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User profiling refers to inferring people’s attributes of interest (AoIs) like gender and occupation, which

enables various applications ranging from personalized services to collective analyses. Massive nonlinguis-

tic audio data brings a novel opportunity for user profiling due to the prevalence of studying spontaneous

face-to-face communication. Nonlinguistic audio is coarse-grained audio data without linguistic content. It

is collected due to privacy concerns in private situations like doctor-patient dialogues. The opportunity facil-

itates optimized organizational management and personalized healthcare, especially for chronic diseases. In

this article, we are the first to build a user profiling system to infer gender and personality based on nonlin-

guistic audio. Instead of linguistic or acoustic features that are unable to extract, we focus on conversational

features that could reflect AoIs. We firstly develop an adaptive voice activity detection algorithm that could

address individual differences in voice and false-positive voice activities caused by people nearby. Secondly,

we propose a gender-assisted multi-task learning method to combat dynamics in human behavior by integrat-

ing gender differences and the correlation of personality traits. According to the experimental evaluation of

100 people in 273 meetings, we achieved 0.759 and 0.652 in F1-score for gender identification and personality

recognition, respectively.
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1 INTRODUCTION

User profiling refers to the process of inferring users’ attributes of interest (AoIs) like gender,
occupation, and personality. Since AoIs are indispensable in various applications ranging from
personalized services [8, 21, 30] to collective analyses [31, 44, 50], user profiling is thus increasingly
valued in both academia and industry.

The accumulation of nonlinguistic audio data results from the prevalence of studying sponta-
neous face-to-face communication in naturalistic environments [6, 19], which brings a novel op-
portunity for user profiling. Nonlinguistic audio is a low-sampling audio signal processed with a
mean filter so that the linguistic content cannot be recognized [44]. Collecting nonlinguistic audio
is mainly due to privacy concerns since truly spontaneous conversation happens in unconstrained
and unpredictable situations where private content and uninvolved parties could be recorded with-
out consent [20]. If raw audio is involved, it is unethical and sometimes illegal like in doctor-patient
dialogues and business meetings.
Effective user profiling with nonlinguistic audio is beneficial to stakeholders in different scenar-

ios. In healthcare, patients could get personalized treatments based on the inferred personalities
[15], especially for chronic diseases [47].While for organization administrators, the estimated AoIs
provide additional contextual information for organizational design and management [31]. For ex-
ample, understanding what kind of person is more likely to influence group productivity could
facilitate better administration [54].

Although different data modalities have been studied for user profiling, there is little research on
nonlinguistic data, to the best of our knowledge. Existing audio processing methods mainly focus
on linguistic and acoustic features extracted from raw audio [2, 5]. The way people choose words
(linguistic features) and how they speak (acoustic features) could reflect their AoIs like gender and
personality [46]. However, these methods are inapplicable to nonlinguistic audio for two reasons.
First, compared to raw audio, nonlinguistic audio is too coarse-grained to extract valuable acoustic
or linguistic features. Second, as collected in naturalistic settings, nonlinguistic audio contains
various uncertainties, including background noises and unexpected voices. These uncertainties
pose serious challenges for existing methods, e.g., estimating the fundamental frequency under
different levels of noises [25, 33, 53].

In this article, we propose a user profiling system to infer gender and personality based on non-
linguistic audio data. Instead of acoustic or linguistic features that are unable to extract from non-
linguistic audio data, we focus on conversational features including turn-taking and interruption
behaviors. Although existing sociology and psychology studies have qualitative findings on the
relationship between conversational behaviors, gender, and personality, there are rarely any quan-
titative studies. For example, men have longer speaking turns [38] and are more likely to interrupt
women than been interrupted by women [57]. Besides, particular turn-taking styles are related to
personality. Extroverts, for example, tend to talk more, louder, faster, and have fewer hesitations
[5]. Also, men’s and women’s personalities appear to differ in several aspects. For example, women
scored notably higher than men in Neuroticism [18]. Different from previous studies whose data
are mainly collected in laboratories, we quantify their correlations using extensive experiments
from real study groups in natural settings.
Our vision, however, entails two grand challenges when applied to real conditions. (1) How to

accurately detect individual voice activities from nonlinguistic audio. First, variations in people’s
vocal features and ways of collecting the audio data pose serious challenges to accurate voice

activity detection (VAD). Second, due to physical proximity, the nonlinguistic audio may come
from other participants, which leads to false-positive detections. (2) How to fill in the gap between
dynamic conversational behaviors and stable AoIs. Both gender and personalities are consistent
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over time [49], but conversational behaviors are dynamic and could be affected by many factors
like emotions and environments. For example, people behave differently in conversations with
different gender compositions [56]. Certian personalities may also have different interpretations
under different social contexts [34].

