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Abstract—Group gender is essential in understanding social
interaction and group dynamics. With the increasing privacy con-
cerns of studying face-to-face communication in natural settings,
many participants are not open to raw audio recording. Existing
voice-based gender identification methods rely on acoustic char-
acteristics caused by physiological differences and phonetic dif-
ferences. However, these methods might become ineffective with
privacy-sensitive audio for two main reasons. First, compared to
raw audio, privacy-sensitive audio contains significantly fewer
acoustic features. Moreover, natural settings generate various
uncertainties in the audio data. In this paper, we make the first
attempt to identify group gender using privacy-sensitive audio.
Instead of extracting acoustic features from privacy-sensitive
audio, we focus on conversational features including turn-taking
behaviors and interruption patterns. However, conversational be-
haviors are unstable in gender identification as human behaviors
are affected by many factors like emotion and environment. We
utilize ensemble feature selection and a two-stage classification
to improve the effectiveness and robustness of our approach.
Ensemble feature selection could reduce the risk of choosing
an unstable subset of features by aggregating the outputs of
multiple feature selectors. In the first stage, we infer the gender
composition (mixed-gender or same-gender) of a group which
is used as an additional input feature for identifying group
gender in the second stage. The estimated gender composition
significantly improves the performance as it could partially
account for the dynamics in conversational behaviors. According
to the experimental evaluation of 100 people in 273 meetings, the
proposed method outperforms baseline approaches and achieves
an F1-score of 0.77 using linear SVM.

Index Terms—gender detection, group gender identification,
nonlinguistic audio analysis

I. INTRODUCTION

Group gender plays an essential role in understanding social

interaction and group dynamics [1], [2]. It is also the foun-

dation of promising research like gender inequality [3] and

gender difference [4]. With the prevalence of studying spon-

taneous face-to-face communication in natural settings [5]–

[7], it becomes unprecedentedly important to identify group

gender through privacy-sensitive audio data. Because face-to-

face conversation is a dominant and the richest communication

modality available to humans [8], [9]. Such communication

could capture real emotions and represent true information

flow within an organization [10], [11].

Gender identification using privacy-sensitive data is based

on ethical and practical needs. Collecting truly spontaneous

conversation requires recording people in unconstrained and

unpredictable situations, both public and private. There is

little control over who or what might be recorded. Private

content and uninvolved parties could be recorded without their

consent - a scenario that, if raw audio is involved, is always

unethical and sometimes illegal. Therefore, assuming access

to raw audio is impractical for most real-world situations and

impedes collecting truly natural data [10]. An alternative is to

collect privacy-sensitive audio [11]. The microphone signal is

sampled at 700 Hz and generates an average amplitude reading

every 50 milliseconds to ensure raw audio is not recorded nor

can it be reconstructed.

Existing voice-based gender identification methods rely on

distinctive acoustic characteristics caused by physiological

differences (like glottis, vocal tract thickness) and phonetic

differences [12], [13]. Those features are extracted from raw

audio. Various identification systems have been proposed with

different acoustic features and classification models [13]–[17].

The most frequently used features are pitch [14] and first

formant [15] which are related to voice sources and vocal

tract, respectively.

Despite extensive efforts on voice-based methods, exist-

ing solutions might become ineffective with privacy-sensitive

audio for two main reasons. First, compared to raw au-

dio, privacy-sensitive audio is too coarse-grained and it is

extremely hard to extract valuable acoustic features from

it. Moreover, due to natural settings, privacy-sensitive audio

contains various uncertainties like background noises. These

uncertainties pose serious challenges for existing methods.

For example, estimating fundamental frequency with different

levels of noises is difficult [13].

In this paper, we aim to achieve group gender identification

using privacy-sensitive audio (GINA). Instead of extracting

acoustic features from privacy-sensitive audio, we focus on

conversational behaviors. The rationale is that conversational

behaviors could reflect gender difference. Many sociology

studies have reported explicit relationships between gender and

conversational behaviors including turn-taking behaviors and

interruption patterns [18]–[21]. Take the length of speaking

turns as an example, women have shorter speaking turns [22].

Also, men are more likely to interrupt women than the opposite

[23]. Different from previous studies whose data are collected

in laboratories, we conduct extensive experiments using data

collected in natural settings and observe similar patterns. For
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Figure 1: Overview of GINA.

example, we find that the average turn length of women (2.6
seconds) is shorter than that of men (3.2 seconds). Besides,

contrary to most existing findings on interruption, we find that

women interrupt men more often than vice versa.

