes and linear SVM outperform other models and achieve a
weighted F1-score around 0.9. This indicates the meeting level features we
extract have the potential to capture gender composition effectively. Because
same-gendered groups and mixed-gendered groups have distinct meeting
behaviors. Same-gendered groups have evenly distributed interruption pat-
terns. The gap between a person being an interrupter and an interruptee are
close to each other in the same-gendered groups. While in mixed-gendered
groups, women tend to have large gap while men are likely to have small
gaps. This is reflected in the analysis on who interrupts who. Therefore the
variance of gaps is larger in the mixed-gendered groups.

Performance of group gender identification

We evaluate the performance of baseline approaches on selected classifica-
tion models including Nearest Neighbor, Linear SVM, Random Forest, Neural
Network and AdaBoost. The parameter settings for all models are consistent
with different baselines. As shown in Figure 2.14, for most of the models,
the order of performance is GINA > TC-S > T-E. On average, GINA outper-
forms T-E and TC-S by 11.62% and 5.37% in F1-score respectively except on
Random Forest. This indicates that the inferred gender composition and
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ensemble feature selection are effective in improving the performance of
gender identification.

Not only the performance, but ensemble feature selection could also reduce
the variance of performance. Without Random Forest, on average GINA re-
duces the variance of Precision and Recall by 17.28% and 7.15%. As explained,
ensemble feature selection could reduce the risk of choosing an unstable
subset of features by aggregating the outputs of several feature selectors.

As shown in Figure 2.8, the feature of gender composition is the second
most important feature. On average, this additional feature could improve
the Precision and Recall by 15.99% and 9.15%. Gender composition could
partially account for the instability of conversational behaviors and thus
increase the interpretability of conversational features.

2.5 Related Work
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2.5.1 Gender detection

Gender identification has been studied for decades in different areas. Various
modalities like vision, online behaviors and voice have been utilized for
this purpose. Different application scenarios have varying preferences of
modalities. For example, vision-based methods are the first choice in systems
where user cooperation is not required, like surveillance systems. In speech
recognition, voice-based approaches are preferred.

Vision-based approaches exploit information from the face and whole body
(either from a still image or gait sequence) to recognize human gender. It
is usually based on appearance differences like face and body, and behavior
differences like gait. More details on the utilized techniques and challenging
issues could be found in the survey [108].

Vision, voice as well as handwriting are traditional modalities for gender
identification. With the development of digital advertising, users’ online
behaviors like video viewing behaviors [177] and web browsing behaviors
[58] are used for gender identification recently. This type of approaches is
based on preference differences and behaviors differences.

Among all different modalities, voice is the most related to conversational
behaviors. Voice-based methods rely on discriminative features extracted
from human voices. The intuition is that different genders have different
acoustic characteristics due to physiological differences (like glottis, vocal
tract thickness) [4] and phonetic differences [141]. Various identification
systems with different classification models and different types of features
have been reported in the literature [60, 119, 1, 75, 4]. The most frequently
used features are pitch [60] and first formant [119], which are closely related
to voice sources and vocal tract, respectively. Generally, the pitch and the
formant frequencies of females are higher than that of males. Moreover, as
pointed out in [4], other traditional acoustic features like linear predictive co-
efficients (LPC), linear predictive cepstral coefficients (LPCC), Mel-frequency
cepstral coefficients (MFCC), perceptual linear predictive coefficients (PLP),
and relative spectral PLP coefficients (RASTA-PLP) are used in the literature
for gender identification.

The majority of aforementioned acoustic features depend on accurate es-
timation of the fundamental frequency which itself is a challenging task.

2.5 Related Work
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Therefore, Alhussein et. al. propose a new single-value feature in the form of
area under the modified voice contour (MVC) in [4]. The proposed feature is
independent of fundamental frequency and is proved promising compared to
existing features.

Besides, there is a trend of combining multiple features for gender identifica-
tion in recent work [85, 1]. For example, Abouelenien et. al. extract features
from five different modalities, including acoustic, linguistic, visual, thermal,
and physiological, to identify gender [1].

2.5.2 Gender differences and interruption

The occurrence of overlap and interruption have been found closely related
to gender in many sociology studies [181, 178]. The classic study by Zim-
merman and West found that in same-sex conversations, interruptions were
rare and appeared to be evenly distributed between speakers, whereas in
cross-sex conversations, almost all the interruptions were initiated by male
speakers [181]. A well-adopted explanation is males tend to show dominance
by interrupting females. Many other works have found similarly that men
interrupt more than women.

However, a few studies have different findings. For example, Hannah et.
al. found no significant difference between interruption and gender [50].
Murray and Covelli even had a contrary discovery that women interrupt
more than men [104]. One potential reason for the diverse findings is
multiple conceptual and operational definitions of interruptions used in
the literature [178]. Interruption is a complex interactional phenomenon
with rich meanings, diverse functions, and various structural features [178].
There exist two different types of interruption, cooperative and disruptive, in
literature [146, 178]. Cooperative interruption is usually words of agreement
and support or anticipation of how other people’ sentences and thoughts
would end. This type of interruption is reported characteristic of women’s
style of speech [122] that might have a potentially positive influence on the
interpersonal relationship between speakers. Disruptive interruption, on the
other hand, is described as tending to switch the topic or take the floor. This
type of interruption is attributed to men’s style that might have the potential
to bear negatively on the interpersonal relationship between speakers.

Chapter 2 GINA: Group Gender Identification Using Privacy-Sensitive Audio Data



2.6 Conclusion

In this chapter, we propose a data mining system (GINA) to identify group
gender through privacy-sensitive audio data. Our contribution are three-fold.
First, we propose a privacy-sensitive modality for gender identification. The
effectiveness and robustness are improved by ensemble feature selection and
a two-stage classification. Second, an adaptive correlation-based multichan-
nel VAD algorithm for privacy-sensitive audio is proposed. Last, we bring
new insights of gender difference in interruption through analysis of group
conversation in natural settings. According to experimental evaluation, GINA
could effectively identify group gender with an F1l-score 0.77 using Linear
SVM.

2.6 Conclusion
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SNOW: Detecting Shopping G
Using WiFi

O

Detecting shopping groups is gaining popularity as it enables various applica-
tions ranging from marketing to advertising. Existing methods exploit WiFi
probe requests to detect shopping groups by identifying co-located customers.
However, the probe request is prone to suffer from device heterogeneity
which might pose a severe data sparseness problem. More importantly, we
find that a certain amount of shopping groups would separate sometimes
which makes traditional methods unreliable. In this chapter, we propose a
shopping group detection system using WiFi (SNOW). Instead of collecting
probe requests, SNOW utilizes the WiFi data from smartphones associated
with the deployed access points (APs). We could thus obtain data from
different devices and even ensure a data granularity of seconds using Arping.
Besides, we exploit an effective heuristic extracted from two observations
of shopping group dynamics to improve the detection performance. First,
the probability of group separation differs in diverse areas. Second, the pro-
portion of group participation and individual engagement differs in different
activities of the mall. Therefore, APs under which shopping groups appear
more frequently and barely separate should contribute more in measuring
customer similarity. Lastly, we represent the measured similarity into a matrix
format and apply matrix factorization with a sparsity constraint to derive
grouping results directly. According to our experiments in a large shopping
mall, SNOW improves the detection performance of baseline approaches by
13.2% on average.

3.1 Introduction

Detecting shopping groups is not only the foundation of many areas but also
an enabler of various applications ranging from marketing to advertising
[56]. The insights of shopping groups can help retailers to provide a context-
specific incentive to potential customers on the one hand and add more
intelligence to their business analytics on the other [131].
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Fig. 3.1: Answers to the online survey problem: “How often will you get separated
with your companion(s) in these regions?”

A group refers to people with similar properties or behaviors like network
association histories [10] and mobility patterns [71, 56]. Detecting shopping
groups is defined as a task to cluster a set of customers into disjoint subsets.

Some existing works detect co-located people as groups with probe requests
(or probes) [71, 56]. Those probes are broadcast by smartphones to seek
information about nearby access points (APs). Received Signal Strength Indi-
cator (RSSI) contained in probes could be used to represent smartphone users’
mobility information. Compared to other approaches, the probe method re-
quires neither high deployment cost (e.g., deploy cameras [45, 142]) nor
user intervention (e.g., carry wearable devices or install mobile applications
[70, 131, 109]).

However, the probe method might have two difficulties in detecting shopping
groups. The first problem results from the probe request itself. Pervasive as
the probe is, it suffers from multiple issues like MAC randomization [42],
meaningless devices [138], and especially device heterogeneity [42]. The
timing of sending probes are mainly determined by user-device interaction
and the internal mechanism of the device. Therefore, different devices
might generate data with various granularities which makes it difficult to
measure customer similarity [42]. The second problem arises from the
shopping group. Existing group detection methods assume group members
always stick together while shopping groups might sometimes get separated.
According to our online survey of 268 subjects, most group customers are
often separated with their companions in the mall, especially in bookstores.
The detailed answers to the survey problem are shown in Figure 3.1. This
fact requires group detection methods can not only distinguish strangers who
are close to each but also identify groups that might disperse.

Chapter 3 SNOW: Detecting Shopping Groups Using WiFi



e -
+ Cinema /. Bookstore
/ [ ] o

L

N
Il \\
/ \ [ ] °

L I, Y ’ \ . AY

ada ‘ \ ’ \ - \

o 7 S AN \
! () ‘/ \‘ - N \',' .\‘ ’,a \‘
Ce ) @) N R () |
| | i ' i ) i
L o- =. : LR -
oo ®e | / \ /

[ () ada

&2 shopping group & ==% separated group & single customer &}) AP

Fig. 3.2: A toy example for illustrating the main idea of SNOW.

We ask the following question: can we reliably detect shopping groups using

WiFi? In this chapter, we provide an affirmative answer by proposing SNOW.

Instead of sniffing controversial probe requests, we collect the WiFi data
from customers who associate with the deployed APs. WiFi data refers to
the information contributed by any captured wireless traffic. According to
a survey [115], over 75% people use public WiFi, which indicates the WiFi
data is also pervasive enough for many application scenarios. Due to extra
wireless packets, WiFi data could derive more continuous information for
different devices. As WiFi data comes from only connected customers, extra
efforts to handle MAC randomization and remove meaningless devices could
be exempted. To handle the dynamics of shopping groups, we exploit an
effective heuristic derived from two key observations. Observation I: the
probability of group separation differs in diverse areas, which is also reflected
in the survey results in Figure 3.1. We think this happens might due to
different interests of group members. Observation II: the proportion of group
participation and individual engagement differs in different activities of the
mall. It is reported when considering whether to engage in hedonic and
public activities like going to a movie alone, individual consumers anticipate
negative inferences from others about their social connectedness that reduce
their interests of engaging in such activities [120].

We show a toy example in Figure 3.2 to highlight the main idea of SNOW.
We could see that less group separation occurs in the cinema (Observation I),
indicating there would be less false negative detections (groups are detected
as strangers). Besides, the ratio of engaged groups over individuals is higher
in the cinema (Observation II), showing the probability of false positive
detection (strangers are detected as groups) would be smaller. Therefore,
customer similarity measured in the cinema is more important than that of
the bookstore. Accordingly, the AP deployed in the cinema (a;) should bear
higher importance than other APs.

3.1 Introduction
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The vision of SNOW, however, entails significant challenges when applied to
real conditions. First, it is difficult to compare customers’ WiFi data directly
since the data from different devices are usually defined on different time
instants with different lengths. Besides, other issues like packet loss and not
sending any packets make it even difficult to measure the customer similarity.
Second, the measured similarity could be incomplete and noisy which might
lead to false detections like detecting strangers as a group and vice versa.

To address the first challenge, we propose a three-step data preprocessing
including time interpolation, noise filtering, and non-effective instant re-
moval. After the preprocessing, issues like packet loss and not sending any
packets could be appropriately addressed. Then we could measure pairwise
customer similarity based on the WiFi data. For the second challenge, we
propose to represent customer similarity into a matrix format and apply
matrix factorization (MF) to derive the grouping results. The advantages are
two-fold. First, MF is a popular approach for noise filtering and data comple-
tion by decomposing the input matrix into several factor matrices. Second,
MF with sparsity constraint is an alternative for clustering. Therefore, we
could directly derive the grouping results without extra clustering processes
by imposing the sparsity constraint to the decomposition.

According to our experimental evaluation in a large mall, SNOW could
achieve robust and reliable performance in detecting shopping groups. Com-
pared to baseline approaches, SNOW improves the performance of detection
by 13.8% and 12.6% on labeled and semi-labeled datasets, respectively.

The contributions of this work are summarized as follows.

* We extract an effective heuristic from observations of shopping group
dynamics that could significantly improve the detection performance.

* We propose a general three-step preprocessing method for processing
the WiFi data.

* We evaluate the proposed system using data collected in a large shop-
ping mall for three weeks.