To address the first challenge, we devise an adaptive Bayesian VAD algorithm based on the ob-
servation when only one person speaks, his audio signals are highly correlated with others’ signals.
We first exploit the correlation patterns to identify a fraction of audio data when only one person
speaks while the others remain silent. According to the speaking and silent data of an individ-
ual, we could learn his vocal features and detect all the voice activities from that individual adap-
tively. Then we use the correlation again and rectify false-positive detections caused by crosstalk.
For the second challenge, we have made the following three efforts. First, we manage to capture
the dynamics of conversational behaviors by inferring multi-level features including individual-
level, meeting-level, and group-level. Meeting-level features could illustrate intra-group interac-
tions while group-level features could represent contextual factors like social context. Second, we
find that whether the group is of the same gender is effective in predicting the gender information
of each member. Third, due to gender differences in personalities, we propose a gender-assisted
multi-task learning method to predict gender as extra input for personality recognition. Jointly
learning the correlated personality traits could reduce the risk of overfitting and lead to better
generalization performance.
According to the experimental evaluation of 100 people in 273 meetings, with a total length of

438 hours, the proposed method achieves average F1-scores of 0.759 and 0.652 for gender infer-
ence and personality recognition, respectively. Contrary to most existing findings on interruption
[57, 58], we find that women interrupt men more often than vice versa. We also observe gender
differences in both personality traits and conversational behaviors. For instance, male extroverts
mostly meet the literature description that they tend to have more turn occurrence, longer turn du-
ration, and larger variances of turn length [5]. However, female extroverts are observed positively
correlated with turn occurrence only.
To summarize, the contributions of this article are threefold.

—We are the first to build a user profiling system from nonlinguistic audio which could effec-
tively infer gender and personality by incorporating multi-level features into the proposed
gender-assisted multi-task learning model.

—The proposed Bayesian algorithm is effective in detecting voice activities from nonlinguistic
audio.

—We analyzed real group conversations in natural settings and provided evidence of gender
difference in conversational behaviors and personality traits.

The rest of this article is organized as follows. In Section 2, the concepts of personality and
its assessment are explained. Then we elaborate on the design details of the proposed system
in Section 3. Section 4 illustrates the experimental evaluation of the data collected in real-life
scenarios. Related works are introduced in Section 5, and we conclude this work in the last section.

2 PERSONALITY AND THE GROUND TRUTH

“Personality is the latent construct that accounts for individuals’ characteristic patterns of thought,
emotion, and behavior together with the psychological mechanisms-hidden or not-behind those
patterns” [28].
Personality recognition refers to recognizing the true personality levels of given individuals

rather than the personality impressions others attribute to them [49]. Personality recognition con-
sists of two components: personality representation and personality measurement. To represent
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Fig. 1. Five personality traits (OCEAN). (a) Detailed explanations. (b) An example OCEAN data of an
individual.

personality, the mostly adopted psychological model is the Five-Factor Model (aka Big Five) which
describes five personality traits with five dimensions including Openness, Conscientiousness,

Extraversion, Agreeableness, and Neuroticism (OCEAN) [49]. To measure personality, there
are various ways like surveys, questionnaires, and social media [49]. Audio is especially popular
due to its convenient accessibility in different scenarios [45, 55]. To represent personality, numer-
ous models have been proposed in the literature [26]. Despite the wide variety of terms at dis-
position, personality descriptors tend to group into five major clusters [28]. Therefore, the most
commonly adopted personality model in both psychology and computer science is the Big Five
[46, 49]. Big Five has five broad dimensions that “appear to provide a set of highly replicable dimen-
sions that parsimoniously and comprehensively describe most phenotypic individual differences”
[41]. Figure 1(a) gives detailed explanations of the five traits (OCEAN). Each trait ranges from
1 to 7 and is further separated into three different levels as illustrated in the example of Figure 1(b).
For instance, values of 1 and 7 in Extraversion represent extremely introverted and extroverted,
respectively.
The main instruments for scoring Big Five are questionnaires where a person is assessed in

terms of observable behaviors and characteristics. Several inventories have been developed for
measuring the five dimensions, like Revised NEO Personality Inventory (NEO-PI-R) [10], the
Eysenck Personality Questionnaire (EPQ) [11], and the Big Five Inventory (BFI) [17]. Accu-
rate as these questionnaires are, they mostly contain dozens of questions. It is extremely difficult
to ask a large number of people to fill in long tedious surveys which might discourage them from
participating in the event. Under this situation, brief measurements of the Big-Five personality are
proposed like 10-item BFI (BFI-10) [36] and the Ten-Item Personality Inventory (TIPI) [13].

To collect the ground truth, we adopt TIPI as published analysis suggested that the TIPI “achieves
slightly better validity than the other measures” after comparing several brief measures [4, 12]. A
limitation of TIPI is that it is not adaptable to capturing the finer, narrow-bandwidth personality
traits [4]. Therefore, we use three different levels (low, mid, high) to represent each trait as shown
in Figure 1(b). One of our focuses in this work is to investigate the possibility of recognizing
personality levels with the coarse-grained nonlinguistic audio.

3 SYSTEM DESIGN

In this section, we elaborate on the design details of the proposed user profiling system. It com-
prises three main components as illustrated in Figure 2. In the first component, we focus on what
is nonlinguistic audio and how to detect voice activities from them. Secondly, we extract two kinds
of conversational features (turn-taking behaviors and interruption patterns) in multiple levels for
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Fig. 2. An overview of the proposed user profiling system.

profiling AoIs. In the last component, we first use a two-stage classification model for gender de-
tection followed by a gender-assisted multi-task learning model for personality recognition.

