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Wireless networks offer many advantages over wired local area networks such as scalability and mobility.

Strategically deployed wireless networks can achieve multiple objectives like traffic offloading, network cov-

erage, and indoor localization. To this end, various mathematical models and optimization algorithms have

been proposed to find optimal deployments of access points (APs).

However, wireless signals can be blocked by the human body, especially in crowded urban spaces. As a

result, the real coverage of an on-site AP deployment may shrink to some degree and lead to unexpected dead

spots (areas without wireless coverage). Dead spots are undesirable, since they degrade the user experience

in network service continuity, on one hand, and, on the other hand paralyze some applications and services

like tracking and monitoring when users are in these areas. Nevertheless, it is nontrivial for existing methods

to analyze the impact of human beings on wireless coverage. Site surveys are too time consuming and labor

intensive to conduct. It is also infeasible for simulation methods to predict the number of on-site people.

In this article, we propose DMAD, a Data-driven Measuring of Wi-Fi Access point Deployment, which

not only estimates potential dead spots of an on-site AP deployment but also quantifies their severity, using

simple Wi-Fi data collected from the on-site deployment and shop profiles from the Internet. DMAD first

classifies static devices and mobile devices with a decision-tree classifier. Then it locates mobile devices to

grid-level locations based on shop popularities, wireless signal, and visit duration. Last, DMAD estimates the

probability of dead spots for each grid during different time slots and derives their severity considering the

probability and the number of potential users.

The analysis of Wi-Fi data from static devices indicates that the Pearson Correlation Coefficient of wireless

coverage status and the number of on-site people is over 0.7, which confirms that human beings may have a

significant impact on wireless coverage. We also conduct extensive experiments in a large shopping mall in

Shenzhen. The evaluation results demonstrate that DMAD can find around 70% of dead spots with a precision

of over 70%.
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1 INTRODUCTION

Wireless networks are remarkably important in modern societies, not only just for wireless com-
munication but also as a key enabler of numerous novel applications. One well-known example is
wireless based tracking and monitoring systems (Musa and Eriksson 2012; Shen et al. 2016; Bahl
and Padmanabhan 2000; Wang et al. 2014). Besides, wireless networks offer many advantages over
wired local area networks such as scalability and mobility. It is convenient to access network re-
sources from any locations within the coverage of wireless networks. It can also be set up easily
in a quick and expandable way. Last, wireless networks are cost-effective, since wiring costs are
eliminated or reduced.
As one of the predominant problems, the wireless networks layout problem and the access point

(AP) deployment problem have been extensively studied over decades (Adickes et al. 2002), since
strategically deployed wireless networks can achieve multiple objectives like maximizing ratios
of traffic offloading (Bulut and Szymanski 2013) and wireless coverage (Chen et al. 2013) and im-
proving indoor localization accuracy (Chen et al. 2013). Existing solutions can be classified as
site surveys and simulation approaches. For site surveys, engineers with electronic monitoring
equipment such as spectrum analyzers walk throughout the facility to measure wireless signal
quality. Based on the information, engineers attempt to identify potential locations for APs that
would minimize the disruption of service (Revolutionwifi 2013). However, site surveys require spe-
cialized equipment and extensive manpower, which is quite expensive, especially for large areas.
Therefore, many simulation approaches (Liao et al. 2011; Meng et al. 2012; While and McDonald
2014) are proposed by modeling the AP deployment problem as an optimization problem. Those
simulation methods are mostly built on the basis of propagation loss models that characterize how
wireless signal attenuate over distances and different obstacles. Simulation methods usually con-
sist of two stages, an iterative stage to calculate the minimum number of APs, and an optimization
stage to find out optimal locations of those APs towards one or more objectives.
However,Wi-Fi signals can be blocked by the human body (Sen et al. 2012), especially in crowded

urban spaces. As a result, it could result in unexpected dead spots (areas without wireless transmis-
sion coverage) as illustrated in Figure 1(b), where walking people cause real coverage of the on-site
AP deployment to shrink to some extent. These dead spots are undesirable, since they degrade the
user experience in network service continuity, on one hand, and, on the other hand, paralyze some
applications and services like tracking andmonitoring when users are in these areas. Nevertheless,
it is nontrivial for existing methods to analyze the impact of human beings on wireless coverage.
It is too time consuming and labor intensive to measure wireless coverage status for a long time
using site survey methods. Also, site surveys may disrupt the ongoing activities (like shopping
activities) in the facility. For simulation methods, it is infeasible to consider the impact, since the
number of people cannot be determined. Moreover, neither site surveys nor simulation approaches
are able to evaluate the severity of different dead spots in a quantitative way.
As explained above, wireless networks can suffer from unpredictable influences of changeable

interactions among multiple devices, specific hardware, and human activities. These influences
might further lead to a difference between real-world functioning and design-time functioning
(Kulin et al. 2016). Recently, the data-driven design of intelligent wireless networks is gaining
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Fig. 1. A simple illustration of the impact of human beings on wireless coverage. (a) Ideal coverage of APs;
(b) real coverage of APs in the presence of walking people. The shadow areas in (b) are potential dead spots
caused by human beings.

popularity due to its capability to better understand the behavior of complex systems that cannot
be easily modeled or simulated. Data science or “data-driven research” is a research approach
that uses real-life data to gain insights about the behavior of systems. It enables the analysis of
various systems to assess whether they function according to the intended design and as seen in
simulations.
In this article, we proposeDMAD, aData-drivenMeasuring ofWi-FiAccess pointDeployment,

to estimate dead spots and quantify their severity based on simple Wi-Fi data collected from the
on-site AP deployment and shop data from the Internet. DMAD first classifies static devices and
mobile devices with a decision-tree classifier. Then it locates mobile devices to shop-level locations
on the basis of two observations of heuristics. (1) We find that the visit duration in different shops
differs, for example, people stay longer in restaurants than in clothing shops. (2) Different shops
have different popularity in attracting customers, and thus the probability of people appearing in
a shop should closely relate to the popularity. These two observations could help to improve the
accuracy of shop-level localization. Last, for each area, we estimate the probability of a dead spot in
different time slots and derive their severity combining the probability and the number of people.
Since if a dead spot appears in an area with more potential users, its severity should be higher.
The contributions of this work are summarized as follows:

—To the best of our knowledge, we are the first to propose the AP deployment measuring
problem (ADM).

—We also propose a data-driven approach (DMAD) to solve the ADM problem, which can
identify around 70% of dead spots with a precision of over 70%.

—The performance of DMAD is carefully evaluated using data collected from a real AP de-
ployment of a large shopping in Shenzhen.

The remainder of the article is organized as follows. In the next section, we summarize the related
work. In Section 3, we give an overview, including the preliminaries, the feasibility of using Wi-Fi
data to study wireless coverage, the impact of people on wireless coverage, and the framework
of DMAD. Sections 4 to 7 elaborate on each component of DMAD. In Section 8, we present the
detailed evaluation of each component and followed by a conclusion.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 1, Article 11. Publication date: August 2017.



11:4 J. Shen et al.

2 RELATEDWORKS

2.1 AP Deployment Problem

AP deployment problem is to find the minimum number of APs and their optimal locations to
achieve one ormore objectives. Existing solutions can be classified into two categories, site surveys
and simulation approaches. Both methods have their own pros and cons. Site surveys are more
accurate and robust, but they require sophisticated electronic monitors and extensive manpower,
which is time consuming and labor intensive, especially for large areas. Also, site surveys have the
potential for disrupting normal operations at the site (Adickes et al. 2002). Simulations are easy
and cheap to conduct, but they cannot precisely characterize the radio frequency (RF) propagation
due to the vulnerability of wireless signal and the dynamic environment.