The remainder of this chapter is organized as follows. We present design
details of the proposed system in Section 3.2. Section 3.3 demonstrates
results of the experimental evaluation. Related work is introduced in Section

44 Chapter 3 SNOW: Detecting Shopping Groups Using WiFi



Data Collection Similarity AP Significance Group Detection
((<!))) Measurement Estimation uy ug Uz ug

@« v w1 07| [02] pommssmmsmee-y
é_ﬁ_ﬁﬂ A > WiFi /

\ Matrix |
4 u2(07| 106 i P N
E{g data > u3| 04| 1 |0s ifactorization
E Uq10.2 ¥ l
Bluetooth W . + } l

¥
AP weight

AP weight
—_—

groups separation
&) AP E\ Phone --> Wireless communication Generated data
A WiFi packet >E Bluetooth connection => Data flow 3.

Fig. 3.3: An overview of SNOW.

3.4. We provide further discussion on issues that might be unclear in Section
3.5. Finally, we conclude this chapter in the last section.

3.2 System Design

In this section, we elaborate on design details of SNOW. Figure 3.3 shows an
overview of the proposed system which consists of four main components.
First, Data Collection is to collect the WiFi data from customers who associate
with the deployed APs. We also collect the Bluetooth data from volunteers
to estimate the significance of different APs. Note the Bluetooth data is
not required when the system is in service. Second, we measure pairwise
customer similarity based on their WiFi data in Similarity Measurement.
Third, AP Significance Estimation exploits both WiFi and Bluetooth data
to evaluate AP weights. Last, the customer similarity is refined combining
both the AP weights and the WiFi data. We further represent the refined
similarities in a matrix and apply matrix factorization to detect shopping
groups.

3.2.1 Data Collection

WiFi data

The WiFi data refers to the information contributed by any wireless traffic
of connected customers. It would not violate customers’ privacy since only
non-sensitive information in the packet header is used. Compared to probe
requests, the WiFi data has two advantages. First, smartphones use the MAC
randomization mechanism to protect user privacy nowadays [42]. Probe
requests might also come from passers-by outside the mall. Therefore, it
usually requires extra processes for probe methods to handle MAC random-

3.2 System Design
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ization and filter out passers-by. While these efforts could be exempt for
the WiFi data as only consumers would take the initiative to connect to the
deployed APs in the mall. Second, the timing of sending probes are mainly
determined by user-device interaction and the internal mechanism of devices.
Generally, Android devices send more probes than iOS devices and devices
with old operating systems send more probes.[42]. Therefore, probe requests
might generate sparse data with different data granularity. For the WiFi
data, however, it is always available for both iOS and Android devices once
connected to the AP.

We exploit off-the-shelf WiFi APs to collect and store the WiFi data and
upload them to a server daily. Each AP works under OpenWrt (a GNU/Linux
distribution for embedded devices) and uses IW (a tool for managing wireless
configuration) to collect WiFi data from connected devices. An example of
using IW is “iw interface station dump” (interface is the wireless interface of
the AP). We extract two fields from the output of IW. The first field is signal
which indicates RSSI. The second field inactive time refers to an interval since
receiving the last packet. We execute the command every second to extract
both fields and record the signal information when it updates.

However, when the smartphone is not used, the granularity of WiFi data could
be unsatisfying. To overcome this issue, we use Arping to force the connected
device to send packets more frequently. Arping is a tool for discovering a
MAC address given an IP address. IP addresses of the connected devices
could be found in ARP table of DHCP lease. This act might cause more energy
consumption and we further discuss this issue in Section 3.5. According to
our experiments under laboratory environment, Arping could on average
boost the data granularity by 43% for devices with different systems and
ensure a data granularity of seconds.

Bluetooth data

We also collect the Bluetooth data from volunteers’ smartphones for signifi-
cance estimation of different APs. When the system is applied in service, this
data is not required for customers.

We develop an Android application to scan and record its associated network

information and nearby Bluetooth devices every 30 seconds. The interval
is determined empirically as it takes several seconds to complete the scan

Chapter 3 SNOW: Detecting Shopping Groups Using WiFi
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Fig. 3.4: The three-step preprocessing of the WiFi data.

process. The app collects data entries in the format of [time, local_address,
associated MAC, scan_info]. The parameter local_address is the Bluetooth
address of the device, associated MAC refers to the MAC address of the
connected AP, and scan_info is a list of scanned device addresses and corre-
sponding RSSI. Given a group of two users, if their Bluetooth RSS is smaller
than a threshold for a certain period of time, then it is regarded as a group
separation. The settings of the RSS threshold and the period might vary in
different scenarios. According to our experiments, the performance peaks
when the RSS threshold is set to —90 and the period is set to 2 minutes.

3.2.2 Similarity Measurement

Data preprocessing

The WiFi data from different devices usually have different lengths. They
might be defined on different time instants. Also, conditions like packet
loss and not sending any packets should be properly handled. To address
those issues, we propose a three-step data preprocessing: time interpolation,
noise filtering, and non-effective instant removal. An illustration of the
preprocessing procedure is shown in Figure 3.4.

In step 1, we align the WiFi data by generating RSS vectors on an equally
spaced time instants. As shown in Figure 3.4, P% represents all pack-
ets received by AP k from smartphone j. We generate a RSS vector out
of Pf on the unified time instants T, = [0, At,--- ,nAt]. The RSS vec-
tor of packets received by AP k from smartphone j is denoted as rss? =
[rss¥(0),rssh(1),-- -, rss¥(p)], where rss?(p) represents the median RSS value

of packets during the period of time [pAt, (p + 1)At]. If no packets are re-

3.2 System Design
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ceived, we take the typical lowest RSS value (—100 db) as a replacement. We
call a RSS value a valid RSS if it is unequal to —100.

In step 2, we filter out two types of noises with median filter for each RSS
vector. The filtered RSS vector is represented as r’ésf for the given input rss’.
As shown in Figure 3.4, rssf might have intermittent —100 which are mainly
caused by packet loss. These —100 among RSS are one of the noises. The
other type of noise is the isolated RSS that appears among a long sequence
of —100 which might be caused by device noise or multipath effect.

The main idea of the median filter is to run through the signal entry by entry,
replacing each entry with the median of neighboring entries. For a sequence
of x, a median filter with length 2n + 1 will generate a sequence y which is
defined as:

y(i) = median([x(i — n), - ,x(i), -+ ,x(i +n)]) (3.1)

The length of the median filter is determined by the maximum number (n) of
packet loss that is allowed during the period of (2n + 1)At. For example, we
set 2n + 1 = 3 in Figure 3.4. Given a certain time instant pAt, such a median
filter could generate a valid r§s”(p) if the number of instants with packet loss
is no more than 1 during [(p — 1)At, (p + 1)At].

Chapter 3 SNOW: Detecting Shopping Groups Using WiFi



In step 3, we remove ineffective time instants when a smartphone does not
send any packet. We represent the effective time instants of smartphone j as
T, which is defined in Equation 3.2. Parameter K is a set of all APs.

T, = {t|3k € K, 188} (t) # —100,t € T} (3.2)

Effective times refer to time instants when a smartphone send packet(s) or
have a valid RSS. When rss}(p) = —100, it indicates that AP & does not
receive any packets from the smartphone j during [pAt, (p + 1)At]). If all
APs do not receive packets from the devices in a certain instant, it is believed
that the smartphone does not send any packets.

Similarity measurement with RSS

According to [152], the RSS difference of customers i and j at AP k could be
measured with Equation 3.3. T,~; = T; N T; represents the intersection of
effective time instants from customers ¢ and ;.

1

. . ~ ~ 2
Alhn9) = Ty $ te;nj [rSSf(t) B rss;?(t)] &)

We could derive an overall RSS distance d(i, j) by averaging d (i, j) over all
APs. However, we should note that the RSS distance at a certain AP would
change over time. Instead of calculating a single statistic of d, (i, j) for the
whole testing period, a better way is to look at the distribution consisting of
multiple dy (¢, j) from different time slots and different APs. Intuitively, if
and j are in the same group, the center of the distribution should be close to
0.

For pairwise customers, we could obtain two distributions D, and D; of RSS
difference from shopping groups and non-groups respectively. Whether RSS is
an appropriate feature could be verified with the WiFi data collected from 104
volunteer shopping groups by comparing D, and D;. As an illustration, Figure
3.5 shows both distributions from our experiments described in Section 3.3.
In particular, the unit time instant At = 1s, and the length of the median filter
is set to 11. Both parameters are determined empirically and experimentally.
Using the testing data involving 104 groups in three weeks, we have generated
a pool containing about 9,675 data samples from group pairs and another
pool containing about 32,410 samples from non-group pairs.

3.2 System Design
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Fig. 3.8: RSS of group members using different smartphones. In both cases, group
members stick together all the time, but there exist gaps in their RSS signals.

Although D, and D; are obviously different, the level of difference is still not
large enough to derive satisfying group detection performance. Since there is
a large overlap between the two distributions, it is difficult to find a threshold
to differentiate both distributions. After an investigation, we realize that one
of the potential reasons for the large overlap is device heterogeneity. Even
though group members stick together all the time, the difference between
their smartphones could lead to a large gap. Figure 3.8 shows two typical
examples. In both cases, group members with different smartphones walk
closely with each other, but there still exist certain gaps in their RSS signals
which might be caused by hardware difference.

Similarity measurement with RSS trend

We find through experiments that when two customers are walking together
closely, the change of their RSS reveals quite similar patterns, which could
be exploited for group detection. From Figure 3.8 we also notice that despite
the gap in group members’ RSS signals, their general trends are similar.
This property has been observed in [137] and [139] that although RSS is
very unstable, the trend of RSS is relatively stable. RSS values increase
or decrease when approaching or leaving an AP. This has been utilized for
indoor localization in [139, 82].

Following the procedures as described in the previous subsection, we could
find out the filtered common RSS vectors rss(T;q;) and rss’(T;q;) for smart-
phone i and j. Let X = rss}(Tin;) and Y = rss;(T;q;), we calculate the
distance of RSS trend with

cov(X,Y)

d(i,j)=1—p(X,Y)=1—
k(7'>]> p( ) ) OxOy

(3.4)
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where p(X,Y) is the Pearson correlation coefficient of sequence X and
Y, ox is the standard deviation of X, cov is the covariance defined as
cov(X,Y) = E[(X — pux)(Y — py)], and puy is the mean of X. Here Per-
son correlation is chosen for its better simplicity and efficiency compared
with other measurements like DTW (Dynamic Time Warping).

Figure 3.6 shows distributions from group pairs and non-group pairs, we can
find the overlap is smaller than using RSS values. To compare features in
Figure 3.5 and Figure 3.6 more objectively, we plot the receiver operating
characteristic (ROC) curve of both methods. ROC curve is a graphical plot that
illustrates the performance of a binary classifier system as its discrimination
threshold is varied. The curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings. True
positive occurs when we correctly detect a customer pair as a group. False
positive occurs when two strangers are improperly detected as a group. From
Figure 3.7, we could see the performance of using RSS trend is better than
RSS.

3.2.3 AP Significance Estimation

Although we could detect groups by identifying customers with similar RSS
trend, it is not good enough as shopping groups might naturally separate
sometimes. However, we have two observations that indicate different APs
should have different weights in measuring customer similarity. First, groups
are more likely to separate in certain areas like bookstores and supermarkets
as group members might have different interests. APs in those areas should
have smaller weight due to frequent separation. Second, the ratio of customer
groups over individuals is higher in public entertainment areas. A study of
customer behaviors indicates individual customers are less interested in
public entrainment activities since they anticipate negative inferences from
others about their social connectedness. Therefore, we propose a probabilistic
representation of different AP weights.

To calculate the probability, we combine the WiFi data and the Bluetooth
data collected from volunteers. The following information could be extracted
from the combined data: the number of individual customers connected to
AP k (Nf) ; the number of group customers in AP k (N’;) ; the number of
shopping groups in AP k (M’;); and the number of group separation in AP

3.2 System Design
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k (MF). Figure 3.9 illustrates an example with 2 APs and some individual
customers and group customers. For AP a;, Nj = 3, N} = 4, M} = 2, and
M! =1.

We calculate a posterior probability (P(GD|A)) as the AP weight in Equation
3.5. A={ay, -+ ,a,} is a variable indicating the target AP, event D repre-
sents groups appear in the AP, and event D means groups do not disperse
within the AP coverage. Therefore, P(G D|A) refers to the probability that
groups appear and do not separate within the coverage of a certain AP.

M

N(/
(1 3.5
N, + N, ( Mg> (3.5)

P(GD|A) = P(G|A) - P(D|A) =

In the example of Figure 3.9, w; = P(GDla1) = 145 - (1 — 3) = 0.29, wy =

P(GDlas) = 52 - (1 — §) = 0.86. It is clear that a, has a larger weight than

a; and thus is more important in measuring customer similarity.

3.2.4 Group Detection

Customer similarity matrix

Given the weights of different APs, we could refine the similarity with:

K_ . d/ <.
Sim(Z,j) _ Zk—l w}é‘ k(/L?j)’
Zk:l Wi

(3.6)

where Sim(i, j) € [0, 1] is the refined similarity between customers ¢ and j,
d}. (7, ) is the similarity under AP k£ measured with RSS trend, and wy, is the
weight of AP k.