The vision of GINA, however, entails two significant

challenges when applied to real conditions. 1) Transforming
privacy-sensitive audio into voice activities encounters prob-
lems including low-resolution audio and unexpected dynamics
of spontaneous conversation. On one hand, the low-resolution

audio hinders extracting acoustic features. This makes ex-

isting approaches, like multi-class classification, ineffective.

On the other, spontaneous conversation in natural settings

contains various uncertainties. For example, unpredictable

noise and people movement could affect the robustness of

existing methods. 2) Although conversational behaviors reflect
gender difference to some extent, their instability reduces the
robustness and effectiveness of gender identification. People’s

conversational behaviors are affected by many factors includ-

ing internal factors (like emotions) and external factors (like

gender composition of the meeting [24], [25]). For example,

people behave differently when in mixed-gender and same-

gender groups [24]. This results in unstableness and even

inconsistency of conversational behaviors and thus affects the

performance of gender identification.

To address the first challenge, we propose a correlation-

based multichannel voice activity detection (VAD) algorithm.

Traditional approaches try to separate voice signals from other

people (crosstalk) because crosstalk imposes negative effects

on voice applications. However, we observe that crosstalk

is beneficial as it generates correlation in privacy-sensitive

audio. Based on the observation, we could identify moments

when only one person speaks. Then we extract their speaking

features to detect voice activities adaptively. For the second

challenge, we have made two efforts. To reduce the variance

of the performance, we adopt ensemble feature selection which

reduces the variance of F-score by over 10%. It is often re-

ported that several different feature subsets may yield equally

optimal results, and ensemble feature selection may reduce

the risk of choosing an unstable subset [26], [27]. To improve

the general identification performance, we propose a two-

stage classification method. In the first stage, we predict one

of the external factors (gender composition) as an additional

input feature for gender identification in the second stage.

This approach could improve F-score by over 10% because

gender composition could partially explain the dynamics of

conversational behaviors.

According to our experimental evaluation of 100 people in

273 meetings, with a total length of 438 hours, GINA improves

the performance of baseline approaches by 8.5% on average.

GINA could achieve an F1-score of 0.77 using linear SVM.

The contribution of this paper is summarized as follows.

• We propose a privacy-sensitive modality (conversational

behaviors) for gender identification. The performance is

improved by ensemble feature selection and a two-stage

classification method.

• An adaptive correlation-based multichannel VAD algo-

rithm for privacy-sensitive audio is proposed.

• We analyze group conversation in natural settings and

bring new insights of gender difference in interruption.

The remainder of this paper is organized as follows. An

overview is introduced in Section II. We elaborate on design

details of the proposed system in Section III. Section IV

illustrates the experimental evaluation of the data collected

in real-life scenarios. Related works are introduced in Section

V, and we conclude this work in the last section.

II. SYSTEM OVERVIEW

In this section, we give an overview of GINA. As illustrated

in Figure 1, the proposed system consists of four main com-

ponents, including Privacy-Sensitive Data Collection, Voice

Activity Detection, Conversational Feature Extraction, and

Group Gender Identification.

GINA is motivated by the ethical and legal issues arising

from studying spontaneous face-to-face conversation. To this

end, we exploit electronic badges [11] to collect privacy-

sensitive audio data in Privacy-Sensitive Data Collection.

We briefly introduce this components as it is not our main

contribution. More details could be found in [11]. After

collecting the badge data, it is processed with the devised

multichannel VAD algorithm in Voice Activity Detection. This

step mainly transforms privacy-sensitive audio data into voice

activities or conversational behaviors. In Conversational Fea-
ture Extraction, we extract two kinds of features, namely turn-

taking features and interruption features, for group gender

identification. These features could be further divided into

individual level, meeting level and group level. We also

demonstrate the effectiveness analysis of those features and

new insights of gender difference in interruption patterns.

Lastly, we introduce the proposed the two-stage classification

method in Group Gender Identification. It is related to two

classifiers: composition classifier and gender classifier. In

the composition classifier, we predict the latent information
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of gender composition as an additional group level feature.

Because people’s conversational behaviors vary in groups with

different gender composition (mixed gender and same gender).

Then we apply ensemble feature selection to three different

levels of features to select stable feature subsets. Finally, we

exploit the gender classifier to identify group gender based on

the selected features.

III. SYSTEM DESIGN

A. Privacy-Sensitive Data Collection

As indicated in [10], it is a large problem to assume access

to raw audio recordings in collecting spontaneous face-to-face

conversational data. Therefore, we adopt a platform that uses

a privacy-sensitive data collection style [11]. The platform

exploits electronic badges [28] which embed multiple sensors

like RFID, Bluetooth, and microphone to monitor face-to-face

interaction of badge wearers.

The badge samples the microphone signal at 700 Hz and

creates an average amplitude reading every 50 milliseconds.