2.2 Site Surveys

Site surveys can provide a solid understanding of the on-site RF behavior, identify any dead spots
and reveal areas of channel interference (Revolutionwifi 2013). These surveys are usually con-
ducted by engineers with specialized electronicmonitoring equipment such as spectrum analyzers.
According to objectives, site surveys can be classified into three categories, predictive modeling
surveys, pre-deployment surveys, and post-deployment surveys.
Predictive modeling site surveys use software programs to model the facility and RF environ-

ment. Those programs can help to outline the required coverage areas using facility floor plans,
estimate RF signal attenuation according to different RF environments, and predict the minimum
number of APs and their locations. Strictly speaking, predictive modeling surveys belong to sim-
ulation methods, as propagation loss models and optimization algorithms are utilized rather than
using real equipment to characterize the on-site RF behavior.
Pre-deployment site surveys are often called “AP-on-a-stick” surveys and are performed before

setting up a wireless network. In the survey, spectrum analysis is an integral part, which can
identify sources of RF interference and dead spots that would cause performance issues. With this
survey, a better wireless network design can be achieved by characterizing the RF behavior in the
facility, which is uniquely tailored to the physical properties of the environment. It can also be
used to verify and adjust a preliminary Wi-Fi network design.
Post-deployment site surveys are performed after the APs have been installed and configured.

This type of site survey reflects the RF signal propagation characteristics of the deployed wire-
less network. The focus is to validate that the performance of the deployed network matches the
original network design.

2.3 Simulation Approaches

Since site surveys are time consuming and labor intensive, numerous simulation methods have
been proposed to avoid extensive measurements and expensive physical experiments. Simulation
methods first emulate the RF propagation in the target environment, then model it as a mathemati-
cal problem by using propagation loss models, and, finally, exploit various optimization algorithms
to solve it towards one or more objectives.
Once the propagation loss model is determined, given an AP setting, the signal strength of this

AP at any locations on the site can be estimated. Then the problem is to find the minimum number
of APs and their optimal locations to satisfy some predefined thresholds like the minimum RSS
(Received Signal Strength) value. Different simulation methods mainly differ in their propagation
loss models, objectives, and optimization algorithms.

2.3.1 Propagation Loss Models.. Propagation loss models describe how RF signal attenuate over
physical distance and through different obstacles that have been studied extensively over decades
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(Hashemi 1993; Kreuzgruber et al. 1994; Schoberl 1995). Hashemi conducted a comprehensive sur-
vey about mathematical and statistical modeling of individual characteristics of propagation losses
in Hashemi (1993). Other researchers studied propagation loss of signal with multipath charac-
teristics using ray-tracing techniques in Kreuzgruber et al. (1994), while Schoeberl modeled the
propagation losses combining ray tracing andMonte Carlo simulation in Schoberl (1995). All these
works indicate that average received signal power decreases logarithmically with distance, which
are described in Equation (1),

PL = PL0 + 10 · γ · log10
d

d0
+

n∑
i=1

Ni · Li . (1)

PL is the total path loss, PL0 is the path loss at the reference distance d0, γ is the path loss
attenuation factor derived from measurements, d is the length of the path, d0 is the reference
distance, Ni represents the number of a particular type of obstacles, and Li represents the loss
associated with that type of obstacles.

2.3.2 Optimization Objectives.. The objectives are usually wireless coverage (Kouhbor et al.
2006; Liao et al. 2011), offloading ratio (Bulut and Szymanski 2013; Kim et al. 2013), fingerprint
differences (Liao et al. 2011; Meng et al. 2012), and so on. Recently, more works (Liao et al. 2011;
Chen et al. 2013) focus on achieving the combination of multiple objectives.

2.3.3 Optimization Methods.. The Nelder-Mead simplex algorithm is adopted to find the opti-
mal AP locations for maximizing the coverage ratio in Fortune et al. (1995). In Adickes et al. (2002),
a one-by-one trial method has been proposed to find the minimum number of APs needed to cover
a given site. For a given number of APs, the genetic algorithm (GA) optimizer is used to perform
AP location optimization. The authors in Vilovic et al. (2009) use a neural network approach to
perform propagation prediction and adopt an ant colony optimization approach to optimize the
AP locations and to maximize the average received power. In Sharma et al. (2010), the simulated
annealing (SA) algorithm is utilized to find the minimum number and optimal transmission power
of APs, but the AP locations are not optimized. Wang et al. exploited GA to the placement of
APs with heterogeneous costs and capacities in Wang and Kao (2012) and Wang and Chen (2012).
While and McDonald (2014) proposed a multi-objective evolutionary algorithm for three criteria
minimized cost, maximized coverage, and minimized service refusal.

2.4 Using Data Science in Wireless Networks.

Data science, or “data-driven research,” is a research approach that uses real-life data to gain in-
sights about the behavior of target systems (Kulin et al. 2016). It enables the analysis of various sys-
tems to assess whether they function according to the intended design and as seen in simulations.
Wireless networks can exhibit unpredictable interactions between algorithms from multiple

protocol layers, interactions between multiple devices, and hardware-specific influences (Kulin
et al. 2016). These interactions may further result in a difference between real-world functioning
and design-time functioning. Data science methods can be utilized to detect the actual behavior
and hopefully provide insights to improve the system performance.
Numerous research areas like large-scale social networks, advanced business, and healthcare

processes have successfully adopted data-driven approaches to analyze networked interactions.
In traditional wireless research, it often starts with theoretical models to devise solutions that are
then evaluated using a simulator or experimental setup (Kulin et al. 2016). In contrast to tradi-
tional approaches, research works such as Crotti et al. (2007), Liu and Cerpa (2011), and Liu and
Cerpa (2014) use a data-driven approach, starting from large, real-life wireless datasets, to extract
knowledge about wireless systems.
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Fig. 2. Workflow of the whole system.

For example, in Crotti et al. (2007), the authors proposed a data-driven solution for fingerprinting
wireless devices that can help existing network access control systems to enhance network security
by allowing access only for certain devices or device types (devices that have the same hardware
configuration). Differing from traditional security mechanisms that rely on device authentication
based on public key cryptography and digital certificates, which could be simply transferred to
another device. The proposed data-driven approach relies on distinguishing devices by looking
into the statistical distribution of inter-arrival times between packets generated by the same device
and a particular application. The authors formulated this as a classification problem, proved their
hypothesis from two testbeds, and, finally, solved the problem with an artificial neural network
model.

3 OVERVIEW

In this section, we give an overview of DMAD by introducing the basics of Wi-Fi AP deployment
measuring problem, studying the feasibility of using Wi-Fi data to measure wireless coverage and
dead spots, and investigating the impact of people on wireless coverage.

3.1 Preliminaries

DMAD is a data-driven approach to measuring wireless coverage of a given AP deployment. First,
we collect Wi-Fi data from deployed APs and shop data from the Internet. Then we conduct a
comprehensive analysis on the data to estimate dead spots and quantify their severity. The whole
process is depicted in Figure 2. Some of the notions used in this article are listed in Table 1.

3.2 The Feasibility of Using Wi-Fi Data to Measure Wireless Coverage and Dead Spots

Before estimating dead spots, we study the feasibility of using Wi-Fi data to measure AP coverage
status and how to represent dead spots.
Figure 3 depicts a simple scenario with one AP and two fixed points. There are two smartphones

at both points, respectively, keeping broadcasting Wi-Fi packets. Given transmission time Tt and
coverage timeTc of both devices, how do we measure the wireless coverage status at both points?
The transmission time represents the total amount of time of sending packets on the smart-

phone, while the coverage time means the total amount of time of receiving packets from a smart-
phone on the AP side. As smartphones would send many packets within 1 minute, we count Tt
and Tc in a granularity of 1 minute, which means that if the smartphone sends any packet(s) in
the duration of 1 minute, then we increaseTt by 1. Due to packet loss and physical constraint (like
distance), we have Tt ≥ Tc .
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Table 1. Notions Used in This Paper

Ideally, if the coverage status is good enough, then Tc would approximate to Tt . Otherwise,
Tc would be much smaller than Tt . Based on this intuition, we use a coverage ratio ρ = Tc/Tt to
represent thewireless coverage status on a fixed point. In the example of Figure 3, ρ1 = 10/50 = 0.2,
ρ2 = 45/50 = 0.9, ρk represents the coverage status on thekth point. The larger the ratio, the better
the coverage.
Then what is relationship between coverage status and dead spots under this simple scenario?