Instead of detecting shopping groups out of all customers in a whole day,
we first utilize the temporal constraint of groups to separate customers into
different crowds and then identify groups out of each crowd. We equally
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Fig. 3.10: An illustration of partitioning customers into different crowds with the
temporal constraint.

partition the business hours of the mall into non-overlapping fragments using
a threshold ) which is determined by the customers’ dwell time. The partition
process is depicted in Figure 3.10. For each adjacent segment, we measure
customers’ similarity and construct a similarity matrix. The idea is quite
straightforward. If two customers have a large gap in the time domain, they
are more likely to be strangers.

Group detection with matrix factorization

Group detection is essentially a hard clustering problem which means each
user can only belong to a cluster or not. Existing works mostly apply graph
clustering methods like Markov clustering to detect groups. Here we resort
to matrix factorization for the following two reasons. First, the constructed
matrix has some noises, like strangers being regarded as groups and vice
versa. Matrix factorization can help in reducing these noises and preserving
the latent group information. Second, matrix factorization can directly derive
clustering results by imposing a sparseness constraint, which is similar to
K-means but the performance is much better.

Given a similarity matrix A € R™*™ and an integer £ < m, matrix fac-
torization aims to find two factors W € IR™** and H € IR™** such that
A ~ WHT. The solutions can be found by solving the optimization problem
with nonnegative and sparseness constraints:

o1
min —
WH 2

b-wi oS m]

st. W, H >0,

where ||-||» means Frobenius Norm which has a Guassian noise interpretation
and the objective function can be easily transformed into a matrix trace
version, #(i,:) is the i-th row vector of #. Parameter n > 0 controls the
size of the elements of W. It is usually determined by the largest element
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of input matrices [69]. Parameter 5 > 0 balances the trade-off between
the accuracy of approximation and the sparseness of 7. A larger value of
(3 implies stronger sparseness while smaller values of § can achieve better
accuracy of approximation. The imposed nonnegative constraint is due to
physical meanings (similarity of pairwise users) of entries in the original
matrix. Positive factors facilitate direct physical connections. The sparseness
on the # factor could directly derive the clustering results with /1-norm
regularization.

Although Equation 3.7 is a non-convex problem, it is convex separately in
each factor, i.e., finding the optimal factor WV corresponding to fixed factors H
reduces to a convex optimization problem. Algorithms based on alternating
nonnegative least squares (ANLS) are often used for sparse nonnegative
matrix factorization. More details of solving the optimization problem and
determining the appropriate value of £ can be found in [69].

3.3 Experimental Evaluation

3.3.1 Settings

Setup

We conduct experiments in a large shopping mall with 4 floors covering an
area of 4890m?. This mall is at the bottom of an office building which is
adjacent to a subway station. Most of the shops in the mall are related to
food like restaurants and bakeries. There are originally 20 APs installed in
the mall for customers to access the Internet. We use those APs to collect
the WiFi data. The configurations of the AP are as follows: AR9341 (WLAN
chip), 64M (RAM), and 8M (Flash Memory).

Within three weeks, we conduct 34 experiments at different times of a day.
For each experiment, we recruit 2 ~ 4 volunteer groups with each group
containing 2 ~ 4 customers and record their MAC addresses and grouping
information. The majority of experiments last less than 3 hours. To ensure
authenticity, volunteers are only told to keep the smartphone WiFi function
enabled without knowing the purpose of experiments.
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Fig. 3.11: Detailed information of the collected data in 3 weeks.

Dataset

During 3 weeks, we collect the WiFi data from volunteer customers and
other customers. Detailed information about the collected data is illustrated
in Figure 3.11. For the first two weeks, we record volunteer customers’
WiFi data and Bluetooth data to estimate the different significance of the
deployed APs. For the last week, we record the WiFi data from volunteer and
non-volunteer customers appeared in the mall to evaluate group detection
performance.

The WiFi data comes from 104 volunteer shopping groups during 34 experi-
ments, including 258 group pairs (positive data samples) and 864 non-group
pairs (negative samples). For example, given an experiment with two shop-
ping groups, each group has 3 customers, then we have 2 x C? = 6 positive
samples and C} x C} = 9 negative samples. We call the dataset above labeled
dataset which contains only volunteers’ data. In other words, we know the
relation of all pairwise customers in the dataset. We also have a semi-labeled
dataset that includes both volunteers and other customers which we do not
know their grouping information. But one thing for sure is that volunteers
and other customers must be strangers. Therefore, the semi-labeled dataset
has much more negative samples than labeled dataset.

The Bluetooth data are from 58 volunteers during the first two weeks. Com-
bined with the WiFi data, we find that customers groups are more likely to
separate in places like restrooms (27.7%) and cosmetics shops (21.5%). One
potential reason is that the mall has limited types of shops and most of the
shops are related to food. As reported by our survey results, customers are
not frequently get separated in restaurants.

3.3 Experimental Evaluation

55



Code Similarity Measurement Clustering Approach

AG RSS trend + AP significance Graph clustering 2 o

NM RSS trend (No AP significane) Matrix factorization

e Evaluate matrix factorization e Evaluate AP significance

SNOW RSS trend + AP significance Matrix factorization

Fig. 3.12: An illustration of baseline approaches.

3.3.2 Evaluation

Baseline approaches

To detect shopping groups using WiFi data, similarity measuring and group
clustering are two essential steps. We have different baselines for evaluating
different steps. Since it is demonstrated that RSS trend is better than RSS,
all baseline approaches are based on RSS trend.

As illustrated in Figure 3.12, to evaluate the effectiveness of AP significance
and matrix factorization, we need two baseline approaches apart from SNOW.
The first baseline is called AG which measures customer similarity with
estimating AP significance and then constructs a user graph with each node
representing a customer and each edge representing the similarity between
pairwise customers. Then AG detects groups with the help of Markov Cluster
algorithm (MCL) [56, 131]. MCL works well when the cluster size is small
and it does not require the number of clusters as an input. The second
baseline is NM which measures customer similarity without AP significance
and then detects groups using matrix factorization.

Evaluation metric

As pointed out in [142], there is no consensus on which metrics should
be used to evaluate groups detection. Here we use precision and recall to
measure the performance of group detection, which are defined as:

Truth g g
.« . o tp =
precision = tp+fp g g tp fp
recall = ; tff S 9: Group
n -
p 8 g| fn | tn g : Non-group
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Fig. 3.13: Distribution and CDF of customers’ dwell time in the mall.

Table 3.1: Performance comparison on both datasets.

Labeled Dataset Semi-labeled Dataset
P! R? F | P R F

AG 0.863 0.841 0.852 | 0.782 0.811 0.796
NM 0.750 0.787 0.768 | 0.691 0.734 0.712
SNOW 0.912 0.927 0.919 | 0.833 0.860 0.846

lprecision 2Recall 3F-score

As shown in the confusion matrix, tp is the number of cases that positive
samples being detected as groups. We also use a combined metric F-score
defined in Equation 3.8 to represent the general performance.

precision - recall
precision + recall

F-score = 2 (3.8)

Parameter selection

We have two important parameters to determine for SNOW. First, parameter
1 represents the maximum duration time of customers. As shown in Fig-
ure 3.13, over 90% customers stay in the mall for less than 2 hours. Therefore,
we simply set ¢y = 120 (minutes). Second, parameter ( balances the tradeoff
between accuracy of approximation and sparseness. Even though the per-
formance is not that sensitive to 3, too big /3 is undesirable since that might
lead to worse approximation. Therefore, we set 5 = 0.3 for all methods.

3.3 Experimental Evaluation

57



58

Performance evaluation

We evaluate the performance of SNOW and baseline approaches. As shown
in Table 3.1, SNOW outperforms baseline approaches on both datasets by
6.3% ~ 19.7%. The performance of all three methods on semi-labeled data are
slightly worse than that of labeled dataset. This effect is reasonable and could
be explained by the following reasons. First, there are much more customers
in semi-labeled datasets which bring in more noise for the clustering process.
Second, the number of negative samples increased sharped that may cause
more potential false positive detections and decrease precision.

To evaluate the effectiveness of matrix factorization, we could compare
SNOW and AG. On average, SNOW outperforms AG by 7.1% in F-score
which means matrix factorization could achieve better results than graph
clustering. As explained, one potential reason is that matrix factorization
could reduce the effect of false positive and false negative detections to some
extent. Matrix factorization is known for removing noises and preserving
latent group information.

As one of the core components, AP significance is supposed to capture the
dynamics of shopping groups. We could evaluate the effectiveness of AP
significance by comparing SNOW and NM. From Table 3.1, on average
the F-score of SNOW is 19.3% better than that of NM. This indicates that
estimating AP significance could greatly improve the performance of detecting
shopping groups. Since a certain number of shopping groups may actually
separate from time to time, their similarity in the RSS space can be affected.
Straightforward as this method is, it reflects the pattern of most shopping
group activities and successfully refines customers’ similarity in the signal
space.

The impact of Bluetooth data

The Bluetooth data are critical in AP Significance Estimation (Section 3.2.3).
Intuitively, more adequate Bluetooth data can achieve more accurate approxi-
mation to group separation in real situations. Figure 3.14 shows the detailed
performance of SNOW on the label dataset using different numbers of the
Bluetooth data. When the number is k£, we randomly choose & days’ Bluetooth
data to calculate the AP significance and refine customer similarity. When &
is small, the final performance may not be good enough and there exists a
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Fig. 3.15: Performance under different AP density on semi-labeled dataset.

large deviation. With the increase of k, the performance gradually increases
and becomes more stable (the deviation gets smaller). In our scenario, we
could see that using no less than one week Bluetooth data achieves relatively
stable performance.

The impact of AP density

Since different scenarios may have different AP deployments and AP densities,
we evaluate the performance of different methods with various AP densities.
To derive different AP density, we adopt a sampling method over the semi-
labeled dataset. For example, to evaluate the performance under 0.8 AP
density, we randomly choose 16 out 20 APs and use the WiFi data of chosen
APs for all users. We average the results for 100 times to eliminate the impact
of randomness. As illustrated in Figure 3.15, the performance drops as AP

3.3 Experimental Evaluation
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density decreases. One of the potential reasons is information loss. However,
we can also find that SNOW still outperforms baseline approaches under
different AP density.

3.4 Related Work

With the development of 10T [95, 94, 45, 70, 56], there exist various group
detection systems. However, none of them are particularly designed for shop-
ping groups. These methods detect groups mainly by separating strangers
who are close to each other but overlook the fact that shopping groups might
separate sometimes. Under this situation, existing methods might generate
many false negative detections and thus degrade the usability of the system.
Literature methods can be classified as vision-based approaches, sensor-based
approaches, and probe-based approaches according to different means.

Vision-based approaches regard group detection as a task of clustering a set of
users’ trajectories into disjoint subsets [45, 142]. However, this kind of meth-
ods have some apparent limitations. First of all, the most significant problem
is privacy erosion. Besides, video surveillance suffers from environmental
issues such as non-line-of-sight, and low brightness.

Sensor-based approaches use wearable devices or install apps on smartphones
to collect users’ behavioral data. Groups are detected through correlation
analysis of multiple sensor data. For instance, MIT researchers use specially
designed wearable devices called “Sociometric Badges” [109, 110] to mea-
sure group behavior through face-to-face interaction and physical proximity.
Some research works [70, 84, 131] combine several sensor modalities (WiFi,
accelerometer, compass, etc.) to measures users’ similarity. However, these
methods might be difficult to collect data on a scale, as they require user in-
tervention which would be cumbersome in some scenarios. Besides, engaging
multiple sensors drains smartphone battery more quickly.

Probe-based approaches utilize the information contained in probe requests
to detect groups. The probe contains significant information like timestamp,
smartphone MAC address, RSSI, and Service Set Identifier (SSID), which
enables a wide range of applications like passive tracking [35, 139], crowd
counting[128, 169], and facility utilization analysis [114]. Compared to
other approaches, probe-based approaches do not require high deployment
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cost or user intervention. SSID and RSSI are two frequently used information
to detect groups. Cunche et. al. [31, 10, 24] link different smartphones
through SSID similarity. However, 80% of the devices reply with empty SSID
list [59], approaches that rely on SSID may not work well anymore. Then
researchers’ focus transfer to RSSI which indicate users’ mobility. Kjeergaard
et. al. [71] extract spatial features, signal-strength features, and pseudo-
spatial features from signal strength to detect social groups which they call
pedestrian flocks. It is found that the performance of spatial features is
unreliable since mapping RSSI into locations is not accurate enough. Besides,
the mapping process itself is usually time-consuming and labor-intensive. To
avoid the cumbersome mapping process, directly measure the similarity of
RSSI fingerprints to detect co-located mobile users. These methods get rid
of absolute locations, thus eliminate labor-intensive calibration and protect
users’ privacy. SocialProbe [56] considers the hardware diversity and uses
the normalized RSSI vector to achieve co-location detection. However, the
timing of sending probes are mainly determined by user-device interaction
and internal mechanism of the device. Different devices might generate
various data granularity which makes it hard to compare their similarity
[42].

3.5 Discussion

In this section, we provide further discussions to clarify potential issues
that might be confusing and unclear. Issues to be discussed including AP
deployment, the energy issue, and the generality of the system.

For AP deployment, we do not have any special requirements since we do
not care about where exactly customers visit. Although our observations are
related to different areas in the mall, we do not need to locate the customers.
Because we assume that when customers are in different areas they would
connect to different APs. This assumption stands in most of the practical
scenarios because the coverage radius of common APs is tens of meters.
Besides, AP deployments in shopping malls are usually conducted by experts
which would try to use as less APs as possible while ensuring the network
quality.