3.1 Voice Activity Detection

As explained, nonlinguistic audio is generated from spontaneous face-to-face conversation in nat-
uralistic environments. Wearable devices like Open badge [19] and “sociometer” [31] are usually
used for this purpose. Every participant of a meeting wears a badge powered by a button battery to
collect the nonlinguistic audio. The microphone in the badge samples voice signals at 700 Hz and
averages amplitude readings every 50 milliseconds. It generates 20 data samples in a frame (the
time span of 1 second). The averaged amplitude readings generally reflect the fluctuation of voice
volumes of badge wears. The advantage of nonlinguistic audio is not only privacy-preserving but
also long battery lives which ensure an adequate recording capacity.
Voice activity detection (VAD) is to detect whether a participant speaks or not given the

nonlinguistic audio of all participants of a meeting. It is not a simple binary problem where any
nonzero audio signal could be regarded as voice activities. The main difficulties are twofold as
explained in the Introduction. First, different levels of background noises, differentways of wearing
the badge, and different natures of people’s voices like the level of sound lead to varied forms of
input signals. This variation poses a serious challenge to accurate VAD. Second, due to physical
proximity, the recorded voice may not only come from the badge wearer himself (local speech)
but also other nearby participants (crosstalk), which results in false-positive detections of voice
activities.
Conventional ways [25, 33, 53] attempt to separate an individual’s voice signals from others’

voices because crosstalk imposes negative impacts on voice applications. More detailed informa-
tion on traditional VADmethods could be found in Related Works (Section 5). However, according
to our analysis, we observe an important phenomenon that when only one badge wearer speaks,
his input audio signal is positively correlated with other peoples’ badge signals due to crosstalk.
This observation could be understood as follows. Given a set of people P in a meeting, the badge
signal Si of participant i consists of three parts:

where Vi is the audio signal from participant i , ϕi j ∈ (0, 1) is an attenuation factor of audio signal
over the distance between participant i and j, and μd and μe are device and environmental noises,
respectively. When only participant i speaks during frame k , the badge signal of Ski and S

k
j could

be reduced to Equation (1), which reveals an obvious linear correlation and the average value of
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ALGORITHM 1: Bayesian voice activity detection

Input :P: a set of participants of a meeting

F: a set of their nonlinguistic audio frames

Output :Voice activities of all participants

/* Step 1: calculate probabilities of different cases */

1 foreach frame k ∈ F do

2 i ← argmax
(
mean(Skp )

)
,p ∈ P ; // i is the loudest

// cor(.): Pearson Correlation

3 Pki, j (C) ← cor
(
S
k
i , S

k
j

)
, i � j ; // crosstalk

4 Pki (L) ← 1
|P |−1

∑
j ∈P Pki, j (C), i � j ; // local speech

5 Pkj (L̄) ← Pki (L) · Pki, j (C), j � i ; // remain silent

6 Pkj (L|C) ←
Pkj (C |L) ·Pkj (L)

Pki, j (C)
≈ 1/|T| ·∑t ∈T P tj,i (C) · (1 − Pkj (L̄))/Pki, j (C), j � i,T ⊂ F

7 end

/* Step 2: detect voice activities */

8 foreach frame k ∈ F do

9 i ← argmax
(
mean(Skp )

)
,p ∈ P;

10 foreach p ∈ P do

11 A
k
p ← 0 ; // silent by default

12 if p == i then
// compare(x, y ) ← 1 if x > y , otherwise 0

13 A
k
p ← compare(Pkp (L), Pkp (L̄)) ;

14 else

15 A
k
p ← compare(Pkp (L|C), Pkp (L̄)) ;

16 end

17 end

18 end

S
k
j is smaller than that of Ski .

⎧⎪⎨⎪⎩
S
k
i = V

k
i + μ ≈ V

k
i

S
k
j = ϕi j · Vk

i + μ ≈ ϕi j · Vk
i .

(1)

Based on the observation, we propose a Bayesian VAD algorithm. The main idea is that the
correlation patterns within people’s audio signals could help to identify a fraction of frames when
only one person is likely to speak and others are likely to remain silent. Then based on the speaking
and silent frames of a given individual, we could learn his vocal features including mean value and
standard deviation and detect his voice activities in all frames. Lastly, we use the correlation again
and rectify false activities caused by crosstalk.
Detailed steps are illustrated in Algorithm 1 which consists of two steps. The first step calculates

the probability of the following four cases where L denotes local speech and C denotes crosstalk.

—Pi (L): probability that participant i talks.
—Pj (L̄): probability that participant j remains silent.
—Pi, j (C): probability that i’s voice appears in j’s badge signal.
—Pj (L|C): probability that j also talks when others talk.
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Fig. 3. An example result of Bayesian VAD of a meeting with four participants between 18:12:20 and 18:12:50.