Simply speaking, a point with good coverage status (i.e., large coverage ratio) is impossible to
be a dead spot. Instead, those with terrible coverage status are more likely to be dead spots. So
we propose a probabilistic representation for dead spots based on coverage ratio as illustrated in
Equation (2). PDS (pi ) is the probability that point pi is a dead spot,

PDS (pi ) = 1 − ρi (2)

Since wireless coverage status would change over time, using deterministic representation of
PDS might be error prone, it is better to utilize such a probabilistic representation. Under this
definition, PDS (p1) = 0.8 and PDS (p2) = 0.1, which means p1 is more likely to be a dead spot.

However, the example in Figure 3 just illustrates the simplest case. In real scenarios, we have
three imperative issues. First, we can never know the exact transmission time Tt of a smartphone
by passively sniffing its Wi-Fi data. Second, a location could be covered by multiple APs with the
same SSID. Last, the relation between coverage status and dead spots is much more complex than
that of the simplest example.
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Fig. 3. Example of usingWi-Fi data to represent
wireless coverage status. The units of Tc and Tt
are both minute. Coverage ratio ρ = Tc/Tt .

Fig. 4. Illustration of using connectivity matrix
M to calculate coverage ratio vector Ω. and ()
does the AND-operation of the column vector.

Fig. 5. Typical examples of different coverage statuses at different locations from 12:00 to 13:00. The black
bar of an AP indicates the AP can “hear”1 from the device on that location. Intuitively, the order of coverage
status is Case I > Case II > Case III.

For the first issue, we assume that if the smartphone sends any packets, then at least one AP
would receive the packet; otherwise, the smartphone is not sending any packets. Based on this

assumption, we can calculate an approximation T̂t of Tt .
For the second issue, when a location is covered by multiple APs, we can transform the Wi-Fi

data from user’s device dj into a connectivity matrixMj using Algorithm 1 described in Section 4.
Figure 4 gives an example connectivity matrix and shows how to derive the coverage status from
the matrix. Each row vector Vj (i ) in Mj is called a connectivity vector. It shows the connectivity

information of the device with all APs at a specific time i . For example, Vj (i ) = [1 1 0 0]T

means the device dj is within the coverage of AP a1 and a2 at time i . As shown in Figure 4, T̂t
can be calculated by summing up the vector Va . Then for each AP, we can calculate its coverage
time and then derive its coverage ratio. Ω = [ρ1 ρ2 · · · ]T is a coverage ratio vector containing
coverage ratios of all APs.
For the last issue, our basic idea is still that a point with terrible coverage is more likely to be a

dead spot, but it requires more meticulous design.
We show three typical coverage status in Figure 5. Intuitively, the order of coverage status should

be Case I > Case II > Case III. Since in Case I, the coverage ratios of 4 APs are very large; while
in Case III, the ratios are all quite small. This ranking can be explained from another perspective:
All large ratios indicate that the location is covered by multiple APs for most of the time, and thus
the probability of dead spots is significantly smaller than that of all small ratios.

1“Hear” means the AP receives any packet(s) from the device.
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Fig. 6. Illustration of translating a connectivity matrix into probability of dead spots.

Based on the observation above, we devise Equation (3) to map a connectivity matrix Mj into

the probability of dead spots. Actually, 1 − sum(Ti )/T̂t is the coverage ratio when the location or
area is covered by i APs. Ti is an array of coverage time when covered by i APs. sum(Ti ) sums up

Ti . Since T̂t is just an approximation of the real transmission time as mentioned in the earlier part
of this section, we use a decay functionψ (i ) to represent the initial probability of dead spots when
covered by i APs.
Figure 6 illustrates the idea of Equation (3) by showing an example of applying the equation.

T2[1] means the first coverage time when the location is covered by two APs,

PDS (Mj ) =
|A |∑
i=1

(
ψ (i ) ·

(
1 − sum(Ti )

T̂t

))
. (3)

3.3 More Discussion on Coverage Ratio and Dead Spots

Here we discuss two issues to clarify both concepts and eliminate potential misunderstandings of
coverage ratio and dead spots.
The first issue is about measuring coverage status using data collected on the AP side. If an AP

can hear from a device, then it is very likely that the device can also hear from the AP. However,
even though a device can hear from an AP, the AP sometimes cannot hear back from the device,
since the transmit power of an AP is usually larger than that of a mobile device. This indicates that
using data collected onAPs and data onmobile devices represents different coverage. The coverage
from the AP side is a proper subset of the coverage from the device side. DMAD focuses on the
former coverage that is more meaningful. If the AP cannot hear from the device, then a range of
services and applications residing on the AP side like passive tracking (Musa and Eriksson 2012)
cannot work. Worse still, devices cannot access the Internet.
The second issue is about situations where DMAD cannot work. DMAD does not estimate dead

spots by directly checking whether there is wireless coverage or not, which is the main idea of site
survey. Instead, it estimates the probability of dead spots in a given area (around 20m × 20m) for
a period of time based on the coverage status. The coverage status cannot be calculated without

coverage timeTc and estimated transmission time T̂t . BothTc and T̂t are derived from the packets
heard on the AP side. Therefore, if a device has already been on a dead spot, or the device does not
send any packets, then DMAD cannot work properly.
However, in real scenarios, both situations are very rare. First, DMAD only estimates the prob-

ability of dead spots in expected coverage area, which are supposed to have wireless coverage in
normal circumstances. Dead spots in an expected coverage area are caused by the human body and
change with on-site people and cannot cover a large area. Therefore, it is quite rare that devices
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are within dead spots all the time. Second, smartphones keep broadcasting packets even not in
use, which is explained in Section 4.

3.4 The Impact of People on Wireless Coverage

We found some static devices that are fixed in location, such as desktops, smart TVs, and IP cam-
eras, in a large shopping mall in Shenzhen. The way we found those devices is well explained in
Section 5. For each static device, we transform its Wi-Fi data into 24 connectivity matrices, with
each matrix representing the connectivity information for 1 hour. Then we calculate the coverage
ratio vector from the connectivity matrix following the procedure in Figure 4.
Usually, early in the morning, there are no people except for few on-duty security officers in a

shopping mall. Therefore, the coverage ratio vector Ω(s ) of that period of time reflects the wireless
coverage without people, while coverage ratio vector Ω(d ) during the time of 5:00∼22:00 indicates
wireless coverage in the presence of humans.
We use Equations (4) and (5) tomeasure the change fromΩ(s ) toΩ(d ). The output of the function

is a ratio of change ζ ∈ [−1, 1]. The larger ζ is, the poorer the coverage status compared to Ω(s ),

ζ =

(
Ω(s )

sum
(
Ω(s )

)
)T
· Ω(s ) − Ω(d )

sum(Ω(s ) − Ω(d ))
, (4)

sum(Ω(s )) =
|A |∑
i=1

ρi . (5)

In Equation (4), ( Ω(s )
sum (Ω(s )) )

T is the transpose of normalized Ω(s ). Those APs with large coverage

ratios play dominating roles in coverage status, and therefore their changes should have a larger
weight than that of APs with small ratios.
To calculate the ratio of change, we set 3:00∼4:00 as Ω(s ) and each hour in 5:00∼22:00 as Ω(d ).