The averaged amplitude generally reflects the fluctuation of

badger wears’ volume. In one second, every badge generates

20 volume data points. We call the timespan of one second as

a frame. The collected badge data is privacy-sensitive as no

raw audio is recorded and the audio cannot be re-generated

from the stored samples.

B. Voice Activity Detection

Multichannel voice activity detection (VAD) is to detect

whether a user in a channel speaks or not. Privacy-sensitive

though the badge data is, it brings new challenges in VAD

due to the low resolution of the badge data and unpredictable

dynamics of spontaneous conversation in natural settings.

One type of traditional VAD is based on multi-class clas-

sification. Related features are extracted from raw audio first

and then classification models like Hidden Markov Model [29]

or Gaussian Mixture Model [30] are utilized to detect voice

activities. However, most of the features could not be extracted

from the privacy-sensitive audio data. Besides, it might be

difficult to adapt to scenarios without training data.

Another type of methods regards VAD as blind source

separation and solves it using independent component analysis

(ICA) [31]. However, ICA assumes stationary mixing of the

signal, i.e., requires participants to remain fixed at locations.

This constraint is hard to satisfy in natural settings as partic-

ipants would walk around and show some demos during the

meeting. Apart from this, it is also difficult to find thresholds

to separate speech and noise on the de-mixed signals, which

are not resilient to different environments.

Traditional approaches try to separate voice signals from

other people (crosstalk) because crosstalk imposes negative

effects on voice applications. However, we find that crosstalk is

beneficial as it generates correlation in privacy-sensitive audio.

When only one badge wearer speaks, other people’s badge

signals are highly correlated with the speaker’s badge signal

due to crosstalk. Voice signal from different people could be

regarded as independent random variables. Without the effect

Algorithm 1: Correlation-based multichannel VAD.
Input : P: a set of participants in a meeting;

Fb: a directory of badge data for all participants;
Output: Fr : a directory of voice activities for all participants

1 Initialize empty directories: Fg,Fa,Fr ;

2 F← ⋃
l Fb(l)(frame); // F is a set of all frames in the meeting

/* Step 1: Detect genuine speak information */
3 foreach frame k ∈ F do
4 p← argmax

(
mean

(
Si(k)

))
, i, p ∈ P;

5 if ∀j ∈ P, corr(p, j) > θ then
6 Add frame k to Fg(j);

/* Step 2: Detect all speak information */
7 C ← get-clf-rules(Fg); // Find classification rule for each person
8 foreach frame k ∈ F do
9 foreach p ∈ P do

10 if mean(Sp) ≥ C(p, ‘mean’) or std(Sp) ≥ C(p, ‘std’) then
11 Add frame k to Fa(j);

/* Step 3: Detect real speak information */
12 Fr(p) = Fg(j) ∪ Fa(j);
13 foreach frame k ∈ ⋃

l Fa(l) do
14 if ∀i, j(j �= i) ∈ P, corr

(
Si(k),Sj(k)

)
> θ then

15 p← argmin
(

mean
(
Si(k)

)
, mean

(
Sj(k)

))
, p ∈ P ;

16 Remove frame k from Fr(p);

17 Function get-clf-rules (Fg);
Input : Fg : A directory of frames when only one person speaks
Output: C A directory of classification rules for each person

18 foreach p ∈ P do
19 Dt(p, ‘mean’)← distribution of mean volume in a frame when p talks;
20 Ds(p, ‘mean’)← distribution of mean volume when p remains silent;
21 Dt(p, ‘std’),Ds(p, ‘std’)← distributions of standard deviation of volume;
22 C(p, ‘mean’)← intersection of Dt(p, ‘mean’) and Ds(p, ‘mean’)

C(p, ‘std’)← intersection of Dt(p, ‘std’) and Ds(p, ‘std’)

23 return C

of crosstalk, the correlation of voice signals from two speakers

should obey a zero mean normal distribution. Given a set of

participants P within a meeting, the badge data Si of wearer

i in a frame could be represented as:

Si = Vi +
∑
j∈P

φij ·Vj + ρd + ρe, j �= i

Crosstalk
Local 

speech Noise

where Vi is the voice signal from the wearer in the same

frame, φij is a attenuation factor of voice over the distance

between wear i and j, ρd and ρe are device and environ-

mental noise respectively. The badge signal is a mixture of

local speech (voice from the badge wearer), crosstalk (voice

from other participants), and noise (device and environmental

noise). When only participant i speaks during frame k, the

badge signal of Si(k) and Sj(k) could be reduced to Equation

1. It is clear that approximated Si(k) and approximated Sj(k)
are linearly correlated.{

Si(k) = Vi(k) + ρ ≈ Vi(k)