For any frame, we find the loudest speaker (participant i) first as s/he is more likely to cause
crosstalk (line 2). Then we calculate the probability of crosstalk from i to j using Pearson Corre-
lation Coefficient. The larger the correlation, the higher probability that j’s signals are caused by
i’s crosstalk (line 3). Also, we define the probability of i’s local speech as an average of the proba-
bilities of his crosstalk to others. This means if other participants all have high correlations with
i’s signals, i is more likely to speak at that frame (line 4). On the contrary, the probabilities of oth-
ers remaining silent are directly related to the probability of local speech of the loudest speaker i
and their probability of crosstalk from i (line 5). Lastly, Pj (L|C) represents the probability of local
speech of j under the impact of crosstalk from i (line 6). Specifically, we use the average correlation
of Pj,i (C) when j is the loudest speaker to approximate Pj (L|C). The second step detects voice
activities in all frames of the meeting. If the target person p is the loudest speaker, we compare the
distributions of Pkp (L) and Pkp (L̄) since the impact of crosstalk could be ignored (line 13). If the
probability of local speech is larger, then p talks during frame k . Otherwise, we need to consider
crosstalk and compare Pkp (L|C) and Pkp (L̄) (line 15). The complexity of the algorithm is linearly

associated with the number of frames (the duration of a meeting), the size of a frame (fixed in 1
second in our setting), and the number of participants of a meeting.
Compared to other approaches, the advantages of the Bayesian VAD are threefold. First, the algo-

rithm can adaptively learn the vocal features specific to given individuals. Second, it could identify
situations when voice activity is caused by crosstalk. Last but not least, the Bayesianmethod avoids
threshold setting tasks which are difficult in many cases. Figure 3 shows an example result of the
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Fig. 4. Illustration of conversational features. Italic bold texts represent turn-taking features; the other bold
texts represent interruption features.

Fig. 5. ROC curves of different turn-taking features in gender identification.

proposed Bayesian VAD. The first four sub-figures reveal the badge data of four participants. It
is clear that participants’ badge signals within the box are likely to speak. However, these false
activities are just caused by the crosstalk of the blue guy. As illustrated in the last sub-figure, we
could see the proposed algorithm rectifies these false detections and detects voice activities for all
participants effectively.

3.2 Conversational Feature Extraction

Based on the detected voice activities, conversational features are then extracted in this component.
We define two kinds of conversational features or indicators, namely, turn-taking behaviors and
interruption patterns.

Turn-taking. As illustrated in Figure 4, turn-taking features contain turn length (how long
a person’s turn lasts, denoted as turn-len), the percentage of turn occurrence (how frequently a
person speaks, denoted as turn-occr), pause between any consecutive turns, and the gap since the
participant last speaks [37]. In addition, we also take the variance of turn length (var_trun-len)
into consideration.
Through analysis of the data collected from the MIT Sloan Fellows program (see Section 4), we

find that the average turn length of women (2.6 seconds) is shorter than that of men (3.2 seconds).
In addition, only turn length and its variance are informative in identifying gender as shown in
Figure 5. To measure the effectiveness of turn-taking features in gender identification, we exploit
the Receiver Operating Characteristic (ROC) curve which is usually used to illustrate the di-
agnostic ability of a binary classifier as its discrimination threshold varies. The curve is created by
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Fig. 6. Correlation of personality traits and conversational features (partial). (a) All participants; (b) Males
only; (c) Females only. ∗,p < 0.05; ∗∗,p < 0.001.

plotting the true-positive rate (TPR) against the false-positive rate (FPR) at various threshold
settings. Obviously, the turn-length-related features are more effective than others in identifying
gender.
Batrinca et al. discussed a “particular speaking style” that “they (extrovert people) talk more,

louder, faster and have fewer hesitations” [5]. “Talk more” herein could be captured by turn-taking
indicators like more turn occurrence and longer turn length. In addition, turn length is also used
for recognizing personality [39]. Figure 6 quantifies part of the correlation of turn-taking indica-
tors with different personality traits. To derive the results, we tried several correlation coefficients
including Pearson, Kendall, and Spearman. As there barely exist significant differences, we use
the Pearson Correlation Coefficient as an example. For Figure 6(a), it is obvious that Extraversion
(E) are correlated with most indicators since E is defined as active and talkative. For example, ex-
troverts tend to have more turn occurrence (ρE, turn-occr = 0.37), longer turn duration (ρ = 0.29),
larger variances of turn length (ρ = 0.3), and shorter gaps since last talk (ρ = −0.29). These re-
sults are generally consistent with Batrinca’s findings [5]. Moreover, there is a negative correlation
(ρ = −0.21) between Agreeableness (A) and turn-occr. Higher values of A indicate generousness
and carefulness and thus might lead to smaller willing to take turns to speak. Lastly, Conscientious-
ness (C) negatively correlates with pause, which means higher values of C correspond to shorter
pauses. People scoring high in C are described as efficient and organized. Usually, they could plan
themselves in better ways and thus lead to shorter hesitations in a conversation.
Comparing (a), (b), and (c) of Figure 6, we find that different genders reveal distinct correlation

patterns. For example, female extroverts have a stronger positive correlation in turn occurrence
than men. However, there is no significant correlation between turn duration or gaps, which is
different from that of men. In addition, some correlation, like the correlation between C and pause,
only exists among a certain gender. It indicates that even for the same personality trait it might
have different interpretability for different genders.