Then, based on the data collected from the shopping mall in 46 days, we derive the average ratio
of change for each hour.
Compared to static devices, it is easier to find mobile devices that are carried by people in the

mall. The basic idea is to use the unique MAC address of the mobile device to represent a mobile
user. The process is explained n detail in Section 5. So we can also calculate the average number of
people in different hours from the accumulated data. The results of correlation analysis of the ratio
of change and the number of people are shown in Figure 7.We can see that the Pearson Correlation
Coefficient for this is over 0.7, which indicates that people might have a non-negligible impact on
wireless coverage and the impact increases with the number of on-site people.

3.5 Framework of DMAD

DMAD has four components, as depicted in Figure 8. The first component is “Data collection,”
which is to collect desired input data, including Wi-Fi data, shop data, and the floor plan. Then
the data are used for “Device classification,” which sorts out static devices. After that, we use
“Area localization and density calculation” to estimate mobile devices’ shop-level locations and
analyze human density in different areas and time slots, respectively. Last, “Dead spots estimation”
estimates the probability of dead spots and their severity.

4 DATA COLLECTION

Data collection is the first component of DMAD, and it serves as data input for the whole system.
We collect two sources of data, Wi-Fi data from deployed APs and shop data from the Internet.
The purposes of collecting Wi-Fi data is to determine grid locations, measure wireless coverage,
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Fig. 7. Correlation analysis of the average ratio of change and the average number of people from the data
collected in a shopping mall in Shenzhen for 46 days.

Fig. 8. The framework of DMAD. It consists of four components (data collection, device classification, area
localization, and density calculation) and dead spot estimation.

and estimate dead spots of an on-site AP deployment, while shop data can help to improve the
accuracy of area localization. In this section, we show that both Wi-Fi data and shop data can be
readily collected by introducing details of the data collection processes.

4.1 Wi-Fi Data

Wi-Fi data consist of two parts, a large amount of unlabeled Wi-Fi data Dw collected from mobile
users inside the mall and a small amount of labeled Wi-Fi data D∗w from volunteers.

4.1.1 UnlabeledWi-Fi DataDw .. Dw is collected from a large shoppingmall in Shenzhen, where
we have previously installed 48 APs on five floors. The original purpose of the Wi-Fi network is
to provide Internet access for customers in common areas, but we also find that it can be utilized
for other applications or services, like indoor localization (Shen et al. 2016). Here we study the
problem of measuringWi-Fi AP deployment in expected coverage areas based on the accumulated
Wi-Fi data (46 days in total, starting from May 1, 2015). Figure 9 shows the AP installation and
expected coverage area on the ground floor.
The unlabeled Wi-Fi data are passively collected from users’ smartphones, as smartphones

keep broadcasting Wi-Fi packets (Freudiger 2015) that can be sniffed by off-the-shelf APs. Even
when users are not using Wi-Fi services, smartphones send out packets (e.g., probe requests)
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Fig. 9. AP deployment and expected coverage
area on the ground floor of the mall.

Fig. 10. Grid partition on expected coverage
area of the ground floor.

intermittently (Musa and Eriksson 2012). Figure 12 illustrates a simple scenario and lists some
descriptive data records.
Each AP works under the OpenWrt2 system, with a monitor mode virtual network interface3

enabled. We run Tcpdump (a utility for capturing network traffic) to sniff nearby wireless traffic.
More specifically, we use each AP to collect tuples in the format of <AP#, MAC, tstar t , tend>, and,
once the entry is finished, the AP uploads it to the server and then deletes the local entry file.
Detailed process is illustrated in the flowchart of Figure 11.

As can be seen from the flowchart, collecting the Wi-Fi data does not require analyzing each
packet and extracting the information like with a received signal strength indicator. Instead, we
only record the connectivity information, that is, whether the smartphone is under the coverage of
an AP. The advantages are twofold; on the one hand, the connectivity information is easy to collect,
and it does not add too much of a burden to those APs. On the other hand, it saves much space
compared to storing information from every packet, which could be incredibly huge in volume
(several Giga bytes form all APs for only 1 day).
Table 2 shows a small fraction of the rawWi-Fi data. It has four fields as follows:AP# shows the

id of the AP that hears from the device; MAC is the hashed MAC address of the device; Tstar t is a
timestamp that the device is heard for the first time; and, last, Tend is a timestamp that the device
is last heard by the AP.
Then the raw Wi-Fi data are transformed into a connectivity matrix using Algorithm 1. An

example of a connectivity matrix can be found in Figure 4.

4.1.2 Collecting Labeled Wi-Fi Data D∗w .. The label of D
∗
w is the grid information that is man-

ually separated. We separate the expected coverage area of the mall into 60 grids, and Figure 10
illustrates the grid partition of the ground floor. To collect the data, we engage over 20 volunteers
in a week with different smartphones, including popular iOS and Android devices. The purpose
of D∗w is for area localization (in Section 6), which estimates people’s area locations based on their
Wi-Fi data.

2OpenWrt (https://openwrt.org/) is a highly extensible GNU/Linux distribution for embedded devices (typically wireless

routers).
3Virtual network interface, https://wiki.openwrt.org/doc/networking/network.interfaces.
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Fig 11. Flow chart of collecting Wi-
Fi data in APs.

Table 2. A fraction of raw Wi-Fi data.
MAC has been hashed

Fig 12. An simple illustration of the
Wi-Fi data collection.

ALGORITHM 1: Transform RawWi-Fi Data into Connec-

tivity Matrices

Data: Raw Wi-Fi data from all APs in a day

Result: K connectivity matrices: {M1, . . . ,MK }
users ← Group the raw data by the field of MAC address;

for useri ∈ users do
entriesi ← useri ’s raw Wi-Fi data ;

Create a zero (|A| × 1440) matrixMi = (mi j );

for entry ∈ entriesi do
entry ← (aj ,di , ts , te ) ;

transform ts , te into the order of the matrix s, e;

for k ∈ [s, e] do
mjk ← 1

end

end

end

Volunteers are required to collect some “wireless fingerprints” in specific grids following the
procedure below. First, they get to the grid, turn on the Wi-Fi function, and record the start
time; then they walk around within the grid, after visiting all feasible locations of the grid,
record the end time, and turn Wi-Fi off. It usually takes 5 to 10 minutes to finish a collection
process.
Since the presence of people can block wireless signals and this will have a negative impact

on localization performance, we separated the daytime into several time slots T = {t1, t2, . . .} and
collected fingerprints for each time slot. In this way, we collect over 1, 500 Wi-Fi data entries for
D
∗
w .
Although DMAD requires such a labeling process, it takes much less effort compared to site

survey. As described in Section 8.1, even simplified site survey usually takes 500∼700s to check
whether dead spots exist in a grid, while the labeling work takes shorter time (300∼600s). More
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Fig. 13. Histogram of duration time of around 100 customers from three different shops. (a) A fast food
restaurant; (b) a traditional Chinese restaurant; (c) a women’s accessories shop.

importantly, dead spots are related to human activities, and the detection results may become
invalid over time. To detect dead spots next time, site survey needs to start from scratch, while
DMAD does not bother to do that, since it merely requires a one-time investment.

4.2 Shop Data

Shop data also consist of two parts, unlabeled shop data Ds from the Internet and some labeled
shop data D∗s collected by volunteers.

4.2.1 Collecting Labeled Shop Data D∗s .. The labels of shop data are the number of people and
their visit duration in different shops and time slots, respectively. The number of people is used to
calculate a prior probability that people appear in a shop. While visit duration is another kind of
“fingerprint,” we observe that the time spent in visiting different shops also differs, and we take it
as another feature to distinguish users’ area locations.
We collect shop data in different time slots in a day, since shops have different popularities dur-

ing different time slots. For example, restaurants gain more customers during dinner time than
clothing shops. To collect the ground truth about the number of people in a shop, we send volun-
teers to different shops to count the number of customers at different time slots. It usually takes 1
or 2 minutes for volunteers to finish the data collection task. The ground truth is represented in a
matrix R in Equation (6), where ni j is the number of people in shop sj during time slot ti ,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n11 n12 n13 . . . n1 |S |
n21 n22 n23 . . . n2 |S |
...