Sj(k) = φij ·Vi(k) + ρ ≈ φij ·Vi(k)
(1)

Based on the observation, we propose a correlation-based

multichannel VAD algorithm as shown in Algorithm 11. The

algorithm takes the badge data Fb from a whole meeting as

input and derives voice activities Fr for all participants. It

1The code: https://github.com/HumanDynamics/openbadge-analysis
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Figure 2: An example result of multichannel VAD on a

meeting with four participants between 18:12:50 and 18:13:20.

consists of three main steps. We extract a set of all frames

by the union of each participant’s frames (line 2). The first

step (line 3 ∼ 6) is to find a subset of frames Fg that only

one wearer speaks or only one local speech exists (denote

as genuine speak information). The selection criteria are two-

fold. First, the person p must has the highest mean volume to

make sure his badge signal is not caused by crosstalk. Second,

other people’s badge signal are all highly correlated with the

person p which ensures p is the only speaker. Parameter θ is a

threshold of correlation to detect crosstalk. We further discuss

this parameter in Experimental Evaluation.

The second step (line 7 ∼ 11) detects all frames that

a person is likely to speak by applying classification rules

learned from Fg (all speak information). Given Fg , we could

identify frames of two situations for a person: talking and

silence. Through comparison of both situations, we could

identify cutoff points of the statistical features (mean and

variance) of the volume.

Since the detected voice activities could be caused by

crosstalk, the last step (line 12 ∼ 16) is to remove such false

activities (real speak information). The voice signal of two

speakers are expected to be random independent variables,

so do their badge data. For pairwise wearers, if their badge

signals are strongly correlated (correlation ≥ θ), we remove

the frame for the wearer who has the weaker volume as it

might be caused by crosstalk.

An example result of multichannel VAD is illustrated in

Figure 2. The first four sub-figures reveal the badge data col-

lected from four participants. It is clear that participants’ badge

signals in the box exceed their cutoff point of mean volume.

However, these false activities are just caused by crosstalk

from the blue participant. The last sub-figure illustrates the

Speaker A
(interruptee)

Speaker B
(interrupter)

Turn length

Pause

ITPITP

Speaking activity Type I interruptionITP Type II interruptionITP

Gap since last speak

Percentage of turn occurrence

Figure 3: Illustration of conversational features. Underlined

bold text represent turn-taking features, the other bold text

represent interruption features.

detected voice activities for all participants.

C. Conversational Feature Extraction

After Voice Activity Detection, privacy-sensitive audio data

is transformed into voice activities. From the detected voice

activities, we define and extract two kinds of conversational

features, turn-taking features and interruption features, which

are shown in Figure 3.

1) Turn-taking features: Turn-taking features include turn

length (how long a person’s turn lasts), the percentage of turn

occurrence (how frequently a person speaks), pause between

consecutive turns, and gap since last speak as indicated in the

literature [18].

Through analysis of the data collected from MIT Sloan

Fellows program (See Section IV), we find that some of these

features might not be effective. Figure 4(a) ∼ (d) depict the

probability density functions (PDFs) of four different features.

As shown in Figure 4(a), females have shorter turn length than

males. According to Figure 4(b), females have larger turn-

taking variations. Besides, there seem no significant gender

difference in gap since last speak and turn pauses as indicated

by Figure 4(c) and (d).

To compare the effectiveness of those turn-taking features

in gender identification, we exploit Receiver Operating Char-

acteristic (ROC) curve, which is usually used to illustrate the

diagnostic ability of a binary classifier system as its discrim-

ination threshold varies. The curve is created by plotting the

true positive rate (TPR) against the false positive rate (FPR)

at various threshold settings. As shown in Figure 4(e), it is

clear that the effectiveness of turn length is much better than

the others.

2) Interruption features: According to literature, inter-

ruption consists of cooperative and disruptive interruption

which could reflect gender difference [23], [32]. Cooperative

interruption is usually words of agreement and support or

anticipation of how other people’ sentences and thoughts

would end. Disruptive interruption, on the other hand, is

described as having a tendency to switch the topic or take

the floor. The detailed description of interruption and gender

difference is stated in Related Work (Section V-B).

However, cooperative and disruptive interruption might be

too complex and difficult to detect without context informa-

tion. In Figure 3, we define two roles in interruption. An inter-

rupter is a person who starts his turn before others’ turns finish

while an interruptee is a person that is interrupted. Besides,
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(a) (b) (c) (d) (e)

Figure 4: Effectiveness analysis of turn-taking features. (a) ∼ (d) PDFs of different features; (e) ROC curves of features.