Interruption. We define two roles of interruption as shown in Figure 4. An interrupter (itper)
is a person who starts his or her turn before others’ turns finish while an interruptee (itpee) is a
person that is interrupted. According to literature, interruption is classified as cooperative and dis-
ruptive interruption [48, 57]. Cooperative interruption is mostly words of agreement and support
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Fig. 7. Analysis of different types of interruption. (a) All interruption; (b) Type I interruption; (c) Type II
interruption.

or anticipation of how other people’s sentences and thoughts would end. Disruptive interruption,
on the other hand, is having a tendency to take the floor or switch the topic. However, cooperative
interruption and disruptive interruption are too complex and difficult to detect without conversa-
tional context. Therefore, to capture the latent difference, we devise two types of interruption as
an alternative. Type I interruption could be regarded as a mixture of unsuccessful disruptive inter-
ruption and cooperative interruption, while the majority of Type II interruption is the successful
disruptive interruption. The main difference between them is that interrupters of Type II managed
to take the floor.
The majority of interruption indicators could be expressed as {role} × {len, occr, ratio} × {type}.

For example, itper_len_I means the average length of Type I interruption when a participant acts
as an interrupter. Indicator itpee_occr means the occurrence of interruption when a participant is
interrupted. Indicator itp-diff represents the difference between itper_occr and itpee_occr.
After the analysis of the collected data, we notice that women interrupt men more frequently

than vice versa, which is contrary to most existing findings in sociology studies [57, 58]. Notably,
this finding is subject to a group of people with certain backgrounds. It might be unsuitable to
generalize the conclusion without further study. There are four classes of interruption, namely,
FM (female interrupt male), MF, MM, and FF, in a mixed-gender group meeting.

Given the fact that the numbers of both genders are different, we calculate interruption ratios
as shown in the matrix. The normalized interruption ratio is a normalization of each ratio over
their total sum. To show the relation of pairwise classes of interruption, we resort to the Mann-
Whitney U test, which is a nonparametric test. The null hypothesis of the test is equally likely that
a randomly selected value from one sample will be less than or greater than a randomly selected
value from a second sample. After analyzing probability density functions of different classes of
interruption with Mann-Whitney U test, we derive an interesting finding: the relations between
four-class interruption are also different as illustrated in Figure 7. For all interruption as shown
in Figure 7(a), the relationship of four-class interruption is FM > MF > MM > FF. For Type I
interruption in Figure 7(b), the relationship mostly holds except there is no significant difference
between MF and MM. The PDFs of Type II interruption as illustrated in Figure 7(c) indicate that
there is no significant difference between FM and MF.
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Fig. 8. Illustration of the proposed two-stage gender classification and gender-assisted MTL for personality
recognition.

We also show the correlation of interruption indicators with personality traits in Figure 6. Sim-
ilar to turn-taking indicators, E has the most correlation and different genders reveal different
correlation patterns. From Figure 6(a), we could find that extroverts are more likely to have inter-
ruption especially being interrupted. Furthermore, the correlation between itper_occr_II (ρ = 0.34)
is higher than that of itper_occr_I (ρ = 0.25). This is understandable since to have more turns ex-
troverts have to interrupt other people more frequently, especially via Type II interruption. Mean-
while, the more turns extroverts take, the higher probability they get interrupted by other partici-
pants. This could be one of the potential reasons for the high positive correlation of itpee_occr_I
and itpee_occr_II. We also observe the sparse correlation of other traits. For instance, Openness
(O) has a positive correlation with itper_len_II (ρ = 0.21). The trait O is depicted as curious, which
might develop more interests in others’ opinions to have a more thorough discussion, as a result
of which might derive a longer Type II interruption.

Multi-Level Features. According to previous results, not only turn-taking and interruption in-
dicators are important; we also found that gender is an important factor in recognizing personality
traits. This finding is validated in a recent work [2].
As explained in the Introduction, an individual’s conversational behaviors could be affected by

emotional and environmental factors. For example, people behave differently in groups with dif-
ferent gender compositions. Interruption is more evenly distributed in same-gendered groups [29].
Current indicators remain at the individual-level, which makes it difficult to predict stable person-
ality traits effectively. Therefore, we devise additional group-level indicators, including group size
(G_size) and group gender composition (G_comp), to partially explain the dynamics of an individ-
ual’s conversational behaviors. We also calculate the variances of some individual-level features
as meeting-level features (features begin with “M” in Figure 6) including turn length and the oc-
currence of both types of interruption. These meeting-level indicators are intended to illustrate
intra-group interactions and eventually capture behavior dynamics.

3.3 Inferring Attributes of Interest

In this component, we propose a gender identification model and use the inferred gender as an
additional input for personality recognition as shown in Figure 8. First, we estimate the gender
composition of the group (same-gender or cross-gender) and then incorporate this information
in gender identification. Second, based on the inferred gender information, we develop a gender-
assistedMulti-Task Learning (MTL) approach taking both personality trait correlation and gen-
der differences into consideration.

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 17. Publication date: August 2021.
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Fig. 9. Feature importance in gender identification (derived from a Random Forest consisting of 100 trees).