...
...
. . .

...
n |T |1 n |T |2 n |T |3 . . . n |T | |S |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

For visit duration, we use a distribution to represent the duration time in a shop, as it differs
from person to person even for the same shop. To collect the data, we ask volunteers to stay near
the entrance or the exit of a shop and record the visit duration of customers. Figure 13 shows the
duration time of three different shops with around 100 samples. Generally, the distribution can be
approximated using a normal distribution.
However, it is too labor intensive and time consuming to collect the distribution of duration time

for all shops. We believe that the duration time of a shop is closely related to its type and user rat-
ings. For example, people usually stay in restaurants for around 20 minutes. Also, if the restaurant
has a pleasant environment and satisfactory services, customers may choose to stay longer. These
observations can be quickly verified from the comparison of the three shops in Figure 13. So we
just collect duration time in some typical shops of each category and crawl all shop profiles from
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Table 3. A fraction of unlabeled shop data. Some of fields like,
floor, location, and average spend is not shown in the table

Fig 14. Distribution of total
number and surveyed num-
ber of shops.

the Internet. Then we utilize machine-learning techniques to predict the distribution of unlabeled
shops. A detailed explanation can be found in Section 4.2.2.

4.2.2 Collecting Unlabeled Shop Data Ds .. We collect shop profiles in that mall from Dianping4

and AutoNavi.5 For each shop in that mall, we crawl its type (like clothing shop and restaurant),
location, the number of positive comments (comments with more than 3 stars), and user ratings
about products, environment, and services between May 1, 2015 and June 15, 2015. We exploit
Scrapy6 to crawl the desired data and save them to a local file. A fraction of collected data is
shown in Table 3.
There are 68 shops of interest in that mall, and we classify those shops into six categories. The

total number and the number of surveyed shops are shown in Figure 14. Among the six categories,
Chinese food restaurants, clothing shops, and cafes are the top three categories in terms of total
number, and we collect duration time from some of these categories. For other categories, we just
collect data from all shops.
To predict mean and standard variance of the distribution is a regression problem. The predictor

variables are shop type, location, average spend, and user ratings (include service, product, envi-
ronment, number of positive comments). The response variables are mean and standard deviation
(std) of the visit duration distribution. Both response variables are independent, so we can simply
use two regression models to regress them.
We conduct regression analysis and show the relation between some predictor variables and

both response variables, respectively, in Figures 15 and 16. For mean, we can see that there exists
a strong linear-log relation (Benoit 2011) between predictors and the response. So we use ordinary
least-squares to estimate the unknown parameters. The regression results indicate that R-squared
of the model is 0.810. We also utilize fivefold cross validation to evaluate the accuracy of the
regression model. The root-mean-squared error is 4.611.
For std, there does not exist an obvious relation from the perspective of all data, but the data

show strong cohesion within the same kind of shops. So, for each category, we use a simple linear
regression model to regress the response. We use twofold cross validation to evaluate those linear
regression models. The average root-mean-squared error is 3.623.

4Dianping (https://www.dianping.com/), a popular Chinese group buying website for locally found consumer products and

retail services.
5AutoNavi (http://www.gaode.com/), a well-known map website in China.
6Scrapy (https://scrapy.org/), an open source and collaborative framework for extracting data from websites.
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Fig. 15. Regression analysis between some pre-
dictor variables and mean of the duration distri-
bution.

Fig. 16. Regression analysis between some
predictor variables and standard deviation of
the duration distribution.

Fig. 17. Decision tree for classifying static and mobile devices.

5 DEVICE CLASSIFICATION

Device classification classifies devices as static devices and mobile devices. Static devices are de-
fined as devices fixed in locations like desktops and IP cameras, while mobile devices could easily
change their locations with the help of people, such as smartphones and tablets.
Static devices can be utilized to study the impact of people on wireless coverage status of those

fixed locations. The results are demonstrated in Section 3.4. For mobile devices, their Wi-Fi data
can be exploited to infer people’s locations and mobility patterns.
We propose a decision-tree classifier to classify devices, as illustrated in Figure 17. First, the most

distinguishing feature between mobile and static devices is that static devices still work early in
the morning, and here we choose 1:00∼4:00 AM. Figure 18 visualizes the Wi-Fi data of a static
device on June 5, 2015.
Then, for mobile devices, we filter out those devices that may come from passers-by using a

threshold of b minutes. For static devices, we use a threshold a to filter out devices with short
transmission time. In addition, we check the mobility to remove static devices whose locations
changed over time. The mobility can also help to remove mobile devices that are left by some shop
owners unintentionally.
To check the mobility, we calculate a variance γ of a connectivity matrix; if the variance exceeds

a threshold, then it should not be a static device. Connectivity matrixMj is shown in Equation (7).

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 1, Article 11. Publication date: August 2017.



DMAD: Data-Driven Measuring of Wi-Fi Access Point Deployment in Urban Spaces 11:17

Fig. 18. Raw data of a static device on 5 June 2015.

γ is calculated using Equation (8), where var (X ) calculates the statistical variance,

Mj = [Vj (1) Vj (2) · · · Vj (k )] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ11 υ21 υ31 . . . υk1
υ12 υ22 υ32 . . . υk2
...

...
...
. . .

...
υ1 |A | υ2 |A | υ3 |A | . . . υk |A |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

γ =

∑ |A |
i=1 var ([υ1i υ2i · · · υki ])

|A| ,γ ∈ [0, 0.25]. (8)

6 AREA LOCALIZATION AND DENSITY CALCULATION

Area localization and density calculation are the core component in DMAD. In this section, we
elaborate on our proposed solutions and demonstrate that although the connectivity information is
coarse-grained for fine-grained localization, it is still feasible to locate users to grid-level locations.
We first separate the floor plan into 60 non-overlapping areas (or grids, denoted as G =

{д1,д2, · · · }) manually. Most of the grids contain one or more shops, and a few of them contain
only common areas. Then, based on users’ Wi-Fi data, we are able to derive their grid locations.
We also have two observations of heuristics that can be utilized to improve the accuracy of area
localization. First, different shops attract different numbers of people. Besides, the visit duration
in various types of shops differs.

6.1 Area Localization

Wi-Fi-based indoor localization has been extensively studied over the past few decades (Musa and
Eriksson 2012; Shen et al. 2016; Bahl and Padmanabhan 2000; Wang et al. 2014). The output of
those systems can be classified into geometric locations (represented in coordinates) and semantic
locations. Our problem belongs to the latter category, and we find two existing methods that can
be used to solve this problem.
The first method is the centroid method (Bulusu et al. 2001), the main idea of which is quite

simple. Given a connectivity vectorVj (i ) = [σ1 σ2 ... σ |A |]
T , the estimated location L̂j (i ) can

be calculated using Equations (9)–(11), where Φ = [
x1 x2 · · · x |A|
y1 y2 · · · y |A|

] is the coordinate vector of all

APs. Based on (x̂ , ŷ), the grid location can be determined with ease. However, this method works
well only if the density of APs is high enough (zeng Wang and Jin 2009); it may work poorly in
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our scenario due to low AP density and multiple floors,

L̂j (i ) =

[
x̂
ŷ

]
=

1

sum
(
Vj (i )

) Φ ·Vj (i ), (9)

x̂ =
1∑ |A |

k=1
σk

|A |∑
t=1

xt · σt , (10)

ŷ =
1∑ |A |

k=1
σk

|A |∑
t=1

yt · σt . (11)