(a) (b) (c)

FM is greater than MF 
with a p-value 2.7e-16

FM: female interrupt male

Figure 5: Analysis of who interrupts who with PDFs of four-class interruption and results of Mann-Whitney U test for different

types of interruption. (a) Type I interruption; (b) Type II interruption; (c) Type I and Type II interruption.

Figure 6: Analysis of inters under three types of interruption. Figure 7: Analysis of intees under three types of interruption.

we also define two types of interruption. Type I interruption is

more likely to be a mixture of unsuccessful interruption and

cooperative interruption, while Type II interruption is mostly

successful interruption.

After analyzing the collected data, we find that generally

women interrupt men more frequently which is contrary to

the most existing findings in sociology studies [19], [23]. The

analysis of interruption consists of three parts, who interrupts

who, interrupter, and interruptee.
Who interrupts who: There are four classes of interruption,

namely FM (female interrupt male), MF, MM, and FF, in a

mixed-gender group meeting. Given the fact that the numbers

of both genders are different, we calculate interruption ratios

as shown in the matrix.

FMFF

MF MM

IFM
IF·NM

IFM
IF·NM

IFF
IF·NF

IFF
IF·NF

IMF
IM·NF

IMF
IM·NF

IMM
IM·NM

IMM
IM·NM

Interruption ratios

=
IFF

IF

NF

: Number of FF interruption 

: Number interruption started by females

: Number of females in group

The normalized interruption ratio is a normalization of each

ratio over their total sum. As shown in Figure 5, we plot PDFs

of four classes of interruption in three different situations. To

show the relation of pairwise classes of interruption, we resort

to Mann-Whitney U test which is a nonparametric test. The

null hypothesis of the test is equally likely that a randomly

selected value from one sample will be less than or greater than

a randomly selected value from a second sample. We derive

interesting results that in different situations, the relations of

four-class interruption are also different. For all interruption,

the relationship of four-class interruption is FM > MF > MM

> FF. For Type I interruption, the relationship mostly holds

except there is no significant difference between MF and MM.

The PDFs of Type II interruption indicate that there is no

significant difference in Type II interruption between female

interrupt male and male interrupt female.

Interrupter: The role of gender as interrupters is analyzed

in Figure 6. We show PDFs of male and female interrupters

under three different types of interruption. The normalized

interrupter ratio is simply calculated using the percentage of

male or female interrupter over all interrupters. We could find

that females are more likely to initiate interruptions especially

Type I interruption. This is reasonable since a significant part

of Type I interruption is cooperative interruption which is

favored by women.

Interruptee: Similar to the analysis of interrupters, we also

analyze interruptees. The results in Figure 7 indicate males

are far more likely to be interrupted in different types of
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Figure 8: Feature importance of all the features in a Random Forest consisting of 100 trees.
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Figure 9: An illustration of ensemble feature selection and the

two-stage classification in an iteration of cross-validation.

interruption.

Turn-taking behaviors and interruption patterns could both

reflect gender difference. Therefore we devise three levels

of features based on turn-taking and interruption. Figure 8

includes different levels of features we use. Features start

with an ‘M’ is a meeting level feature, ‘G’ indicates group

level features, while the rest are individual level features.

For example, feature itper len I means the average length of

Type I interruption when a participant acts as an interrupter.

Feature itpee occr means the occurrence of interruption when

a participant acts as an interruptee. Feature itp-diff is the

difference between itper occr and itpee occr.

We also show the importance of those features in Figure 8.

A Random Forest of 100 trees is used to evaluate their impor-

tance on an artificial classification task. Each bar represents

the importance of a certain feature, along with its inter-tree

variability. We could notice two things. First, it is nontrivial

to select a subset of features that are very informative. Second,

almost all the features have a large deviation in different trees.

This also reflects the instability of conversational behaviors.

D. Group Gender Identification

The last step is to predict group gender based on the

extracted features. Specifically, it consists of the following 2
steps: ensemble feature selection and two-stage classification

which are illustrated in Figure 9. First of all, in an iteration of

k-fold cross-validation, we choose (k−1) folds as training data

and the rest fold as test data. The input data (X) consists of

three counterparts, individual level feature, meeting level fea-

ture, and group level features: X = {Xidl,Xmeet,Xgroup}.

The label (Y) consists of two parts, composition and gender:

Y = {Ycomp,Ygender}. Each fold contains the data from one

or more groups. Second, we further separate the training data

into n folds for training ensemble feature selector FE . The

selector FE is applied to select a subset of features for both

training (X′train) and test (X′test) data respectively. Lastly, the

training data is used to train two classifiers (composition clas-

sifier and gender classifier). During the testing, the estimated

composition (Ỹcomp
test ) and selected input data (X′test) are fed

into the gender classifier to infer genders (Ỹgender
test ).