For the energy issue, it is no doubt that SNOW will increase energy con-
sumption since we exploit Arping to lure smartphones to send more packets.

3.5 Discussion
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However, we also need to note two points. First, the amount of extra energy
consumed is very limited due to the low frequency of sending Arping packets
and their small packet size [143]. Second, we notify customers of the poten-
tial energy consumption in the agreement when they initially connect to the
deployed APs. If they really care about the extra energy to be consumed they
would disconnect from those APs by themselves.

Lastly, the proposed system could be generalized to different shopping malls
since we do not rely on specific scenarios or any device configurations. As
discussed above, we do not have special requirements for the AP deployment.
Our observations of group dynamics are also independent of places. They
are based on the online survey with over 250 subjects (Figure 3.1) and the
research result of consumer behaviors [120] from Americans, Chinese, and
Indian respondents.

3.6 Conclusion

In this chapter, we propose a practical shopping group detection system
(SNOW) using WiFi. One of our contributions is an effective heuristic that
could significantly improve the detection performance of shopping groups.
The heuristic indicates APs under which groups appear more frequently and
barely separate should have larger weights in measuring customer similarity.
Our second contribution is to apply matrix factorization to detect groups
without extra clustering processes. Matrix factorization could properly handle
data issues in the measured similarity including noise filtering and data
completion. Besides, imposing a sparsity constraint to the factorization
process could derive the clustering results directly. Finally, we conduct
extensive experiments in a large shopping mall to validate the performance
of SNOW. Experimental results indicate SNOW can detect over 90% groups
with a precision of 91.2%.
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DMAD: Data-Driven Measuring o
Wi-Fi Access Point Deployment

Wireless networks offer many advantages over wired local area networks
such as scalability and mobility. Strategically deployed wireless networks
can achieve multiple objectives like traffic offloading, network coverage
and indoor localization. To this end, various mathematical models and
optimization algorithms have been proposed to find optimal deployments of
access points (APs).

However, wireless signals can be blocked by human body, especially in
crowded urban spaces. As a result, the real coverage of an on-site AP
deployment may shrink to some degree and lead to unexpected dead spots
(areas without wireless coverage). Dead spots are undesirable, since they
degrade the user experience in network service continuity on one hand, and
on the other hand paralyze some applications and services like tracking and
monitoring when users are in these areas. Nevertheless, it is nontrivial for
existing methods to analyze the impact of human beings on wireless coverage.
Site surveys are too time-consuming and labor-intensive to conduct. It is also
infeasible for simulation methods to predict the number of on-site people.

In this chapter, we propose DMAD, a Data-driven Measuring of Wi-Fi Access
point Deployment, which not only estimates potential dead spots of an on-
site AP deployment but also quantifies their severity, using simple Wi-Fi data
collected from the on-site deployment and shop profiles from the Internet.
DMAD firstly classifies static devices and mobile devices with a decision-tree
classifier. Then it locates mobile devices to grid-level locations based on
shop popularities, wireless signal, and visit duration. Lastly, DMAD estimates
the probability of dead spots for each grid during different time slots and
derives their severity considering the probability and the number of potential
users.

The analysis of Wi-Fi data from static devices indicates that the Pearson
Correlation Coefficient of wireless coverage status and the number of on-site
people is over 0.7, which confirms that human beings may have a significant
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impact on wireless coverage. We also conduct extensive experiments in a
large shopping mall in Shenzhen. The evaluation results demonstrate that
DMAD can find around 70% of dead spots with a precision of over 70%.

4.1 Introduction

Wireless networks are remarkably important in modern societies, not only
just for wireless communication, but also as a key enabler of numerous novel
applications. One of well-known examples is wireless based tracking and
monitoring systems [105, 139, 7, 161]. Besides, wireless networks offer
many advantages over wired local area networks such as scalability and
mobility. It is convenient to access network resources from any locations
within the coverage of wireless networks. It can also be set up easily in a
quick and expandable way. Lastly, wireless networks are cost-effective since
wiring costs are eliminated or reduced.

As one of the predominant problems, wireless networks layout problem or
access point (AP) deployment problem has been extensively studied over
decades [2], since strategically deployed wireless networks can achieve mul-
tiple objectives like maximizing ratios of traffic offloading [18] and wireless
coverage [23], and improving indoor localization accuracy [23]. Existing
solutions can be classified as site surveys and simulation approaches. For site
surveys, engineers with electronic monitoring equipment such as spectrum
analyzers walk throughout the facility to measure wireless signal quality.
Based on the information, engineers attempt to identify potential locations
for APs that would minimize the disruption of service [121]. However,
site surveys require specialized equipment and extensive manpower which
is quite expensive, especially for large areas. Therefore, many simulation
approaches [88, 101, 163] are proposed by modeling the AP deployment
problem as an optimization problem. Those simulation methods are mostly
built on the basis of propagation loss models which characterize how wireless
signal attenuate over distances and different obstacles. Simulation methods
usually consist of two stages, an iterative stage to calculate the minimum
number of APs and an optimization stage to find out optimal locations of
those APs towards one or more objectives.

However, Wi-Fi signals can be blocked by human body [132], especially in
crowded urban spaces. As a result, it could result in unexpected dead spots
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Fig. 4.1: A simple illustration of the impact of human beings on wireless coverage.
(a) Ideal coverage of APs; (b) Real coverage of APs in the presence of walking
people. The shadow areas in (b) are potential dead spots caused by human beings.

(areas without wireless transmission coverage) as illustrated in Figure 4.1
(b), where walking people cause real coverage of the on-site AP deployment
to shrink to some extent. These dead spots are undesirable, since they
degrade the user experience in network service continuity on one hand, and
on the other hand paralyze some applications and services like tracking
and monitoring when users are in these areas. Nevertheless, it is nontrivial
for existing methods to analyze the impact of human beings on wireless
coverage. It is too time-consuming and labor-intensive to measure wireless
coverage status for a long time using site survey methods. Also, site surveys
may disrupt the ongoing activities (like shopping activities) in the facility.
For simulation methods, it is infeasible to consider the impact since the
number of people cannot be determined. Moreover, neither of site surveys
nor simulation approaches is able to evaluate the severity of different dead
spots in a quantitative way.

As explained above, wireless networks can suffer from unpredictable influ-
ences of changeable interactions between multiple devices, specific hardware,
and human activities. These influences might further lead to a difference
between real-world functioning and design-time functioning [74]. Recently,
the data-driven design of intelligent wireless networks is gaining popularity
due to its capability to better understand the behavior of complex systems
that cannot be easily modeled or simulated. Data science or “data-driven
research” is a research approach that uses real-life data to gain insights
about the behavior of systems. It enables the analysis of various systems to
assess whether they work according to the intended design and as seen in
simulations.

4.1 Introduction
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In this chapter, we propose DMAD, a Data-driven Measuring of Wi-Fi Access
point Deployment to estimate dead spots and quantify their severity based
on simple Wi-Fi data collected from the on-site AP deployment and shop data
from the Internet. DMAD firstly classifies static devices and mobile devices
with a decision-tree classifier. Then it locates mobile devices to shop-level
locations on the basis of two observations of heuristics. 1) We find that
the visit duration in different shops is different, for example, people stay
longer in restaurants than in clothing shops. 2) Different shops have different
popularity in attracting customers, thus the probability of people appearing
in a shop should closely relate to the popularity. These two observations
could help to improve the accuracy of shop-level localization. Lastly, for each
area, we estimate the probability of a dead spot in different time slots and
derive their severity combining the probability and the number of people.
Since if a dead spot appears in an area with more potential users, its severity
should be higher.

The contributions of this work are summarized as follows.

* To the best of our knowledge, we are the first to propose the AP
deployment measuring problem (ADM).

* We also propose a data-driven approach (DMAD) to solve the ADM
problem, which can identify around 70% of dead spots with a precision
of over 70%.

* The performance of DMAD is carefully evaluated using data collected
from a real AP deployment of a large shopping in Shenzhen.

The remainder of the chapter is organized as follows. In the next section, we
summarize the related work. In section 4.2, we give an overview, including
the preliminaries, the feasibility of using Wi-Fi data to study wireless coverage,
the impact of people on wireless coverage, and the framework of DMAD.
Section 4.3.1 to Section 4.3.4 elaborate on each component of DMAD. In
section 4.4, we present the detailed evaluation of each component and
followed by a conclusion.

4.2 Overview

In this section, we give an overview of DMAD by introducing the basics of
Wi-Fi AP deployment measuring problem, studying the feasibility of using
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Table 4.1: Notions used in this chapter.

Symbol | Explanation

A A set of APs, A = {ay,a, ...}

S A set of shops, S = {s1, 52, ...}

D A set of smart devices , D = {d;, ds, ...}

g A set of non-overlapping grids , G = {g1, g2, ...}

T A set of time slots, 7 = {ty, s, ...}, t; is a period of time
M; Connectivity matrix of d;, M; = [V;(1) V;(2) ---]

V;(i) | Connectivity vector of d; at time 7, V;(i) = [vq vz ... vya]”
Uss Binary variable, v;; < 1 if a; hears from the device at time 4
P Coverage ratio of an AP, p = T,/T,
T, Coverage time, how long an AP can hear from a device
T; Transmission time, how long a device sends packets
¢ Ratio of change, ¢ € [-1,1]
Q;(i) | Coverage ratio vector of d; during ¢;, Q;(i) = [p1  ---  pa)”

D, | Unlabeled Wi-Fi data, D,, = {&1, &, ...}, & = (ai, dj, 5,0, t50)
D Labeled Wi-Fi data, with the label of grid information
D, Unlabeled Shop data, D, = {Z;, 75, ...}, Z; is a set of attributes
D: Labeled Shop data, labels are # of people and their duration time
L;(i) | Estimated location of device d; at time i
R R = (n;;), n;; is the number of people in shop s; during ¢;
H H = (n;;), ni; is number of people in g; during ¢,
S; A set of shops that are located in grid g;
N; A set of grids that are neighboring to grid g,
\ A set of connectivity vectors collected in grid g,

Wi-Fi data to measure wireless coverage and dead spots, and investigating
the impact of people on wireless coverage.

4.2.1 Preliminaries

DMAD is a data-driven approach to measuring wireless coverage of a given
AP deployment. First, we collect Wi-Fi data from deployed APs and shop data
from the Internet. Then we conduct a comprehensive analysis on the data to
estimate dead spots and quantify their severity. Some of the notions used in
this chapter are listed in Table 4.1.

In this subsection, we first investigate the feasibility of using Wi-Fi to measure
wireless coverage and dead spots. Then we discuss the latent issues of
coverage ratio and dead spots. Lastly, we study the impact of human presence
on wireless coverage.

4.2 Overview

67



68

. . Coverage Transmission Ratio
4 . Point q
L, . time 7T, time T} P

O o 50 20%
. v O s 50 90%

" @ Fixed Point W Wall

> o
e

Fig. 4.2: Example of using Wi-Fi data to represent wireless coverage status. The
unit of 7. and 7; are both minute. Coverage ratio p = T./T;.

Feasibility Study

Before estimating dead spots, we study the feasibility of using Wi-Fi data to
measure AP coverage status and how to represent dead spots.

Figure 4.2 depicts a simple scenario with one AP and two fixed points. There
are two smartphones at both points respectively, keeping broadcasting Wi-Fi
packets. Given transmission time 7; and coverage time 7, of both devices,
how to measure the wireless coverage status at both points?

The transmission time represents the total amount of time of sending packets
on the smartphone, while the coverage time means the total amount of time
of receiving packets from a smartphone on the AP side. As smartphones would
send many packets within one minute, we count 7; and 7, in a granularity
of one minute, which means if the smartphone send any packet(s) in the
duration of one minute we increase 7; by 1. Due to packet loss and physical
constraint (like distance), we have 7, > T..

Ideally, if the coverage status is good enough, T, would approximate to T;.
Otherwise, T, would be much smaller than 7;. Based on this intuition, we
use a coverage ratio p = T./T; to represent the wireless coverage status on a
fixed point. In the example of Figure 4.2, p; = 10/50 = 0.2, p, = 45/50 = 0.9,
pr. represents the coverage status on the k-th point. The larger the ratio is,
the better the coverage is.

Then what is relationship between coverage status and dead spots under this
simple scenario? Simply speaking, a point with good coverage status (i.e.,
large coverage ratio) is impossible to be a dead spot. Instead, those with
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terrible coverage status are more likely to be dead spots. So we propose
a probabilistic representation for dead spots based on coverage ratio as
illustrated in Equation 4.1. Ppgs(p;) is the probability that point p; is a dead
spot.

Pps(pi) =1 — p; 4.1)

Since wireless coverage status would change over time, using deterministic
representation of Ppgs might be error-prone, it is better to utilize such a
probabilistic representation. Under this definition, Ppg(p;) = 0.8 and Pps(p2)
= 0.1, which means p, is more likely to be a dead spot.