Two-Stage Gender Identification. We observe that conversational features are closely re-
lated to gender, which is the foundation of gender identification. In addition, we also find gender
composition is helpful in identifying gender information for the whole group. Therefore, we pro-
pose a two-stage classification method. The main idea is to infer the latent information of gender
composition and treat it as an additional input feature for gender identification.
In the first stage, we usemeeting-level indicators of each group to predict its gender composition.

Each participant in the group meeting has two roles, interrupter and interruptee. We notice the
variance of the difference between interrupter and interruptee in a meeting (M_var_itp-diff) is a
good indicator of gender composition. A group with the same gender is prone to have smaller
variance as interruption is more evenly distributed in same-gender groups [29]. In the second
stage, we combine the selected features and the inferred gender composition as input to predict
gender for each participant of the group. In both stages, we choose popular classification models
like linear SVM and Random Forest.
We also show the importance of the features in Figure 9. A Random Forest of 100 trees is used

to evaluate their importance on the task. Each bar represents the importance of a certain feature,
along with its inter-tree variability. The result indicates that gender composition (G_comp) is one
of the most important features for identifying gender.

Gender-Assisted MTL Personality Recognition. Figure 6 discloses certain correlations
among some personality traits. This motivates us to learn the five traits simultaneously with
MTL. Jointly learning multiple tasks could improve a model by introducing an inductive bias that
prompts the model to prefer some hypotheses over others [40]. For example, �1 regularization is
a common form of inductive bias which leads to a preference for sparse solutions. In MTL, the in-
ductive bias is provided by the auxiliary tasks. With the inductive bias, models prefer hypotheses
that explain multiple tasks, leading to a better generalization.
Comparing (b) and (c) of Figure 6, we notice that the correlation patterns have obvious differ-

ences. These inherent differences (aka gender differences) naturally exist [18], which are insightful
in understanding human societies. For example, the significant positive correlation between N and
O and the significant negative correlation between E and N are merely detected among women.
In addition, men’s conversational behaviors are mostly correlated with E, which is intuitively un-
derstandable since E is described as active and talkative. However, this intuition does not work
for women. Therefore, we propose a gender-assisted MTL approach as illustrated in Figure 8. Gen-
erally speaking, we combine the gender-related information and conversational features using a
hard parameter sharing MTL to incorporate both trait correlation and gender differences. It works
by sharing the hidden layers between all tasks while keeping several task-specific output layers.
The more tasks we learn jointly, the less is the chance of overfitting on the original task.
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ALGORITHM 2: Joint learning process of multiple tasks

Input :Dm , 1 ≤ m ≤ 5: Datasets of 5 tasks

T : the maximum iteration; α : learning rate

Output :Model fm , 1 ≤ m ≤ 5

1 foreach iteration t ∈ [0,T ] do
2 foreach taskm ∈ [1, 5] do
3 Bm ← split Dm into batches

4 end

5 end

6 B̄ = Randomise(∪5m=1Bm )

7 foreach batch b ∈ B̄ do

8 calculate loss L (θ ) over batch b
9 θt ← θt−1 − α · ∇θL (θ )

10 end

There areM = 5 correlated tasks. Dm is the dataset for them-th task with Nm samples:

Dm =
{
x (m,n),y (m,n)

}Nm

n=1
, (2)

where x and y represent the training data and ground truth, respectively. Suppose fm (x ;θ ) is the
model for them-th task; multi-task learning aims to minimize the linearly joint objective function:

L (θ ) =
M∑

m=1

Nm∑

n=1

wmLm ( fm ((x (m,n) ;θ ),y (m,n) )), (3)

where Lm (·) is the cross-entropy loss function of the m-th task, wm is the weight of the m-th
task, and θ are the parameters including both shared and private layers. The weights are assigned
according to the levels of importance or difficulty. Mostly, all tasks have the same weight, namely,
wm = 1.

The learning process consists of two steps: joint training of multiple tasks and fine-tuning of
every single task. For each iteration, a random taskwas chosenwith gradient descent algorithms to
update parameters as illustrated in Algorithm 2. Based on the parameters derived from multi-task
learning, fine-tuning of every single task leads to better performances.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate and discuss the performance of the proposed user profiling system.
Experiment Settings include the setup of experiments, the collected dataset, baseline approaches,
and evaluation metrics. Evaluation Results consist of the performance of voice activity detection,
gender identification, and personality recognition. The effectiveness of the extracted multi-level
features and the proposed gender-assisted multi-task learning model are also evaluated.

4.1 Experiment Settings

Setup. We collected the nonlinguistic audio data from spontaneous face-to-face meetings of
MIT Sloan Fellows class of 2016/17 for 4 weeks. 100 out of the 110 students enrolled in the study,
including 31 females and 69 males. They come from 35 different countries with an average age of
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Fig. 10. Stacked histogram of number of meetings and meeting duration of all groups.

37.41 ± 4.45 years (mean ± standard deviation) and an average work experience of 13.78 ± 4.24
years. All participants gave written informed consent of their participation in the study.
As group collaboration is explicitly valued in the program, students are assigned to study groups

of four or five students before the program starts. There are 21 study groups with five same-gender
groups and 15mixed-gender groups. During thewhole program, all groups remain unchanged, and
students meet regularly to work on the courses together. There are no requirements on how often
and how long they should meet.