1) Ensemble feature selection: As introduced in Introduc-

tion, although conversational behaviors could reflect gender

difference, such behaviors are unstable sometimes inconsis-

tent. The potential reasons for those changes rely on the

complex nature of human dynamics. Many factors could affect

people’s conversational behaviors including internal factors

like emotions and external factors like gender composition of

a meeting [24].

To improve the performance of using conversational behav-

iors, feature selection is essential. The objectives of feature

selection are usually three-fold: improving the prediction per-

formance, providing faster and more cost-effective predictors,

and facilitating a better understanding of the underlying pro-

cess. Furthermore, to handle the instability of conversational

behaviors, we adopt ensemble feature selection (EFS). The

idea of ensemble feature selection resembles ensemble learn-

ing. It is often reported that several different feature subsets

may yield equally optimal results in large feature or small

sample size domains. EFS could reduce the risk of choosing

an unstable subset [33]. Besides, the representational power of

a particular feature selector might constrain its search space

such that optimal subsets cannot be reached. With EFS this

problem could be alleviated by aggregating the outputs of

several feature selectors [33].

Among several ways of ensemble, we adopt homogeneous

ensemble [27]. It is not only easy to implement, but also more

fair to evaluate its effectiveness with the standalone feature
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Figure 10: Stacked histogram of number of meetings and meeting duration for all study

groups.

Figure 11: Joint plot of per-

centage of airtime and percent-

age of turns.

selector. Homogeneous ensemble applies the same feature

selection method to different training data. As illustrated in

Figure 9, we separate the training data into n folds and apply

n feature selectors of the ensemble E = {F1,F2, · · · ,Fn} to

each (n − 1) folds of training data. Each selector Fi outputs

a weight vector (fi) of all features with f ji representing the

weight of the j-th feature. To derive a general weight vector

fE from all weight vectors, we use an average as shown in

Equation 2.

f jE =
1

n
·

n∑
i=1

f ji (2)

Lastly, a subset of features is selected with the mean feature

weight of fE as a threshold.

2) Two-stage classification: We find gender composition,

one of the external factors, could be inferred accurately

using meeting level features. Therefore, we propose a two-

stage classification method as shown in Figure 9. In the first

stage, we infer the latent information of gender composition

and treat it as an additional input feature for group gender

identification in the second stage. In both stages, we choose

popular classification models like linear SVM and Random

Forest.

In the first stage, we leverage meeting level features of each

group to predict its gender composition. Each participant in the

meeting has two roles, interrupting others (as interrupter) and

being interrupted by others (as interruptee). The variance of

the difference between interrupter and interruptee in a meeting

(M var itp-diff) is a good indicator of gender composition.

Same-gendered groups tend to have smaller variance. Because

interruption is reported more evenly distributed in same-

gendered groups [24]. In the second stage, we combine the

selected features and the inferred gender composition as input

to predict gender for the whole group.

IV. EXPERIMENTAL EVALUATION

A. Settings

1) Setup: The privacy-sensitive audio data is collected from

spontaneous face-to-face meetings of MIT Sloan Fellows class

of 2016/17 for about 4 weeks. 100 out of the 110 students

participated in the study, including 31 females and 69 males.

Approach

Three levels (no composition)

Three levels + composition

Feature selection 

Ensemble feature selection

Single feature selection

T-E Ensemble feature selection

TC-S Three levels + composition

Feature space (in levels)

GINA

A Evaluate group level feature B Evaluate ensemble feature selection

A

B

Figure 12: Illustration of baseline approaches.

They came from 35 different countries and had an average age

of 37.41±4.45 years (mean standard deviation) as well as an

average work experience of 13.78±4.24 years. All participants

gave written informed consent about their participation in the

study.

Great importance is attached to group collaboration in the

MIT Sloan Fellows program. Therefore, Sloan Fellows are

assigned to study groups of four or five students before the

program starts. The guideline of the group assignment ensures

if it is a mixed gender group there are at least 2 students of

the same gender. There are 21 study groups including 5 same-

gender groups and 15 mixed-gender groups. These groups are

consistent over the whole program, and the students within

these groups regularly meet to study and work on the courses

together. They are free in how often and how long they meet.

2) Dataset: During the experiment, we collect 273 effective

meetings with a total length of 438.25 hours from 21 groups.

We show the number of meetings and their duration for each

group in Figure 10. On average, each group had 13 meetings,

but still, some groups had no more than 5 meetings. Besides,

over half of those meetings last for more than 100 minutes.

Through the analysis of detect voice activities, we find that

individual’s percentage of airtime and percentage of turns are

highly correlated with a Pearson correlation over 0.9 as shown

in Figure 11. This finding indicates that airtime and turn might

be redundant features, use both of them could have a negative

impact as specific models are affected in different ways and

to varying extents.