Another method is the fingerprinting method (Bahl and Padmanabhan 2000; Wu et al. 2004;
Youssef and Agrawala 2005; Shen et al. 2016), which consists of a training phase and a testing
phase. The training phase is to construct a fingerprint database that requires a simple site survey
to collect the connectivity information of APs in all grids. In the testing phase, given a measured
connectivity vector, we compare the vector with that of all grids in the database and use the best
match as the estimated user location.
However, the RF signal is vulnerable to environmental disturbances and varies over time, which

degrades the performances of deterministic fingerprinting approaches. Some researchers proposed
a probabilistic fingerprinting method (Youssef and Agrawala 2005), which is based on statistical in-
ference between the reported signal information and stored fingerprints. Specifically, given a mea-
sured connectivity vectorVm , the objective is to find a grid д (д ∈ G) that maximizes the posterior
probability, that is, argmaxд P (д |Vm ). Traditional probabilistic fingerprinting calculates P (G |Vm )

(G is a variable representing all д) using Equation (12),

P (G |Vm ) =
P (Vm |G ) · P (G )

P (Vm )
. (12)

In most cases, previous works regard P (G ) as uniform distribution, that is, P (G ) = 1/|G|. How-
ever, it is not the case in real scenarios. We observe that various shops have different popularities,
and the number of customers they attract thus differs. In a similar way, different grids have differ-
ent attractiveness, and therefore P (G ) should differ from grid to grid and time to time. Here we use
the number of people in shops to model the popularities of each grid and derive a more practical
and accurate estimation of P (G ).
We also notice that the length of visit to different types of shops differs. Therefore, besides the

Wi-Fi signal, we also exploit the visit duration to distinguish different grids. Equation (13) shows
how we calculate the probability of people in all grids, where G is a variable for different grids
in G, T is duration time, andW is the measured Wi-Fi data during the period of T . To calculate
P (G |WT ), we need to know P (G ), P (T |G ), and P (W |G ), which are described in Sections 6.1.1–6.1.3.

P (G |WT ) =
P (WT |G ) · P (G )

P (WT )

=
P (W |G ) · P (T |G ) · P (G )

P (WT )
∝ P (W |G ) · P (T |G ) · P (G ).

(13)

6.1.1 P (G ).. P (G ) is the probability that people appear in a specific grid. As grids are closely
relate to shops, and we use the matrix R = (ni j ) (in Section 4.2.1) to derive the a priori probability.
The probability people appear in grid дj is calculated using Equations (14) and (15). P (sj , ti ) is the
probability that people appear in shop sj during time slot ti . P (дj , ti ) represents the probability
people appear in дj during ti . Sj is a set of shops that are in the range of дj , and Nj represents a
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set of grids that are neighboring to дj . If there are no shops in grid дl , then we use the average
probability from all neighboring grids Nl of дl as alternative,

P (sj , ti ) =
ni j∑ |S |
k=1

nik
, (14)

P (дj , ti ) =
⎧⎪⎪⎨⎪⎪⎩
∑

sk ∈Sj P (sk , ti ), if |Sj | � 0

∑
дl ∈Nj P (дl , ti )/|Nj |, if |Sj | = 0

. (15)

6.1.2 P (T |G ).. P (T |G ) is the probability of how long people will stay in a given grid. Similarly
to using the number of shops to estimate the number of grids, we calculate the distribution (μд
and σ 2

д ) of the duration time for a grid using Equations (16) and (17). S is a set of shops that are in
the range of grid д. If |Sj | = 0, which means there is no shops in дj , then the distribution of such
grids are collected manually,

μд =
1

|S| ·
∑
sk ∈S

μs , if |S| � 0, (16)

σ 2
д =

1

|S|2 ·
∑
sk ∈S

σ 2
s , if |S| � 0. (17)

We also have two methods to find the duration time of a user in different grids. The most direct
way is to exploit traditional area localization methods to map the Wi-Fi data to grid locations
and then based on the locations to derive the duration time. The detailed process is illustrated in
Algorithm 2.
But this method performs poorly, since it relies on existing fingerprinting methods that cannot

achieve adequate accuracy. Also, the two parameters are hard to tune.

ALGORITHM 2: A Sliding Window Approach onMj .

Data: Wi-Fi data of user j,Mj = [Vj (1) · · · Vj (k )]
Result: A set of subsets

Determine the length Tw of the sliding window, a threshold λw ;

for i ∈ ranдe (1,k,Tw ) do
for Vj ∈ [Vi · · · Vi+Tw−1] do

Estimate д̂j based on Vj , using P (G |Vm ) ;

end

Calculate the percentage of д̂j among all estimated д̂;

if the percentage of д̂j ≥ λw then

The grid of all this window is д̂j ;

end

end

Merge the neighboring windows with same grid information as a subset;

Another method is to apply subsequence time series clustering techniques. Subsequence clus-
tering is performed on a single time series to group interesting subsequence time series data in
the same cluster (Chen 2005). There are also several methods to solve the subsequence clustering
problem, like hierarchical clustering, partitioning clustering, density-based clustering, and and so
on. Different methods have different advantages and disadvantages, and a detailed explanation can
be found in Zolhavarieh et al. (2014).
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Here we choose hierarchical clustering, and one of the reasons is its generality, since it does not
require any parameters, such as the number of clusters. The procedure of the algorithm is shown
in Algorithm 3.

ALGORITHM 3: Hierarchical Clustering onMj .

Data: Wi-Fi data of user j,Mj = [Vj (1) · · · Vj (K )]
Result: Clusters, C

Calculate the Euclidean distance matrixMD ofMj ;

while not every Vj (l ) in clusters do

Find two Ci or Vj (l ) with minimum Euclidean distance;

Merge the two Ci or Vj (l ) to produce a new cluster;

UpdateMD by calculating distances between new cluster and other clusters;

end

6.1.3 P (W |G ).. W is a set of connectivity vectors of a devicedp ,W = {Vp (1), . . . ,Vp (K )}, where
K is the size of the cluster. Given a connectivity vector Vp (i ), the probability that it is within дj
can be calculated using Equation (18). Vj is a set of connectivity vectors (also called fingerprints)
collected in дj and Vj (l ) means the lth vector. ‖Vp (i ) − Vj (l )‖/|A| calculates the normalized Eu-
clidean distance between Vp (i ) and the lth fingerprints in grid дj . We use average probability of
all connectivity vectors inW to represent P (W |G ) in Equation (19),

P (Vp (i ) |G = дj ) = 1 − 1

|Vj |

|Vj |∑
l=1

‖Vp (i ) − Vj (l )‖
|A| , (18)

P (W |G = дj ) =
1

k

k∑
i=1

P (Vi |G = дj ). (19)

6.2 Density Calculation

Density calculation is quite simple compared to area localization. Based on the grid information
derived from area localization, for each time slot and each grid, we count the number of people in
that grid as density information (H ), which is represented in Equation (20). ηi j is the number of
people that are within grid дj during time slot ti . ωj (i ) represents the density of дj during ti and
can be calculated using Equation (21). |T | is the number of time slots, and |G| is the number of
grids,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η11 η12 η13 . . . η1 |G |
η21 η22 η23 . . . η2 |G |
...

...
...
. . .

...
η |T |1 η |T |2 η |T |3 . . . η |T | |G |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

ωj (i ) =
ηi j∑ |T |
i=1 ηi j

. (21)

7 DEAD SPOTS ESTIMATION

After area localization, each connectivity vectorVj (i ) is associated with grid information. We sep-
arate all connectivity matrices according to time slot and grid. Then, for each grid and time slot,
there is a set of connectivity matrices. Given this information, a key issue here is how to translate
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those connectivity matrices into the probability of dead spots, which will be introduced in this
section, and how to quantify their severity.