However, the example in Figure 4.2 just illustrates the simplest case. In real
scenarios, we have three imperative issues. Firstly, we can never know the
exact transmission time 7; of a smartphone by passively sniffing its Wi-Fi
data. Secondly, a location could be covered by multiple APs with the same
SSID. Lastly, the relation between coverage status and dead spots is much
more complex than that of the simplest example.

For the first issue, we assume that if the smartphone sends any packets,
at least one AP would receive the packet; otherwise, the smartphone is
not sending any packets. Based on this assumption, we can calculate an
approximation 7} of 7.

For the second issue, when a location is covered by multiple APs, we can
transform the Wi-Fi data from user’s device d; into a connectivity matrix 1/,
using Algorithm 2 described in Section 4.3.1. Figure 4.3 gives an example
connectivity matrix and shows how to derive the coverage status from the
matrix. Each row vector V;(7) in M; is called a connectivity vector. It shows
the connectivity information of the device with all APs at a specific time 7. For

4.2 Overview
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on that location. Intuitively, the order of coverage status is: Case I > Case II > Case
II1.

example, V;(i) =[1 1 0 0]" means the device d; is within the coverage
of AP a; and a, at time i. As shown in Figure 4.3, 7} can be calculated by
summing up the vector V,. Then for each AP, we can calculate its coverage
time, and then derive its coverage ratio. 2 = [p; ps ---]T is a coverage
ratio vector containing coverage ratios of all APs.

For the last issue, our basic idea is still that a point with terrible coverage is
more likely to be a dead spot, but it requires more meticulous design.

We show three typical coverage status in Figure 4.4. Intuitively, the order of
coverage status should be Case I > Case II > Case III. Since in Case I, the
coverage ratios of 4 APs are very large; while in Case III, the ratios are all
quite small. This ranking can be explained from another perspective, all large
ratios indicate the location is covered by multiple APs for most of the time,
thus the probability of dead spots is significantly smaller than that of all small
ratios.

Based on the observation above, we devise Equation 4.2 to map a connectivity
matrix M; into the probability of dead spots. Actually, 1 — sum(T;)/7; is the
coverage ratio when the location or area is covered by ¢ APs. T; is an array of
coverage time when covered by i APs. sum(T}) sums up 7}. Since 7} is just
an approximation of the real transmission time as mentioned in the earlier
part of this section, we use a decay function (i) to represent the initial
probability of dead spots when covered by i APs. Figure 4.5 illustrates the

““hear” means the AP receives any packet(s) from the device
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idea of Equation 4.2 by showing an example of applying the equation. 75[1]
means the first coverage time when the location is covered by two APs.

lA|

Postt) = X (w)- (1 - 50 @2)

i=1

More Discussion on Coverage Ratio and Dead Spots

Here we discuss two issues to clarify both concepts and eliminate potential
misunderstandings of coverage ratio and dead spots.

The first issue is about measuring coverage status using data collected on the
AP side. If an AP can hear from a device, it is very likely that the device can
also hear form the AP. However, even though a device can hear from an AP,
the AP sometimes cannot hear back from the device. Since the transmit power
of an AP is usually larger than that of a mobile device. This indicates that
using data collected on APs and data on mobile devices represent different
coverage. The coverage from the AP side is a proper subset of the coverage
from the device side. DMAD focuses on the former coverage which is more
meaningful. If the AP cannot hear from the device, a range of services and
applications residing on the AP side like passive tracking [105] cannot work.
Worse still, devices cannot access the Internet.

The second issue is about situations where DMAD cannot work. DMAD
does not estimate dead spots by directly checking whether there is wireless
coverage or not which is the main idea of site survey. Instead, it estimates the
probability of dead spots in a given area (around 20m x 20m) for a period of
time based on the coverage status. The coverage status cannot be calculated
without coverage time 7, and estimated transmission time T,. Both T, and 7}

4.2 Overview
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are derived from the packets heard on the AP side. Therefore, if a device has
already been on a dead spot, or the device does not send any packets, DMAD
cannot work properly.

However, in real scenarios, both situations are very rare. Firstly, DMAD only
estimates the probability of dead spots in expected coverage area, which
are supposed to have wireless coverage in normal circumstances. Dead
spots in expected coverage area are caused by human body and change with
on-site people and cannot cover a large area. Therefore it is quite rare that
devices are within dead spots all the time. Secondly, smartphones are keeping
broadcasting packets even not in use, which is explained in Section 4.3.1.

Impact of People on Wireless Coverage

We manage to find some static devices which are fixed in locations, such as
desktops, smart TVs, and IP cameras, in a large shopping mall in Shenzhen.
How to find those devices is well-explained in Section 4.3.2. For each
static device, we transform its Wi-Fi data into 24 connectivity matrices, with
each matrix represents the connectivity information for one hour. Then we
calculate the coverage ratio vector from connectivity matrix following the
procedure in Figure 4.3.

Usually, early in the morning, there are no people except few on-duty securi-
ties in a shopping mall. Therefore, coverage ratio vector {)(s) of that period
of time reflects the wireless coverage without people. While coverage ratio
vector €2(d) during the time of 5:00 ~ 22:00 indicates the wireless coverage
in the presence of human.

We use Equation 4.3 ~ 4.4 to measure the change from Q(s) to Q(d). The
output of the function is a ratio of change ( € [—1,1]. The larger ( is, the
poorer the coverage status is compared to €2(s).

Os) \' () - )
— : (4.3)
¢ (sum(Q(s))) Sum<Q(s) — Q(d))

sum (Q(s)) = !illpi (4.4)
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Fig. 4.6: Correlation analysis of the average ratio of change and the average number
of people from the data collected in a shopping mall in Shenzhen for 46 days.

T
In Equation 4.3, <Q((s)> is the transpose of normalized 2(s). Those
sum| Q(s)

APs with large coverage ratios play dominating roles in coverage status,
therefore their changes should have a larger weight than that of APs with
small ratios.

To calculate the ratio of change, we set 3:00 ~ 4:00 as §2(s) and each hour in
5:00 ~ 22:00 as €2(d). Then based on the data collected from the shopping
mall in 46 days, we derive the average ratio of change for each hour.

Compared to static devices, it is easier to find mobile devices which are carried
by people in the mall. The basic idea is to use the unique MAC address of
mobile device to represent a mobile user. Detailed process can be found in
Section 4.3.2. So we can also calculate the average number of people in
different hours from the accumulated data. The results of correlation analysis
of the ratio of change and the number of people are shown in Figure 4.6. We
can see that the Pearson Correlation Coefficient of them is over 0.7, which
indicates people might have a non-negligible impact on wireless coverage
and the impact increases with the number of on-site people.

4.2.2 Framework of DMAD

DMAD has four components as depicted in Figure 4.7. The first component
is “Data collection”, which is to collect desired input data, including Wi-Fi
data, shop data, and the floor plan. Then the data are used for “Device classi-
fication”, which sorts out static devices. After that, we use “Area localization
and density calculation” to estimate mobile devices’ shop-level locations and

4.2 Overview
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Fig. 4.7: The framework of DMAD. It consists of four components, data collection,
device classification, area localization and density calculation, and dead spots
estimation.

analyze human density in different areas and time slots respectively. Lastly,
“Dead spots estimation” estimates the probability of dead spots and their
severity.

4.3 System Design

In this section, we elaborate on the design details of DMAD. It consists of
four main components, namely Data collection, Device classification, Area
localization and density calculation, and Dead spots estimation.

4.3.1 Data Collection

Data collection is the first component of DMAD, it serves as data input for
the whole system. We collect two sources of data, Wi-Fi data from deployed
APs, and shop data from the Internet. The purposes of collecting Wi-Fi data
is to determine grid locations, measure wireless coverage, and estimate dead
spots of an on-site AP deployment. While shop data can help to improve the
accuracy of area localization. In this section, we show that both of Wi-Fi
data and shop data can be readily collected by introducing details of the data
collection processes.

Wi-Fi data consists of two parts, a large amount of unlabeled Wi-Fi data D,,
collected from mobile users inside the mall, and a small amount of labeled
Wi-Fi data D7, from volunteers.
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Fig. 4.10: A simple illustration of the Wi-Fi data collection.

Unlabeled Wi-Fi data D,,

D, is collected from a large shopping mall in Shenzhen, where we have
previously installed 48 APs among 5 floors. The original purpose of the Wi-Fi
network is to provide Internet access for customers in common areas, but
we also find that it can be utilized for other applications or services, like
indoor localization [139]. Here we study the problem of measuring Wi-Fi
AP deployment in expected coverage areas based on the accumulated Wi-Fi
data (46 days in total, starting from 1 May 2015). Figure 4.8 shows the AP
installation and expected coverage area on the ground floor.

The unlabeled Wi-Fi data is passively collected from users’ smartphones. As
smartphones keep broadcasting Wi-Fi packets [42] which can be sniffed by
off-the-shelf APs. Even users are not using Wi-Fi services, smartphones send
out packets (e.g., probe requests) intermittently [105]. Figure 4.10 illustrates
a simple scenario and lists some descriptive data records.
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Each AP works under OpenWrt' system, with a monitor mode virtual network
interface* enabled. We run Tepdump (a utility for capturing network traffic)
to sniff nearby wireless traffic. More specifically, we use each AP to collect
tuples in the format of <AP# MAC, t ¢, tena > and once the entry is finished,
the AP uploads it to the server and then deletes the local entry file. Detailed
process is illustrated in the flowchart of Figure 4.11.

Table 4.2: A fraction of raw Wi-Fi data.

ves o MAC has been hashed.
® AP#  MAC Titar Tond
Create new ves no 47 3891527 1431652262 1431652271
entry 12 160458 1431721805 1431721810
<AP#, MAC, tsart, tstart > 6 1200164 1431800823 1431800828

30 528517 1431879976 1431880176

Finish entry Update end time 6 1585005 1431951873 1431952173

recording In entry 14 398316 1431968982 1431968987

<AP#, MAC, tyart, tend > 2 685499 1432033589 1432034997

———— 4 102681 1432114009 1432114014
Server - - . -

22 1114093 1432160871 1432160896

25 1832169 1432514915 1432515031
46 4234664 1432302241 1432302400

Fig. 4.11: Flow chart of collecting 8 493476 1432324267 1432324250
PR, . 22 100731 1432386985 1432387036
Wi-Fi data in APs.

<AP#, MAC, tstart, tend >

As can be seen from the flowchart, collecting the Wi-Fi data does not require
analyzing each packet and extracting the information like received signal
strength indicator. Instead, we only record the connectivity information, i.e.,
whether the smartphone is under the coverage of an AP. The advantages are
twofold, on the one hand, the connectivity information is easy to collect, it
does not add too much burden to those APs. On the other hand, it saves
much space compared to storing information from every packet, which could
be incredibly huge in volume (several Giga bytes form all APs for only one
day).

Table 4.2 shows a small fraction of the raw Wi-Fi data. It has four fields,
AP# shows the id of the AP that hears from the device; MAC is the hashed
MAC address of the device; T, is a timestamp that the device is heard for
the first time; and lastly 7,,, is a timestamp that the device is last heard by
the AP.

TOpenWrt (https://openwrt.org/) is a highly extensible GNU/Linux distri- bution for
embedded devices (typically wireless routers).
*virtual network interface, https://wiki.openwrt.org/doc/networking/network.interfaces
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Then the raw Wi-Fi data is transformed into connectivity matrix using Algo-
rithm 2. An example of connectivity matrix can be found in Figure 4.3.

Algorithm 2: Transform raw Wi-Fi data into connectivity matrices
Data: Raw Wi-Fi data from all APs in a day

Result: K connectivity matrices: {M, ..., Mk}
users < Group the raw data by the field of MAC address;

for user; € users do

entries; < user;'s raw Wi-Fi data ;
Create a zero (|.A| x 1440) matrix M; = (m;;);
for entry € entries; do
entry < (aj,d;, ts,te) ;
transform t,, t. into the order of the matrix s, e;
for k € [s,e] do
t mp < 1

Collecting labeled Wi-Fi data D}

The label of D} is the grid information which is manually separated. We
separate the expected coverage area of the mall into 60 grids, Figure 4.9
illustrates the grid partition of the ground floor. To collect the data, we
engage over 20 volunteers in a week with different smartphones including
popular iOS and Android devices. The purpose of D is for area localization
(in Section 4.3.3), which estimates people’s area locations based on their
Wi-Fi data.

Volunteers are required to collect some “wireless fingerprints” in specific
grids following the procedure below. Firstly get to the grid, turn on the Wi-Fi
function and record the start time, then they walk around within the grid,
after visiting all feasible locations of the grid, record the end time and turn
Wi-Fi off. It usually takes 5 to 10 minutes to finish a collection process.

Since the presence of people can block wireless signal and it will have a
negative impact on localization performance, we separate the daytime into
several time slots 7 = {¢;, s, -} and collected fingerprints for each time
slot. In this way, we collect over 1, 500 Wi-Fi data entries for D .

4.3 System Design
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Although DMAD requires such a labeling process, it takes much less effort
compared to site survey. As described in Section 4.4.1, even simplified site
survey usually takes 500 ~ 700 seconds to check whether dead spots exist
in a grid. While the labeling work takes shorter time (300 ~ 600 seconds).
More importantly, dead spots are related to human activities, the detection
results may become invalid over time. To detect dead spots next time, site
survey needs to start from scratch, while DMAD does not bother to do that,
since it merely requires a one-time investment.