Dataset. After the study, we collected 273 effective meetings from 21 groups with a total length
of 438.25 hours. On average, each group had 13 meetings, but still, some groups had around 5
meetings as illustrated in Figure 10. Over half of those meetings last for more than 100 minutes.
We also collected nonlinguistic audio and video recordings from four meetings with a total length
of 1.1 hours. Those meetings are held in scenarios with different levels of background noises and
different participants. Based on the video recordings, we manually annotate the voice activities of
each participant to evaluate the performance of the proposed Bayesian VAD.
As introduced in Section 2, we exploit the TIPI [13] to get the ground truth of students’ per-

sonalities. TIPI is a brief measure of the Big-Five personality traits (see Introduction). It contains
two items for each of the five personality traits. Each item is rated on a seven-point scale rang-
ing from 1 (disagree strongly) to 7 (agree strongly). Although TIPI is considered to be inferior to
longer measures of Big-Five, it has been shown to be an adequate measure when brevity has higher
priority [46]. As it is extremely difficult to collect such data from a large number of people and
long tedious surveys would discourage volunteers from participating in the event. Considering
this, TIPI is often a good tradeoff [46]. We further separate each score into three different levels:
Low: 1–3, Mid: 3.5–5, and High: 5.5–7. Figure 11 demonstrates the distributions of five traits for
both genders. We could notice that some traits (like C, N, and O) are biased. In addition, different
genders have different distributions. For example, women have higher Openness than men.

BaselineApproaches. Asmentioned, to the best of our knowledge, there are no existingworks
exactly doing user profiling with nonlinguistic audio. Therefore, we use baseline approaches to val-
idate our technical contributions which are threefold. The first contribution is the Bayesian voice
activity detection algorithm which is parameter-free and could detect voice activities adaptively.
The second contribution is the devised multi-level features. Compared to using only individual-
level features, multi-level features could capture intra-group interaction and model contextual
factors leading to more effective performance. The third contribution relies on the proposed
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Fig. 11. Distributions of ground truth OCEAN data.

gender-assisted MTLmodel for personality recognition. Due to the existence of gender differences
in conversational behaviors and personality, data from the same gender are more cohesive for
learning.
For the first contribution, we use a threshold method used in the literature [20] as a baseline. It

works in a straightforward manner as depicted in Equation (4). If the mean value of signals from
user i within frame k is larger than δ , then a voice activity of i is detected.

A
k
i =

⎧⎪⎨⎪⎩
1 if mean(Ski ) > δ

0 otherwise.
(4)

To validate the last two contributions and to demonstrate the effectiveness of gender identifica-
tion and personality recognition, we have devised various baseline approaches. Figure 12 shows
the detailed configurations in terms of target AoI, feature space, and learning models.
Automatic personality recognition (APR) could be solved with existing multi-label clas-

sification techniques, including Binary Relevance, Classifier Chains, and Label Powerset. These
techniques work by combining classic classification models like K-Nearest Neighbor. Binary Rel-
evance (BR) is the most straightforward technique, which treats each label or task as a separate
multi-class classification problem. For example, BR K-Nearest Neighbor (BR_KNN) solves APR by
applying KNN to each task separately. In Classifier Chain (CC), the first classifier is trained just
on the input data and then each next classifier is trained on the input data and all the other previous
classifiers in the chain. For Label Powerset (LP), the problem is transformed into a multi-class
problem with one classifier trained on all unique label combinations.
We could verify the effectiveness of multi-level features through the comparison of methods

using the individual-level features andmulti-level features in both gender identification (GI vs. GM;
BR_idl vs. BR) and personality recognition (GAMTL_idl vs. GAMTL). To evaluate the proposed
gender-assisted MTL approach, we also compare the performance of different methods based on
the same input features (BR vs. GAMTL vs. MTL vs. NN).

Evaluation Metrics. Gender identification, personality recognition, and voice activity detec-
tion are classification problems in essence. Therefore, we use precision, recall, and F1-score to
evaluate their performance.
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Fig. 12. The detailed configurations of baseline approaches.

Fig. 13. Performance of Bayesian VAD (BVAD) and threshold VAD (TVAD). “TVAD@5” means δ = 5.

Considering the imbalance in numbers of different classes, we use a weighted version of those
metrics. The weighted F1-score is calculated with Equation (5) where SH is the number of true
“high” instances and F1H is the F1-score for the class “high.” The weighted versions of precision
and recall are derived in a similar way.

F1 =
SH · F1H

SH + SM + SL
+

SM · F1M
SH + SM + SL

+
SL · F1L

SH + SM + SL
. (5)

Parameter Selection. Although there are no parameters in the proposed system, we have pa-
rameters for baseline approaches including the threshold δ which will be discussed later. For pa-
rameters of a certain model in different baselines like the number of neighbors in KNN, they share
the same default settings as specified in scikit-learn [32].

4.2 Evaluation Results

Given the limited size of data samples, all the experimental results are derived from 10-fold
cross-validation.