7.1 Translating Connectivity Matrices into Probability of Dead Spots

In Section 3.2, we have proposed Equation (3) to transform a connectivity matrix into probabil-
ity of dead spots PDS (Mj ). However, the procedure just converts one connectivity matrix to the
probability of dead spots. The question then is: How do we handle multiple connectivity matrices?
We believe that devices with larger transmission time are more reliable for estimating dead spots.
In extreme cases, when the transmission time of a device is very short, its coverage ratio could
be highly biased. A reasonable explanation is that larger transmission time corresponds to larger
sampling sizes and thus is more reliable.
Given all connectivity matrices {M1 (i ), . . . ,MK (i )} during time slot ti in grid дj , we calculate

τj (i ) (the probability of dead spots in дj during ti ) using Equations (22) and (23), where T̂t (k ) is the
estimated transmission time ofMk ,

τj (i ) =
K∑
k=1

wk · PDS (Mk ), (22)

wk =
T̂t (k )∑K
p=1 T̂t (p)

. (23)

7.2 Severity of Dead Spots

Different dead spots have different severity, and if the authorities of the facility want to fix some of
them, then theymustwant to start with themost critical ones. Obviously, the higher the probability
of the dead spots, the more severe it is. If the probability of two locations is the same, then what
matters is the number of people. Therefore, the severity of a dead spot is not only related to its
possibility but also closely associated with the number of potential users around that dead spot.
Here we combine the probability of dead spots τj (i ) and human density ωj (i ) to derive severity

of dead spots. β is the significance factor for human density,

λji = β · ωj (i ) + (1 − β ) · τj (i ). (24)

8 EXPERIMENTS AND RESULTS

In this section, we first introduce the experimental setup and then present the evaluation of each
component. Specifically, we carefully study the performance of device classification, area local-
ization, and dead spot estimation. For each of them, we introduce evaluation metrics, baseline
approaches, parameter selection, final results, and further discussions if any.

8.1 Experimental Setup

We carry out experiments in a large shopping mall in Shenzhen with five floors (ground and the
first to fourth floors) and a total area of over 30,000 m2. There are 68 shops and 48 APs in the
mall, and the floor plan and AP deployment of the ground floor is shown in Figure 9. We manually
separate the mall into 60 grids, and most of the grids contain at least one shop, few grids contain
only common areas. The partition on the ground floor is shown in Figure 10. There are a few shops,
like B116 on the floor plan, that are not within the expected coverage areas, so we do not take them
into consideration. During the period of 46 days, we collect |Dw | = 8, 268, 462 Wi-Fi data entries
from 726,920 devices.
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Table 4. Details of the Testing Data

Table 5. Confusion Matrix of Device Classification

Predicted condition

Static Mobile Others

True

condition

Static N11 N12 N13

Mobile N21 N22 N23

Others N31 N32 N33

To evaluate the performances of different components of DMAD, we engage over 20 volun-
teers to collect testing data for a period of 1 week. Below shows the tasks that are conducted by
volunteers. Table 4 lists detailed information of the testing data for different issues.

I Put some smartphones, including both iOS and Android devices, which keep broadcasting
Wi-Fi packets, in some predefined locations, like counter desks and store rooms, for a
whole day.

II Do window shopping as usual without preassigned destinations. Record their visiting his-
tories, including the visited grid, start time, and visit duration.

III Conduct simplified site survey with smartphones. Check if there any dead spots in a spe-
cific grid during a specific time slot.

As for the simplified site survey, it is conducted using smartphones rather than spectrum analyzers.
To detect whether a grid дj has dead spots or not during time slot ti , we ask volunteers to go and
test every feasible points within дi . The granularity of test points is about 4m. Generally, there
are around 25 points in a grid. For each point, volunteers are required to go there and turn on
their Wi-Fi and check the AP list. If the target SSID (“Intown_Free_Wi-Fi”) is not in the list, or the
network cannot be associated, then that test point is a dead spot. Usually, it takes 20∼30s to finish
testing one point.

8.2 Evaluation of Device Classification

Device classification classifies a smartphone as a static device or a mobile device using a decision
tree classifier. Here we study the evaluation metric, discuss the selection of system parameters,
and show the final results.

8.2.1 Evaluation Metric.. Since this is a classification problem, we use precision and recall to
evaluate the performance, where precisioni = Nii/

∑
j Nji , recalli = Nii/

∑
j Ni j , and N is a confu-

sion matrix as explained in Table 5.

8.2.2 Parameter Selection.. In this component, we have three parameters, a threshold of trans-
mission time a for static devices, a threshold of transmission time for mobile devices b, and a
threshold for variance of connectivity matrix c .
The precision and recall of device classification are not sensitive to parameters a and b. But

different values of a and b can affect of the number of static and mobile devices that we can derive
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Fig. 19. Impact of different a
and b on the percentages of
static and mobile devices from
Dw .

Fig. 20. Precision and recall of
static device classification and
mobile device classification.

Fig. 21. Precision and recall
of static device classification
with different c .

Fig. 22. Average number of static and mobile devices of each day in a week.

from Dw . Figure 19 shows the percentages of static and mobile devices under different value of a
and b.
We set a = 2, which means static device should send packets for at least 2 hours. Since if a is too

small, we cannot calculate the change of coverage ratio. When a is too large, we may miss many
static devices.
For mobile devices, we set b = 10. If b is too large, then it may miss a large number of mobile

users. On the contrary, if b is too small, those devices with small transmission time may have a side
effect on DMAD, as their data may be collected from passers-by, which could be highly biased.
For c , we set it to 0.2, which is derived from D

∗
w , since if c is too large, then it cannot restrict the

mobility of static devices, while if c is too small, then it cannot tolerate errors.

8.2.3 Results.. Figure 20 shows the precision and recall of device classification for both static
devices and mobile devices. Also, we study the impact of different c on static devices as illustrated
in Figure 21. The precision slightly reduces when c increase.

The results of device classification over Dw indicate that among 726, 920 devices, the majority
of them (83.1%) are from passers-by of the mall, while 14.98% of them are mobile devices and only
(1.92%) of them are static devices.
Figure 22 shows the average number of static and mobile devices of each day in a week. Interest-

ingly, most the of days, the number of mobile devices is around 10 times larger than that of static
devices. During weekends, both static devices and mobile devices increase, since more people go
shopping in holidays. Also from Figure 23, we can see that during dinner time (12:00 and 18:00)
the number of people peaks.
We also analyze the duration time of non-static devices of each day in a week, and the results

are shown in Figure 24. From the results, we can find that the majority (80%) of people stay in the
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Fig. 23. Average number of people appear in dif-
ferent hours of a day.

Fig. 24. Comparison of CDFs of total duration
time of non-static devices in each day.

shopping mall for less than 1 hour during weekdays, while, during weekends, people stay there
for longer times.

8.3 Evaluation of Area Localization

Area localization is to determine users’ grid locations according to their connectivity information.
We look into evaluation metric and baseline approaches of area localization as well as the per-
formance of grid localization and floor localization. Floor localization is to determine users’ floor
information, which is more coarse-grained than grid information.

8.3.1 Evaluation Metric.. Area localization is essentially a classification problem, where each
grid can be regarded as a class. So we use accuracy = Nc/Nt to measure the performance of floor
localization and area localization. Nc is the number of correctly estimated test cases, while Nt is
the total number of test cases.
To have a comprehensive understanding of different methods, we also evaluate the accuracy =

N k
c /Nt of top-k results for some methods, where N k

c is the number of test cases that the top k
estimated results cover the true results.

8.3.2 Baselines.. The baseline approaches used for area localization are the centroid method
and the fingerprinting method.
The centroid method is denoted as “CEN,” and for this method we need to transform the esti-

mated location L̂ to estimated grid д̂ by returning the grid to which L̂ belongs. It also happens

when L̂ are calculated frommultiple APs from different floors. In this case, we determine the floor

information by using the closest floor that L̂ is close to.
Another baseline series is probabilistic fingerprinting methods. We denote the traditional

method without P (G ) and P (T |G ) as “FIN.” “FIN-G” is a method considering non-uniformed P (G ),
and “FIN-GT” is our proposed method in MDAD that considers both non-uniformed P (G ) (shop
popularity) and P (T |G ) (visit duration).