Shop data also consists of two parts, unlabeled shop data D, from the
Internet, and some labeled shop data D collected by volunteers.

Collecting labeled shop data D’

The labels of shop data are the number of people and their visit duration in
different shops and time slots respectively. The number of people is used
to calculate a prior probability that people appear in a shop. While visit
duration is another kind of “fingerprints”, we observe that the time spends in
visiting different shop is also different, and we take it as another feature to
distinguish users’ area locations.

We collect shop data in different time slots in a day since shops have different
popularities during different time slots. For example, restaurants gain more
customers during dinner time than clothing shops. To collect the ground
truth about the number of people in a shop, we send volunteers to different
shops to count the number of customers at different time slots. It usually
takes 1 or 2 minutes for volunteers to finish the data collection task. The
ground truth is represented in a matrix R in Equation 4.5, where n;; is the
number of people in shop s; during time slot ¢,.

ny N2 Nz ... Ns)
21 N22 Nag ... TNgs|

R=1 . ; . . (4.5)
T T2 YT - TS

For visit duration, we use a distribution to represent the duration time in a
shop, as it differs from person to person even for the same shop. To collect
the data, we ask volunteers to stay near the entrance or the exit of a shop and
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Fig. 4.12: Histogram of duration time of around 100 customers from three

different shops. (a) A fast food restaurant; (b) A traditional Chinese restaurant; (c)
A woman accessories shop.

record the visit duration of customers. Figure 4.12 shows the duration time
of three different shops with around 100 samples. Generally, the distribution
can be approximated using a normal distribution.

However, it is too labor-intensive and time-consuming to collect the distri-
bution of duration time for all shops. We believe that the duration time of
a shop is closely related to its type and user ratings. For example, people
usually stay in restaurants for around 20 minutes. Also, if the restaurant has
a pleasant environment and satisfactory services, customers may choose to
stay longer. These observations can be quickly verified from the comparison
of the three shops in Figure 4.12. So we just collect duration time in some
typical shops of each category and crawl all shop profiles from the Internet.
Then we utilize machine learning techniques to predict the distribution of
unlabeled shops. Detailed explanation can be found in Section 9.

Collecting unlabeled shop data D,

We collect shop profiles in that mall from Dianping® and AutoNavi'. For each
shop in that mall, we crawl its type (like clothing shop, restaurant), location,
the number of positive comments (comments with more than 3 stars), and
user ratings about products, environment, and services between 1 May 2015
and 15 June 2015. We exploit Scrapy!l to crawl the desired data and save
them to a local file. A fraction of collected data is shown in Table 4.3.

$Dianping (https://www.dianping.com/), a popular Chinese group buying website for
locally found consumer products and retail services.

AutoNavi (http://www.gaode.com/), a well-known map website in China.

IIScrapy (https://scrapy.org/), an open source and collaborative framework for extracting
data from websites.
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Table 4.3: A fraction of unlabeled shop data. .
Some of fields like, floor, location, and average 2
spend is not shown in the table.

Quantity
B &

Name Type Likes Product Env Service
Cafe de Coral Restaurant 41 7.6 7.8 7.6 0
King of Pastry Restaurant 3 6.8 6.8 69 Ci‘o“;g‘ fro:;; ?(:L‘;l‘ Cafe Cl:;:(';l‘;‘* (zl‘lz‘pr
Benbo Clothing 2 7.1 7.1 7.1 ) L. .
Shiny Nail Make-up 32 7.9 8.2 8.3 Flg. 4.13: Distribution of total
Costa coffee Cafe 4 68 71 7 number and surveyed number
Muji Clothing 8 7.3 7.3 7.3

There are 68 shops of interest in that mall, and we classify those shops into 6
categories. The total number and the number of surveyed shops are shown
in Figure 4.13. Among the 6 categories, Chinese food restaurants, clothing
shops, and cafes are top 3 categories in terms of total number and we collect
duration time from some of these categories. For other categories, we just
collect data from all shops.

To predict mean and standard variance of the distribution is a regression
problem. The predictor variables are shop type, location, average spend,
and user ratings (include service, product, environment, number of positive
comments). The response variables are mean and standard deviation (std) of
the visit duration distribution. Both response variables are independent, so
we can simply use two regression models to regress them.

We conduct regression analysis and show the relation between some predictor
variables and both response variables respectively in Figure 4.14 ~ 4.15. For
mean, we can see that, there exists a strong linear-log relation [13] between
predictors and the response. So we use ordinary least square to estimate
the unknown parameters. The regression results indicate that R-squared of
the model is 0.810. We also utilize 5-fold cross validation to evaluate the
accuracy of the regression model. The root mean squared error is 4.611.

For std, there does not exist obvious relation from the perspective of all data,
but the data shows strong cohesion within the same kind of shops. So for
each category we use a simple linear regression model to regress the response.
We use 2-fold cross validation to evaluate those linear regression models.
The average root mean squared error is 3.623.

Chapter 4 DMAD: Data-Driven Measuring of Wi-Fi Access Point Deployment



@ Clothing shop

¢ Cafe

0 50 7
likes

8 9
product

env mean

Fig. 4.14: Regression analysis between
some predictor variables and mean of

Chinese fooc fooc ‘afc
" - & ] " -
50
4 g0
£ . .
= ..‘. + S = - R e o R - ‘
0 oig®® " o ¢ I PO 0 cig® " % W os £ " e
9 L] L] 9 - ] ]
5 ", W =, B =, on ] .
3 . - . p = N 5. 3 . . W e,
2|4 * o A N N
7| @ @ o« o L%
s Qem & =y s » @ AL
o] = . m u =
i 0
‘o . ¢ i X
g8 o™ m L] L] & ] ] L]
© = Fl
(é‘ !9“’ " 5,0 2% e, " oa®™ U oo o2
& oié w * P TR we +
N . . 0 . . .
Cd0| gutim i ¢  ua® 5| N ¢
§ ou . ] ® = o am, ® Y .
g ‘o1 ‘o u Son % o] e a, "z s =
- L] [ [] 10| Jes os %
20 e ] M = pAn ]
8 o s s >

R 7 s 9 100 200 D
avg spend std

Fig. 4.15: Regression analysis between
some predictor variables and standard

the duration distribution. deviation of the duration distribution.

Variance of

connectivity EIZ] E I)\"
matrix < ¢ §§ . -
Transmission S.o Static Devices
time = a hours gl S~o
Ao e T Ay
Appear in PP tad III]
1:00 ~ 4:00 Discard

R -

Mobile Devices

e ®

Transmission
time = b minutes

Fig. 4.16: Decision tree for classifying static and mobile devices.

4.3.2 Device Classification

Device classification classifies devices as static devices and mobile devices.

Static devices are defined as devices fixed in locations like desktops and IP
cameras, while mobile devices could easily change their locations with the
help of people, such as smartphones and tablets.

Static devices can be utilized to study the impact of people on wireless
coverage status of those fixed locations. The results are demonstrated in
Section 4.2.1. For mobile devices, their Wi-Fi data can be exploited to infer
people’s locations and mobility patterns.

We propose a decision-tree classifier to classify devices, as illustrated in Figure
4.16. First of all, the most distinguishing feature between mobile and static
devices is that static devices still work early in the morning, here we choose
1:00 ~ 4:00 AM. Figure 4.17 visualizes the Wi-Fi data of a static devices on 5
June 2015.
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Fig. 4.17: Raw data of a static device on 5 June 2015.

Then for mobile devices, we filter out those devices which may come from
passers-by using a threshold of b minutes. For static devices, we use a
threshold « to filter out devices with short transmission time. Besides, we
check the mobility to remove static devices whose locations changed over

time. The mobility can also help to remove mobile devices that are left by
some shop owners unintentionally.

To check the mobility, we calculate a variance v of a connectivity matrix, if the
variance exceeds a threshold, it should not be a static device. Connectivity

matrix M, is shown in Equation 4.6. ~ is calculated using Equation 4.7 where
var(X) calculates the statistical variance.

V11 V91 V31 Vk1
M=) Ve e vml= | e
VilA] V24l UslAl - kAl
S var(vy va o vk
N = A .7 €10,0.25] 4.7)

4.3.3 Area Localization and Density Calculation

Area localization and density calculation are the core component in DMAD.
In this section, we elaborate on our proposed solutions and demonstrate
that although the connectivity information is coarse-grained for fine-grained
localization, it is still feasible to locate users to grid-level locations.

We firstly separate the floor plan into 60 non-overlapping areas (or grids,
denoted as G = {g1, 92, --}) manually. Most of the grids contain one or
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more shops, few of them contain only common areas. Then, based on users’

Wi-Fi data, we are able to derive their grid locations. We also have two
observations of heuristics that can be utilized to improve the accuracy of area

localization. First of all, different shops attract different numbers of people.

Besides, the visit duration in various types of shops is different.

Area localization

Wi-Fi based indoor localization has been extensively studied in the past
decades [105, 139, 7, 161]. The output of those systems can be classified

into geometric locations (represented in coordinates) and semantic locations.

Our problem belongs to the latter category and we find two existing methods
that can be used to solve this problem.

The first method is centroid method [17], the main idea of which is quite

simple. Given a connectivity vector V;(i) = [01 02 ... o}4]” the estimated

location £;(i) can be calculated using Equation 4.8 ~ 4.10, where & =
T2 T s the coordinate vector of all APs. Based on (%,7), the
Yo Y2 o YA

grid location can be determined with ease. However, this method works well
only if the density of APs is high enough [159], it may work poorly in our
scenario due to low AP density and multiple floors.

£,(i) = H - M@-Vju) (4.8)
4

&= Z,;“loktzlxt o (4.9)
A

=57 1%;% o (4.10)

Another method is fingerprinting method [7, 165, 173, 139] which consists
of training phase and testing phase. The training phase is to construct
a fingerprint database which requires a simple site survey to collect the
connectivity information of APs in all grids. In the testing phase, given a
measured connectivity vector, we compare the vector with that of all grids in
the database and use the best match as the estimated user location.
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However, the RF signal is vulnerable to environmental disturbances and
varies over time, which degrades the performances of deterministic finger-
printing approaches. Some researchers proposed probabilistic fingerprinting
method [173] which is based on statistical inference between the reported
signal information and stored fingerprints. Specifically, given a measured con-
nectivity vector V,,, the objective is to find a grid ¢g (¢ € G) which maximizes
the posterior probability, i.e., argmax, P(g‘Vm). Traditional probabilistic
fingerprinting calculates P(G

V) (G is a variable representing all g) using

Equation 4.11.

P(V,|G) - P(G)
P(Vin)

P(G|V;) = (4.11)

Most of the case, previous works regard P(G) as uniform distribution, i.e.,
P(G) = 1/|G|. However it is not the case in real scenarios. We observe
that various shops have different popularities and the number of customers
they attract is thus different. In a similar way, different grids have different
attractiveness, therefore P((G) should be different from grid to grid and time
to time. Here we use the number of people on shops to model the popularities
of each grid and derive a more practical and accurate estimation of P(G).

We also notice that the length of visit to different types of shops is differ-
ent. Therefore, besides the Wi-Fi signal, we also exploit the visit duration
to distinguish different grids. Equation 4.12 shows how we calculate the
probability of people in all grids, where G is a variable for different grids in
G, T is duration time, I is the measured Wi-Fi data during the period of T'.
To calculate P(G’WT), we need to know P(G), P(T‘G), and P(W‘G), which
are described as follows.

P(WTI|G) - P(G)
P(WT)
P(W|G) - P(T|G) - P(G)
P(WT)

P(G|WT) =
(4.12)

x P(W|G)- P(T|G) - P(G)

P(G) is the probability that people appear in a specific grid. As grids are
closely relate to shops, we use the matrix R = (n;;) (in Section 9) to derive
the priori probability. The probability people appear in grid g¢; is calculated
using Equation 4.13 ~ 4.14. P(s;,t;) is the probability that people appear
in shop s; during time slot ¢;. P(g;,t;) represents the probability people
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appear in g; during ¢;. S; is a set of shops that are in the range of ¢;, and N;
represents a set of grids that are neighboring to g,. If there are no shops in
grid g;, we use the average probability from all neighboring grids N; of ¢, as

alternative.

P(s;, ) = =5 (4.13)
> Nk
k=1

S>> P(sg,t;), if IS;[ #0

SkESj

> Plgi,ta)/IN;|, if[S;[=0

g1€N;

P(T‘G) is the probability that how long people will stay in a given grid.
Similar to using the number of shops to estimate the number of grids, we
calculate the distribution (x, and o)) of duration time for a grid using
Equation 4.15 ~ 4.16. S is a set of shops that are in the range of grid g. If
|S;| = 0, which means there is no shops in g;, the distribution of such grids
are collected manually.

1

Ho =151 2 s ISI A0 (4.15)
| | SLES
1
0y = 1o 2. 0sr HfIS[#0 (4.16)
‘S’ SLES

We also have two methods to find the duration time of a user in different
grids. The most direct way is to exploit traditional area localization methods
to map the Wi-Fi data to grid locations, then based on the locations to derive
the duration time. The detailed process is illustrated in Algorithm 3.