B. Evaluation

1) Baseline approaches: To evaluate the effectiveness of

ensemble feature selection and gender composition, we pro-
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pose two other approaches as baselines. The detailed config-

uration of the approaches are illustrated in Figure 12.

Feature selection techniques can be divided into three cat-

egories based on how they interact with the classifier. Filter

methods directly operate on the dataset by providing a feature

weighting, ranking or subset as output. The advantage of being

fast and independent of the classification model but at the

cost of inferior results. Wrapper methods perform a search in

the space of feature subsets, guided by the outcome of the

model (like classification performance on cross-validation of

the training set). Their results are reported better than filter

methods, but at the cost of an increased computational cost.

Lastly, embedded methods use internal information of the

classification model to perform feature selection (e.g., use of

the weight vector in support vector machines). They often pro-

vide a good trade-off between performance and computational

cost [34]. Therefore, a decision tree based embedded feature

selection method is used.

2) Evaluation metrics: Gender identification is essentially

a binary classification problem. We use metrics based on

precision, recall, and F1-score to evaluate the performance

of the proposed system. When the target label is male (i.e.,

X is set to male), precision, recall and F1-score for male is

calculated as follows.

⎧⎪⎨
⎪⎩

precision(p) = tp
tp+fp

recall(r) = tp
tp+fn

F1-score = 2 · p·r
p+r

  

  

Pr
ed
ic
ti
on

 Truth

tp

tn

fp

fn

X Target label
{female, male}

X̃
Non-target

label

X

X

X̃

X̃

Consider the imbalance in numbers of females and males,

we use a weighted version of those metrics. The weighted F1-

score is calculated with Equation 3 where SF is the support of

female or the number of true female instances and F1F is the

F1-score for females. The weighted precision and weighted

recall are derived in a similar way.

F1 =
SF

SF + SM
· F1F +

SM

SF + SM
· F1M (3)

3) Parameter selection: Parameter θ in Voice Activity

Detection (Section III-B) is a threshold for detecting crosstalk.

Different values of θ lead to different genuine speak informa-

tion (Fg , in Section III-B).

Generally, large θ could derive better accuracy because the

frames selected as genuine speak (Fg) becomes more strict.

However, it will also lead to large deviation as the number of

frames in Fg decreases. On the contrary, small θ will result

in more false detections of genuine speak and thus reduce the

accuracy but the number of frames are more than adequate.

Given two distributions Dt(p, ‘mean’) (distribution of mean

volume when p talks) and Ds(p, ‘mean’) (p remains silent),

the larger their distance measured in KL divergence the better.

As shown in Figure 13, with the increase of θ, the mean

distance also increases with while the number of genuine speak

frames decreases. This is a trade-off between accuracy and

deviation, we experimentally set θ = 0.5 in our scenario.

Figure 13: The impact of different θ.

Figure 14: Performance of gender composition detection with

different models.

4) Performance of gender composition detection: We

evaluate the performance of gender composition detection with

10-fold cross-validation. Because the number of groups is

small, we repeat the cross-validation process for 5 times and

show the average performance in Figure 14. Naive bayes and

linear SVM outperform other models and achieve a weighted

F1-score around 0.9. This indicates the meeting level features

we extract have the potential to capture gender composition ef-

fectively. Because same-gendered groups and mixed-gendered

groups have distinct meeting behaviors. Same-gendered groups

have evenly distributed interruption patterns. The gap between

a person being an interrupter and an interruptee are close

to each other in the same-gendered groups. While in mixed-

gendered groups, women tend to have large gap while men are

likely to have small gaps. This is reflected in the analysis on

who interrupts who. Therefore the variance of gaps is larger

in the mixed-gendered groups.

5) Performance of group gender identification: We eval-

uate the performance of baseline approaches on selected clas-

sification models including Nearest Neighbor, Linear SVM,

Random Forest, Neural Network and AdaBoost. The parameter

settings for all models are consistent with different baselines.

As shown in Figure 15, for most of the models, the order

of performance is GINA > TC-S > T-E. On average, GINA

outperforms T-E and TC-S by 11.62% and 5.37% in F1-

score respectively except on Random Forest. This indicates

that the inferred gender composition and ensemble feature

selection is effective in improving the performance of gender

identification.