8.3.3 Results.. The evaluation results of localization are shown in Figure 25 and Figure 26,
which indicate that our proposed approaches (“FIN-G” and “FIN-GT”) outperform the centroid
method and conventional fingerprinting method by over 10%. The potential reasons are that for
the centroid method, it works well when the AP deployment density is high, but the requirement
can hardly be satisfied in real scenarios. Also, for conventional fingerprinting methods, due to
similar fingerprints in different grids and the vulnerability of the wireless signal, coarse-grained
wireless fingerprints alone cannot achieve high localization accuracy.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 1, Article 11. Publication date: August 2017.



DMAD: Data-Driven Measuring of Wi-Fi Access Point Deployment in Urban Spaces 11:25

Fig. 25. Accuracy of floor localization and grid localization
for different methods.

Fig. 26. The impact of different k on the
accuracy.

Fig. 27. Heat map of human density on the ground floor in different time slots. (a) 9:00; (b) 12:00; (c) 18:00.

“FIN-G” and “FIN-GT” utilize a more realistic a priori probability of people appearing in different
grids. Besides, “FIN-GT” exploits an additional feature of visit duration to separate grids with
similar wireless fingerprints.
The human density of the ground floor at different time slots in a day is visualized in Figure 27.

We can see that, at the different times in a day, different grids have varied popularity. For example,
д10 is a supermarket, which has more customers at night than in the mooring. But, compared to
other grids, some grids like д6, which is a common area, have a small group of people all the time.
Generally, we find the following rules from the human density data.

—Grids that are close to entrances or exits are likely to have more people.
—The number of people in grids that contain restaurants peaks at dinner time, that is, 12:00
and 18:00.

8.3.4 Further Discussion.. Since different mobile devices may have different transmitting pow-
ers, DMAD collects the fingerprints in all grids using devices from different manufacturers. Here
we discuss the impact of fingerprints from devices of different manufacturers on the accuracy
of area localization. Figure 28 shows the distribution of collected fingerprints and the number of
devices used to collect fingerprints.
Figure 29 shows the localization accuracy of using different kinds of devices for training and

testing. We can see that using the same kinds of devices for training and testing can achieve better
performance, because different kinds of devices generate different fingerprints. The results are
from part of the grids, as we do not have fingerprints of all three devices in all grids.
Among cases where the same kinds of devices must be used for training and testing, Apple

devices outperform other devices. One of the reasons is that we have only iPhone5s and iPhone6,
and the fingerprints collected from bothmodels are quite similar. For Huawei, we have four models
(Mate2, Mate7, P7, and P8). The differences between fingerprints are larger than that of Apple
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Fig. 28. Distribution of fingerprints and devices
used in collecting fingerprints. We use devices
from threemanufacturers to collect fingerprints
for area localization.

Fig. 29. Confusion matrix of localization
accuracy using different kinds of devices
for training and testing.

devices. This indicates that if we use more devices to collect the fingerprints, then we can achieve
higher localization accuracy. However, collecting so many fingerprints is too time consuming to
implement. So there is a tradeoff between accuracy and simplicity of the system.

8.4 Evaluation of Dead Spot Estimation

Dead spot estimation is to estimate the probability of dead spots at a specific grid during a period of
time. We study the evaluation metric, parameter selection, and the final results of this component.

8.4.1 Evaluation Metric.. Estimation of dead spots is a binary classification problem, so we
use precision, recall , and Fscore to evaluate its performance. precision = tp/(tp + f p), recall =
tp/(tp + f n), and Fscore = 2 · precision · recall/(precision + recall ). tp are cases where dead spots
are predicted as dead spots; tn are cases where there are no dead spots and they are predicted as
no dead spots; f p are cases that are predicted to be dead spots, but there are none; and f n are cases
where there are dead spots but they are predicted as no dead spots.

8.4.2 Parameter Selection.. Wehave two parameters in this component:ψ (n) is a decay function
and β is the significance factor for human density.ψ (n) models the probability of a dead spot when
the location is covered by n APs.
Here we choose an exponential decay functionψ (n) = 1/(2n ), since the best performance of an

exponential decay function is better than that of a linear decay function ψ = 1/(2 ∗ n), as shown
in Figure 33.
We set β = 0.5, which means we regard the human density and the probability of dead spots

as equally important. β has nothing to do with the accuracy of dead spot estimation, it serves
as an importance factor of human density when calculating the severity of a dead spot. If the
administrator thinks the number of potential users should be the focus, then β can be set to a
larger value.
Besides, we also need a threshold e to determine the existence of dead spots if PDS ≥ e . We set

e = 0.3, since the performance peaks under this value.

8.4.3 Results.. The results of dead spot estimation are shown in Figure 30, which demonstrate
that when e = 0.3, DMAD can identify around 70% of dead spots with a precision of over 70%.
Also, Figure 31 shows the CDF of PDS of grids in different floors in all time slots. From the results,
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Fig. 30. Precision, recall, and F-score of dead
spots estimation under different e .

Fig. 31. CDF of PDS of grids from different
floors.

Fig. 32. Heat map of severity of grids on the ground floor in different time slots. (a) 9:00; (b) 12:00; (c) 18:00.

the lower the floor is, the more dead spots it has. One possible explanation is that more people
appear in the lower floors and cause more dead spots.

We also derive the normalized severity λji/max (λji ) of different grids during different time slots.
Figure 32 shows the severity of grids on the ground floor in different time slots. We can find that
some grids, like д3, д9, and д10, are more severe over time, which deserves more attention.

8.4.4 Further Discussion.. Since the number of people on weekends is obviously larger than on
weekdays, here we compare dead spots on weekdays and weekends. First, we calculate average
performance during weekdays and weekends. As shown in Figure 34, the performance during
weekends is slightly lower than that of weekdays.
We also count the number of dead spots during a whole day among all grids, and the average

number forweekdays is 972. Forweekends, it is reported to have 18.8%more dead spots on average.
This result is reasonable, since dead spots are closely related to people, whereby more people will
result in more dead spotd. Interestingly, as illustrated in Figure 35, we find that the distribution
of those additional dead spots obeys a “70-30 rule,” which means that 70% of the additional dead
spots are generated by 30% of the grids.

9 CONCLUSION

In this article, we propose DMAD, a data-driven measuring of Wi-Fi AP deployment to estimate
dead spots and quantify their severity using both Wi-Fi data and shop data.
Based on the collected data, we first classify static devices and mobile devices using a decision-

tree classifier. The most distinguishing feature between them is whether they work early in the
morning.
Then we locate these devices to shop-level locations based on two observations of heuristics.

On the one hand, the duration of visit in different shops differs, for example, people stay longer
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Fig. 33. F-score of linear and
exponential decay functions
under different e .

Fig. 34. Average preci-
sion and recall of week-
days and weekends.

Fig. 35. Pareto chart of addi-
tional dead spots. The sorted
grids are equally separated into
10 groups.

in restaurants than in clothing shops. On the other hand, different shops have different popularity
in attracting customers at different time slots, for example, restaurants attract more people during
lunch time than clothing shops. These two features can be exploited to distinguish locations with
similar wireless fingerprints.
Last, for each location, we estimate the probability of dead spots in different time slots and

derive their severity combining the dead spots probability and human density. Since if a dead spot
appears in a place with a lot of potential users, this dead spot must be more severe.
We carefully study the performance of different components of DMAD using real data collected

from a large shopping mall. The evaluation results demonstrate that DMAD can identify around
70% of dead spots with a precision over 70%.
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