But this method performs poorly since it relies on existing fingerprinting
methods which cannot achieve adequate accuracy. Also, the two parameters
are hard to tune.

Another method is to apply subsequence time series clustering techniques.
Subsequence clustering is performed on a single time series to group inter-
esting subsequence time series data in the same cluster [21]. There are also
several methods to solve the subsequence clustering problem, like hierar-
chical clustering, partitioning clustering, density based clustering, and etc.
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Algorithm 3: A sliding window approach on M;.
Data: Wi-Fi data of user j, M; = [V;(1) --- V;(k)]
Result: A set of subsets
Determine the length T, of the sliding window, a threshold \,;
for i € range(1,k,T,) do
forV e[V, --- Vir,_1]do
t Estimate ¢; based on V}, using P(G ‘Vm) ;

Calculate the percentage of §; among all estimated g;
if the percentage of §; > A\, then
| The grid of all this window is g;;

Merge the neighboring windows with same grid information as a subset;

Different methods have different advantages and disadvantages, the detailed
explanation can be found in [182].

Here we choose hierarchical clustering, one of the reasons is the generality.
Since it does not require any parameters, such as the number of clusters. The
procedure of the algorithm is shown in Algorithm 4.

Algorithm 4: Hierarchical clustering on A/;.
Data: Wi-Fi data of user j, M, = [V;(1) --- V;(K)]
Result: Clusters, C
Calculate the Euclidean distance matrix Mp of M;;
while not every V;(l) in clusters do
Find two C; or V;(l) with minimum Euclidean distance;
Merge the two C; or V;(l) to produce a new cluster;
Update Mp by calculating distances between new cluster and other
clusters;

W in P(W‘G) is a set of connectivity vectors of a device d,, W = {V,,(1),--- , V,(K)},
where K is the size of the cluster. Given a connectivity vector V,,(7), the prob-
ability that it is within g; can be calculated using Equation 4.17. V; is a set of
connectivity vectors (also called fingerprints) collected in g;, V;(/) means the

l-th vector. ||V, (i) — V;(1)|| /|A| calculates the normalized Euclidean distance
between V),(i) and the I-¢th fingerprints in grid g;. We use average probability

of all connectivity vectors in W to represent P(IV/|G) in Equation 4.18.

| 1 V,6) - V)
P(V,(i)|G = g;) = 1 - Ve A (4.17)
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P(W|G =) = 1 X P(V,

1
T - G =g;) (4.18)

=1

Density calculation

Density calculation is quite simple compared to area localization. Based on
the grid information derived from area localization, for each time slot and
each grid, we count the number of people in that grid as density information
(H), which is represented in Equation 4.19. n,; is the number of people that
are within grid ¢g; during time slot ¢;. w; (i) represents the density of g; during
t; and can be calculated using Equation 4.20. |7 is the number of time slots,
|G| is the number of grids.

M1 T s ... Thg|
H— 77'21 77'22 77.23 7]2'\g| (4.19)
M M7z 73 - N9
N Mg
w;(i) = 7 (4.20)
21 Nij

4.3.4 Dead Spots Estimation

After area localization, each connectivity vector V(i) is associated with a grid
information. We separate all connectivity matrices according to time slot and
grid. Then for each grid and time slot, there is a set of connectivity matrices.
Given the information, a key issue here is how to translate those connectivity
matrices into the probability of dead spots, which will be introduced in this
section and how to quantify their severity.

From connectivity matrices to probability of dead spots

In Section 4.2.1, we have proposed Equation 4.2 to transform a connectivity
matrix into probability of dead spots Pps(M;). However, the procedure just
converts one connectivity matrix to the probability of dead spots, then how
to handle multiple connectivity matrices? We believe that devices with larger
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transmission time are more reliable for estimating dead spots. In extreme
cases, when the transmission time of a device is very short, its coverage ratio
could be highly biased. A reasonable explanation is that larger transmission
time corresponds to larger sampling sizes and thus is more reliable.

Given all connectivity matrices {M; (i), ..., Mk (i)} during time slot ¢; in grid
gj, we calculate 7;(¢) (the probability of dead spots in g; during ¢;) using
Equation 4.21 ~ 4.22, where T;(k) is the estimated transmission time of M.

K
Z wy - Pps(Mj) (4.21)
(k)
w - (4.22)
’ ;If 1 Ti(p)

Severity of dead spots

Different dead spots have different severity, if authorities of the facility want
to fix some of them, they must want to start with the most critical ones.
Obviously, the higher probability of the dead spots, the severer it is. If the
probability of two locations is the same, what matters is the number of people.
Therefore, the severity of a dead spot is not only related to its possibility but
also closely associated with the number of potential users around that dead
spot.

Here we combine the probability of dead spots 7;(i) and human density w; (i),
to derive severity of dead spots. 3 is the significance factor for human density.

=f-wi()) + (1= 8)-7() (4.23)

4.4 Experiments and Results

In this section, we firstly introduce the experimental setup and then present
the evaluation of each component. Specifically, we carefully study the perfor-
mance of device classification, area localization, and dead spots estimation.
For each of them, we introduce evaluation metrics, baseline approaches,
parameter selection, final results, and further discussions if any.
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4.41 Setup

We carry out experiments in a large shopping mall with 5 floors (Ground,
and 1st ~ 4th floors) and a total area of over 30,000 m? in Shenzhen. There
are 68 shops and 48 APs in the mall, the floor plan and AP deployment
of the ground floor is shown in Figure 4.8 in Section 4.3.1. We manually
separate the mall into 60 grids, most of the grids contain at least one shop,
few grids contain only common areas. The partition on the ground floor is
shown in Figure 4.9. There are few shops, like B116 on the floor plan, that
are not within the expected coverage areas, so we do not take them into
consideration. During the period of 46 days, we collect |Dy,| = 8,268, 462
Wi-Fi data entries from 726, 920 devices.

To evaluate the performances of different components of DMAD, we engage
over 20 volunteers to collect testing data for a period of one week. Below
shows the tasks that are conducted by volunteers. Table 4.4 lists detailed
information of the testing data for different issues.

1. Put some smartphones, including both iOS and Android devices, which
keep broadcasting Wi-Fi packets in some predefined locations, like
counter desks, and store rooms for a whole day.

2. Do window shopping as usual without preassigned destinations. Record
their visiting histories, including the visited grid, start time, and visit
duration.

3. Conduct simplified site survey with smartphones. Check is there any
dead spots in a specific grid during a specific time slot.

As for the simplified site survey, it is conducted using smartphones rather
than spectrum analyzers. To detect whether a grid ¢, has dead spots or not
during time slot ¢;, we ask volunteers to go and test every feasible points
within g;. The granularity of test points is about 4 meters. Generally, there
are around 25 points in a grid. For each point, volunteers are required to
go there and turn on their Wi-Fi and check the AP list. If the target SSID
(“Intown_Free_Wi-Fi”) is not in the list, or the network cannot be associated,
then that test point is a dead spot. Usually, it takes 20 ~ 30 seconds to finish
testing one point.

4.4 Experiments and Results
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Table 4.4: Details of the testing data.

Issue Data from task Data format # of data
Device classification I, I, III <MAC, mobile/static> 249
Area localization II <MAC, visit record > 456
Dead spots estimation 111 < gj, t;, Boolean-DS> 5127

Table 4.5: Confusion matrix of device classification.

Predicted condition

Static Mobile Others
Static Nll N12 N13
Mobile N21 N22 N23
Others | Nj; N3, N33

True
condition

4.4.2 Evaluation

In this subsection, we evaluate the performance of different system com-
ponents, including device classification, area localization, and dead spots
estimation.

Performance of device classification

Device classification classifies a smartphone as a static device or a mobile
device using a decision tree classifier. Here we study the evaluation metric,
discuss the selection of system parameters, and show the final results.

Evaluation metric : Since this is a classification problem, we use precision
and recall to evaluate the performance, where precision; = Ny /> ; Ny,
recall; = Ny/ > ; Ny, and N is a confusion matrix as explained in Table
4.5.

Parameter selection: In this component, we have three parameters, a threshold
of transmission time « for static devices, a threshold of transmission time for
mobile devices b, and a threshold for variance of connectivity matrix c.

The precision and recall of device classification are not sensitive to parameters
a and b. But different values of a and b can affect of the number of static
and mobile devices that we can derive from D,. Figure 4.18 shows the
percentages of static and mobile devices under different value of a and b.

We set a = 2, which means static device should send packets for at least 2

hours. Since if a is too small, we cannot calculate the change of coverage
ratio. When « is too large, we may miss many static devices.
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Fig. 4.19: Precision and
recall of static device
classification and mobile
device classification.

For mobile devices, we set b = 10. If b is too large, it may miss a large number
of mobile users. On the contrary, if b is too small, those devices with small
transmission time may have a side effect on DMAD, as their data may be
collected from passers-by which could be highly biased.

For ¢, we set it to 0.2 which is derived from D},. Since if ¢ is too large it
cannot restrict the mobility of static devices, while ¢ is too small, it cannot
tolerate errors.

Results : Figure 4.19 shows the precision and recall of device classification for
both static devices and mobile devices. Also, we study the impact of different
c on static devices as illustrated in Figure 4.20. The precision slightly reduces
when ¢ increase.

The results of device classification over D, indicate that among 726, 920
devices, the majority of them (83.1%) are from passers-by of the mall, while
14.98% of them are mobile devices and only (1.92%) of them are static
devices.

Figure 4.21 shows the average number of static and mobile devices of each
day in a week. Interestingly, most the of days, the number of mobile devices
is around ten times larger than that of static devices. During weekends, both
static devices and mobile devices increase since more people go shopping in
holidays. Also from Figure 4.22 we can see that during dinner time (12:00
and 18:00) the number of people peaks.

We also analyze the duration time of non-static devices of each day in a week
and the results are shown in Figure 4.23. From the results, we can find
that the majority (80%) of people stay in the shopping mall for less than 1
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hour during weekdays. While during weekends, people stay there for longer
time.

Performance of area localization

Area localization is to determine users’ grid locations according to their
connectivity information. We look into evaluation metric and baseline ap-
proaches of area localization as well as the performance of grid localization
and floor localization. Floor localization is to determine users’ floor informa-
tion, which is more coarse-grained than grid information.

Evaluation metric : Area localization is essentially a classification problem,
each grid can be regarded as a class. So we use accuracy = N./N, to measure
the performance of floor localization and area localization. NN, is the number
of correctly estimated test cases, while NV, is the total number of test cases.

To have a comprehensive understanding of different methods, we also evalu-
ate the accuracy = N¥ /N, of top-k results for some methods, where N* is the
number of test cases that the top k estimated results cover the true results.
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Baselines: The baseline approaches for area localization are centroid method
and fingerprinting method.

Centroid method is denoted as “CEN”, for this method we need to transform
the estimated location £ to estimated grid § by returning the grid which £
belongs to. It also happens when £ are calculated from multiple APs from
different floors. In this case, we determine the floor information by using the
closest floor that £ is close to.

Another baseline series is probabilistic fingerprinting methods. We denote the
traditional method without P(G) and P(T ’G) as “FIN”. “FIN-G” is a method
considering non-uniformed P(G), and “FIN-GT” is our proposed method in
MDAD which considers both non-uniformed P(G) (shop popularity) and
P(T ‘ () (visit duration).

Results : The evaluation results of localization are shown in Figure 4.24 and
Figure 4.25, which indicate our proposed approaches (“FIN-G” and “FIN-GT”)
outperform centroid method and conventional fingerprinting method by over
10%. The potential reasons are that for centroid method, it works well
when the AP deployment density is high, but the requirement can hardly be
satisfied in real scenarios. Also for conventional fingerprinting methods, due
to similar fingerprints in different grids and vulnerability of wireless signal,
coarse-grained wireless fingerprints alone cannot achieve high localization
accuracy.

“FIN-G” and “FIN-GT” utilize a more realistic priori probability of people
appearing in different grids. Besides, “FIN-GT” exploits an additional feature
of visit duration to separate grids with similar wireless fingerprints.
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Fig. 4.26: Heat map of human density on the ground floor in different time slots.
(a) 9:00; (b) 12:00; (c) 18:00.

The human density of the ground floor in different time slots in a day is
visualized in Figure 4.26. We can see that, at the different time in a day, dif-
ferent grids have varied popularity. For example, ¢, is a supermarket, which
has more customers in the night than that in the mooring. But compared to
other grids, some grids like g which is a common area have a small group of
people all the time. Generally, we find the following rules from the human
density data.

* Grids that are close to entrances or exits are likely to have more people.
* The number of people in grids that contain restaurants peaks at dinner
time, i.e., 12:00 and 18:00.

Further discussion: Since different mobile devices may have different transmit
power, DMAD collects the fingerprints in all grid using devices from different
manufacturers. Here we discuss the impact of fingerprints from devices of
different manufacturers on the accuracy of area localization. Figure 4.27
shows the distribution of collected fingerprints and the number of devices
used to collect fingerprints.

Figure 4.28 shows the localization accuracy of using different kinds of devices
for training and testing. As we can see that using the same kind of devices
for training and testing can achieve better performance, because different
kinds of devices generate different fingerprints. The results are from part of
the grids, as we do not have fingerprints of all three devices in all grids.