Not only the performance, but ensemble feature selec-

tion could also reduce the variance of performance. Without

Random Forest, on average GINA reduces the variance of

Precision and Recall by 17.28% and 7.15%. As explained,

ensemble feature selection could reduce the risk of choosing
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(a) (b) (c)

Figure 15: Comparison of performance using different classification models. (a) Precision; (b) Recall; (c) F1-score.

an unstable subset of features by aggregating the outputs of

several feature selectors.
As shown in Figure 8, the feature of gender composition is

the second most important feature. On average, this additional

feature could improve the Precision and Recall by 15.99%
and 9.15%. Gender composition could partially account for

the instability of conversational behaviors and thus increase

the interpretability of conversational features.

V. RELATED WORK

A. Gender detection
Gender identification has been studied for decades in differ-

ent areas. Various modalities like vision, online behaviors and

voice have been utilized for this purpose. Different application

scenarios have varying preferences of modalities. For example,

vision-based methods are the first choice in systems where

user cooperation is not required, like surveillance systems. In

speech recognition, voice-based approaches are preferred.
Vision-based approaches exploit information from the face

and whole body (either from a still image or gait sequence)

to recognize human gender. It is usually based on appearance

differences like face and body, and behavior differences like

gait. More details on the utilized techniques and challenging

issues could be found in the survey [35].
Vision, voice as well as handwriting are traditional modali-

ties for gender identification. With the development of digital

advertising, users’ online behaviors like video viewing behav-

iors [36] and web browsing behaviors [37] are used for gender

identification recently. This type of approaches is based on

preference differences and behaviors differences.
Among all different modalities, voice is the most related

to conversational behaviors. Voice-based methods rely on

discriminative features extracted from human voices. The

intuition is that different genders have different acoustic char-

acteristics due to physiological differences (like glottis, vocal

tract thickness) [13] and phonetic differences [12]. Various

identification systems with different classification models and

different types of features have been reported in the literature

[13]–[17]. The most frequently used features are pitch [14] and

first formant [15], which are closely related to voice sources

and vocal tract, respectively. Generally, the pitch and the

formant frequencies of females are higher than that of males.

Moreover, as pointed out in [13], other traditional acoustic

features like linear predictive coefficients (LPC), linear pre-

dictive cepstral coefficients (LPCC), Mel-frequency cepstral

coefficients (MFCC), perceptual linear predictive coefficients

(PLP), and relative spectral PLP coefficients (RASTA-PLP)

are used in the literature for gender identification.

The majority of aforementioned acoustic features depend on

accurate estimation of the fundamental frequency which itself

is a challenging task. Therefore, Alhussein et. al. propose a

new single-value feature in the form of area under the modified

voice contour (MVC) in [13]. The proposed feature is inde-

pendent of fundamental frequency and is proved promising

compared to existing features.

Besides, there is a trend of combining multiple features

for gender identification in recent work [16], [38]. For ex-

ample, Abouelenien et. al. extract features from five different

modalities, including acoustic, linguistic, visual, thermal, and

physiological, to identify gender [16].

B. Gender differences and interruption

The occurrence of overlap and interruption have been found

closely related to gender in many sociology studies [19], [23].

The classic study by Zimmerman and West found that in

same-sex conversations, interruptions were rare and appeared

to be evenly distributed between speakers, whereas in cross-

sex conversations, almost all the interruptions were initiated by

male speakers [19]. A well-adopted explanation is males tend

to show dominance by interrupting females. Many other works

have found similarly that men interrupt more than women.

However, a few studies have different findings. For exam-

ple, Hannah et. al. found no significant difference between

interruption and gender [20]. Murray and Covelli even had

a contrary discovery that women interrupt more than men

[21]. One potential reason for the diverse findings is multiple

conceptual and operational definitions of interruptions used

in the literature [23]. Interruption is a complex interactional

phenomenon with rich meanings, diverse functions, and var-

ious structural features [23]. There exist two different types

of interruption, cooperative and disruptive, in literature [23],

[32]. Cooperative interruption is usually words of agreement

and support or anticipation of how other people’ sentences

and thoughts would end. This type of interruption is reported

characteristic of women’s style of speech [18] that might

have a potentially positive influence on the interpersonal

relationship between speakers. Disruptive interruption, on the

other hand, is described as tending to switch the topic or

take the floor. This type of interruption is attributed to men’s
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style that might have the potential to bear negatively on the

interpersonal relationship between speakers.

VI. CONCLUSION

In this paper, we propose a data mining system (GINA)

to identify group gender through privacy-sensitive audio data.

Our contribution are three-fold. First, we propose a privacy-

sensitive modality for gender identification. The effectiveness

and robustness are improved by ensemble feature selection

and a two-stage classification. Second, an adaptive correlation-

based multichannel VAD algorithm for privacy-sensitive audio

is proposed. Last, we bring new insights of gender difference

in interruption through analysis of group conversation in

natural settings. According to experimental evaluation, GINA

could effectively identify group gender with an F1-score 0.77
using Linear SVM.
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