Among cases where using the same kinds of devices for training and testing,
Apple devices outperform other devices. One of the reasons is that we have
only iPhone5s and iPhone6 and the fingerprints collected from both models
are quite similar. For Huawei, we have 4 models (Mate2, Mate7, P7, and P8).
The differences between fingerprints are larger than that of Apple devices.
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Fig. 4.27: Distribution of fingerprints and Fig. 4.28: Confusion matrix

devices used in collecting fingerprints. We of localization accuracy using
use devices from three manufacturers to different kinds of devices for
collect fingerprints for area localization. training and testing.

This indicates that the more devices used to collect the fingerprints, the
higher localization accuracy we can achieve. However, collecting so many
fingerprints is too time-consuming to implement. So there is a trade-off
between accuracy and simplicity of the system.

Performance of dead spots estimation

Dead spots estimation is to estimate the probability of dead spots at a specific
grid during a period of time. We study the evaluation metric, parameter
selection, and the final results of this component.

Evaluation metric : Estimation of dead spots is a binary classification prob-
lem, so we use precision, recall, and Fi.,. to evaluate its performance.
precision = tp/(tp + fp), recall = tp/(tp + fn), and Fyeore = 2 - precision -
recall /(precision + recall). tp are cases that dead spots are predicted as dead
spots; tn are cases that there are no dead spots and predicted as no dead
spots; fp are cases that are predicted to be dead spots, but in real there is
none; and fn are cases there are dead spots but predicted as no dead spots.

Parameter selection : We have two parameters in this component, ¢ (n) is
a decay function, and § is the significance factor for human density. ¢ (n)
models the probability of dead spot when the location is covered by n APs.

Here we choose an exponential decay function ¢ (n) = 1/(2"). Since the best
performance of exponential decay function is better than that of a linear
decay function ¢» = 1/(2 x n), as shown in Figure 4.32.
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under different e.

We set 5 = 0.5, which means we regard the human density and the probability
of dead spots as equally important. 5 has nothing to do with the accuracy
of dead spots estimation, it serves as an importance factor of human density
when calculating severity of a dead spot. If the administrator thinks the
number of potential users should be the focus, then /5 can be set to a larger
value.

Besides, we also need a threshold e to determine the existence of dead spots
if Ppg > e. We set e = 0.3, since the performance peaks under this value.

Results : The results of dead spots estimation are shown in Figure 4.29, which
demonstrate that when e = 0.3, DMAD can identify around 70% of dead
spots with a precision over 70%. Also, Figure 4.30 shows the CDF of Ppg of
grids in different floors in all time slots. From the results, the lower the floor
is, the more dead spots it has. One possible explanation is that more people
appear in the lower floors and cause more dead spots.

We also derive the normalized severity A/ /maz()\]) of different grids during
different time slots. Figure 4.31 shows the severity of grids on the ground
floor in different time slots. We can find that some grids like g3, g9, and g1,
are more serious over time, which deserve more attention.

Further discussion:

We count the number of dead spots during a whole day among all grids, the
average number for weekdays is 972. For weekends, it is reported to have
18.8% more dead spots in average. This result is reasonable, since dead spots
are closely related to the people, more people will result in more dead spot.
Interestingly, as illustrated in Figure 4.33, we find that the distribution of
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those additional dead spots obeys “70-30 rule”, which means 70% of the
additional dead spots are generated by 30% of grids.

4.5 Related Work

AP Deployment Problem

AP deployment problem is to find the minimum number of APs and their
optimal locations to achieve one or more objectives. Existing solutions can
be classified into two categories, site surveys and simulation approaches.
Both methods have their own pros and cons. Site surveys are more accurate
and robust, but they require sophisticated electronic monitors and extensive
manpower, which is time-consuming and labor-intensive, especially for large
areas. Also, site surveys have the potential for disrupting normal operations
at the site [2]. Simulations are easy and cheap to conduct, but they can-
not precisely characterize the radio frequency (RF) propagation due to the
vulnerability of wireless signal and the dynamic environment.
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Site Surveys

Site surveys can provide a solid understanding of the on-site RF behavior,
identify any dead spots and reveal areas of channel interference [121]. These
surveys are usually conducted by engineers with specialized electronic moni-
toring equipment such as spectrum analyzers. According to objectives, site
surveys can be classified into three categories, predictive modeling surveys,
pre-deployment surveys, and post-deployment surveys.

Predictive modeling site surveys use software programs to model the facility
and RF environment. Those programs can help to outline the required
coverage areas using facility floor plans; estimate RF signal attenuation
according to different RF environments; predict the minimum number of APs
and their locations. Strictly speaking, predictive modeling surveys belong to
simulation methods, as propagation loss models and optimization algorithms
are utilized rather than using real equipment to characterize the on-site RF
behavior.

Pre-deployment site surveys are often called “AP-on-a-stick” surveys, are
performed before setting up a wireless network. In the survey, spectrum
analysis is an integral part, which can identify sources of RF interference and
dead spots that would cause performance issues. With this survey, a better
wireless network design can be achieved by characterizing the RF behavior
in the facility, which is uniquely tailored to the physical properties of the
environment. It can also be used to verify and adjust a preliminary Wi-Fi
network design.

Post-deployment site surveys are performed after the APs have been installed
and configured. This type of site surveys reflects the RF signal propagation
characteristics of the deployed wireless network. The focus is to validate
that the performance of the deployed network matches the original network
design.

Simulation Approaches

Since site surveys are time-consuming and labor-intensive, numerous simu-
lation methods have been proposed to avoid extensive measurements and
expensive physical experiments. Simulation methods firstly emulate the
RF propagation in the target environment, then model it as a mathemati-
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cal problem by using propagation loss models, and finally exploit various
optimization algorithms to solve it towards one or more objectives.

Once the propagation loss model is determined, given an AP setting, the
signal strength of this AP at any locations on the site can be estimated. Then
the problem is to find the minimum number of APs and their optimal locations
to satisfy some predefined thresholds like the minimum RSS value. Different
simulation methods mainly differ in their propagation loss models, objectives
and optimization algorithms.

Propagation loss models describe how RF signal attenuate over physical dis-
tance and through different obstacles which have been studied extensively
over decades [51, 73, 129]. Hashemi conducted a comprehensive survey
about mathematical and statistical modeling of individual characteristics of
propagation losses in [51]. Other researchers studied propagation loss of sig-
nal with multipath characteristics using ray tracing techniques in [73]. While
Schoeberl modeled the propagation losses combining ray tracing and Monte
Carlo simulation in [129]. All these works indicate that average received
signal power decreases logarithmically with distance, which are described in
Equation 4.24.

PL = PLy+ 10 -7 - logy, CZ) + Zl N; - L (4.24)
PL is the total path loss, PL, is the path loss at the reference distance d,
~ is the path loss attenuation factor derived from measurements, d is the
length of the path, d; is the reference distance, V; represents the number of
a particular type of obstacles and L; represents the loss associated with that
type of obstacles.

Optimization objectives are usually wireless coverage [72, 88], offloading
ratio [18, 68], fingerprint differences [88, 101], and etc. Recently, more
works [88, 23] focus on achieving the combination of multiple objectives.

Optimization methods like the Nelder-Mead simplex algorithm are adopted
to find the optimal AP locations for maximizing the coverage ratio in [40].
In [2], a one-by-one trial method has been proposed to find the minimum
number of APs needed to cover a given site. For a given number of APs, the
genetic algorithm (GA) optimizer is used to perform AP location optimization.
The authors in [153] use a neural network approach to perform propagation
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prediction, and adopt an ant colony optimization approach to optimize the
AP locations and to maximize the average received power. In [134], the
simulated annealing (SA) algorithm is utilized to find the minimum number
and optimal transmission power of APs, but the AP locations are not opti-
mized. Wang et al. exploited GA to the placement of APs with heterogeneous
costs and capacities in [157, 156]. In [163], Lydon While proposed a multi-
objective evolutionary algorithm for three criteria minimized cost, maximized
coverage, and minimized service refusal.

Using Data Science in Wireless Networks

Data science or “data-driven research” is a research approach that uses real-
life data to gain insights about the behavior of target systems [74]. It enables
the analysis of various systems in order to assess whether they function
according to the intended design and as seen in simulations.

Wireless networks can exhibit unpredictable interactions between algorithms
from multiple protocol layers, interactions between multiple devices, and
hardware specific influences [74]. These interactions may further result in a
difference between real-world functioning and design-time functioning. Data
science methods can be utilized to detect the actual behavior and hopefully
provide insights to improve the system performance.

Numerous research areas like large-scale social networks, advanced business
and healthcare processes, have successfully adopted data-driven approaches
to analyze networked interactions. In traditional wireless research, it often
starts with theoretical models to devise solutions which are then evaluated
using a simulator or experimental setup [74]. In contrast to traditional
approaches, research works such as [30, 92, 93] use a data-driven approach,
starting from large, real-life wireless datasets to extract knowledge about
wireless systems.

For example, in [30], the authors proposed a data-driven solution for fin-
gerprinting wireless devices that can help existing network access control
systems to enhance network security by allowing access only for certain
devices or device types (devices that have the same hardware configuration).
Different from traditional security mechanisms that rely on device authenti-
cation based on public key cryptography and digital certificates, which could
be simply transferred to another device. The proposed data-driven approach

Chapter 4 DMAD: Data-Driven Measuring of Wi-Fi Access Point Deployment



relies on distinguishing devices by looking into the statistical distribution of
inter-arrival times between packets generated by the same device and a par-
ticular application. The authors formulated this as a classification problem,
proved their hypothesis from two testbeds, and finally solved the problem
with an artificial neural network model.

4.6 Conclusion

In this chapter, we propose DMAD, a data-driven measuring of Wi-Fi AP
deployment to estimate dead spots and quantify their severity using both
Wi-Fi data and shop data.

Based on the collected data, we firstly classify static devices and mobile
devices using a decision-tree classifier. The most distinguishing feature
between them is whether they work early in the morning.

Then we locate these devices to shop-level locations based on two obser-
vations of heuristics. On the one hand, the duration of visit in different
shops is different, for example, people stay longer in restaurants than that
of clothing shops. On the other, different shops have different popularity in
attracting customers at different time slots, for example, restaurants attract
more people during lunch time than clothing shops. These two features can
be exploited to distinguish locations with similar wireless fingerprints.

Lastly, for each location, we estimate the probability of dead spots in different
time slots and derive their severity combining the dead spots probability and
human density. Since if a dead spot appears in a place with a lot of potential
users, this dead spot must be severer.

We carefully study the performance of different components of DMAD using
real data collected from a large shopping mall. The evaluation results demon-
strate that DMAD can identify around 70% of dead spots with a precision
over 70%.

4.6 Conclusion
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Conclusion & Future Work

In this dissertation, we address the emerging issues in understanding human
dynamics using privacy-sensitive data modalities. The first issue is user pri-
vacy erosion due to the prevalence of IoT devices and social media services.
Human dynamics research in the uncontrolled setting usually involve col-
lecting spontaneous data in a naturalistic environment. Private content and
uninvolved parties could be recorded without their consent. The second issue
is incomplete user profile. Unlike traditional data collection methods like
interview and survey, many IoT collected data sources lack detailed demo-
graphic information. Without knowing this information, the results of human
dynamic research could be biased. The third issue is missing contextual
information. The focus of human dynamics research is not only just about
human but also the environment and the situation they interact with. The
environment plays an essential role in understanding human dynamics since
it could influence and reshape human behaviors.

For the first issue, we propose to use privacy-sensitive data modalities for
human dynamics research. For the remaining issues, we also show that it
is possible to infer user profiles and contextual information using privacy-
sensitive data in the presented three works. However, we entail two grand
research challenges when applying privacy-sensitive data for these purposes.
First, low quality of privacy-sensitive data brings difficulty in extracting ade-
quate and effective features for high-level applications. Second, dynamics of
human behavior poses serious challenges to the effectiveness and robustness
of system performance, sometimes even results in a new research problem.

To address the first challenge, the general methodologies are integrating
knowledge from other domains, devising new features, and fusing data
from multiple sources. As illustrated in Chapter 4, we use a probabilistic
approach to locate customers based on the WiFi data. However, due to the
sparsity of the data, it is difficult to achieve satisfying performance. Therefore,
we fuse the Pol data and derive a more accurate prior probability. Another
example is presented in Chapter 2 where we extracted conversational features
rather than voice features to identify gender since it is indicated in sociology
literature that the way people take turns and interrupt each other could
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also reveal their gender information. To address the second challenge, an
effective way is to infer the contextual information first. An example is shown
in Chapter 2, we infer the gender composition as an extra input for gender
identification since the composition plays a latent role in people’s turn-taking
behaviors and interruption patterns.

As for future work, we mainly have three directions. First, we will investigate
more types of human activities like online activities and will try to fuse
online and offline behaviors. Second, more attention will be paid to cross-
modality research like the combination of multiple modalities as the capability
of collecting more types of data keeps increasing. Last, we will conduct
more research work on the mental context like sensing and analytics of
personalities and emotions. These high-level dynamics play significant roles
in understanding human behaviors and interactions.

Chapter 5 Conclusion & Future Work
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