Performance of Voice Activity Detection. Figure 13 illustrates the performance of thresh-
old VAD (TVAD) and Bayesian VAD (BVAD). The proposed BVAD significantly outperforms
TVAD by at least 33.4% and achieves an F1-score of 0.783. Both precision and recall of BVAD out-
perform that of TVAD owing to the capacity to capture individual vocal features and differentiate
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Fig. 14. Performance of gender composition detection (G_comp) and gender identification with different
features.

crosstalk. When the threshold is small, crosstalk and noises could be recognized as voice activities
resulting in false-positive detections. The detected voice activity could be caused by crosstalk if
there are participants nearby with relatively louder voices due to the fact people have varied vocal
features including loudness. Therefore, the precision generally increases with the threshold, while
large thresholds will neglect voice activities from participants with relatively lower voices. As
shown in Figure 13, TVAD@40 has poor recall due to a large number of false-negative detections.

Performance of Gender Identification. We evaluate the performance of gender composition
(G_comp) detection and gender identification on selected classificationmodels including KNN, Lin-
ear SVM, Random Forest, and AdaBoost. As mentioned in parameter selection, all the parameters
used are default settings in scikit-learn. The results are illustrated in Figure 14. For gender compo-
sition detection, as the number of groups is small, we repeat the 10-fold cross-validation process
five times. It is clear that linear SVM outperforms other models and achieves an F1-score over 0.9.
As explained, same-gender groups have evenly distributed interruption patterns. In such groups,
the difference between a person being an interrupter and an interruptee is small.
We choose Linear SVM as the composition classifier and regard the inferred gender composition

as group-level features for gender identification. As shown in Figure 14, except Random Forest, all
models using multi-level features (GM) outperform models with individual-level features (GI). On
average, GM outperforms GI by 7.7% in F1-score. Gender composition could partially address the
instability of conversational behaviors and thus increase the interpretability of conversational fea-
tures. As explained, human behaviors could be readily affected.Withmeeting-level and group-level
features capturing intra-group interaction and external factors, we could explain the dynamics
of conversational behaviors to a certain extent. The best performance is achieved on AdaBoost
with an F1-score of 0.759. Therefore, we choose AdaBoost as gender classifier for personality
recognition.

Performance of Personality Recognition. Table 1 summarizes the recognition performance
of four approaches in five personality traits. For all traits, the proposed gender-assistedMTLmodel
with multi-level features outperforms other approaches. From high to low, the average F1-score of
five traits are as follows: GAMTL (0.652) > MTL (0.620) > GAMTL_idl (0.600) > NN (0.571).
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Table 1. Performance of Five Personality Traits

Openness (O) Conscientiousness (C) Extraversion (E) Agreeableness (A) Neuroticism (N)
Method\Trait

P R F1 P R F1 P R F1 P R F1 P R F1

NN 0.793 0.573 0.665 0.600 0.639 0.619 0.634 0.492 0.554 0.533 0.487 0.509 0.537 0.486 0.510
MTL 0.854 0.622 0.720 0.655 0.661 0.658 0.660 0.558 0.605 0.585 0.579 0.582 0.577 0.502 0.537
GAMTL_idl 0.724 0.695 0.709 0.595 0.701 0.644 0.574 0.588 0.581 0.577 0.500 0.536 0.680 0.426 0.524
GAMTL 0.828 0.706 0.762 0.682 0.659 0.670 0.608 0.604 0.606 0.663 0.639 0.651 0.709 0.475 0.569

Bold text represents the best performance among four methods on a certain trait. P: Precision, R: Recall, F1: F1-Score.

Fig. 15. Comparison of baseline approaches with and without additional levels of features.

The performance gains of GAMTL over GAMTL_idl range between 4.3% and 21.5%, which
demonstrate the effectiveness of multi-level features. As explained, individual-level features could
hardly reflect the intra-group interaction and social contexts, like the gender composition of the
group, are also important in recognizing personality traits. Also, the average F1-score of GAMTL
outperforms MTL and NN by 8.7% and 14.2%, respectively. It reveals the proposed gender-assisted
structure is effective in improving recognition performance. The improvements are owing to the
appropriate manipulations of gender differences in personality and the correlation between differ-
ent traits.

Effectiveness of Multi-Level Features. The effectiveness of multi-level features is evaluated
on selected classifiers: AdaBoost, KNN, Linear SVM, Random Forest, and Neural Network (Multi-
layer Perceptron). The parameter settings for all models are consistent with different baselines. For
example, KNN classifier uses the same parameter k = 3 for BR, CC, and so forth. The results are
derived from repeated (five times) 10-fold cross-validation to ensure authenticity.
As clearly shown in Figure 15, most approaches using multi-level features outperform meth-

ods with single individual-level features. More specifically, multi-level features could improve the
average F1-score by 7.49% and 5.73% for BR and CC approaches (except Random forest), respec-
tively. We further find that the performance gains are mainly contributed by better precision. The
utilization of meeting-level and group-level features could partially explain the dynamics of con-
versational behaviors. In addition, BR methods generally outperform other methods, especially
LP approaches. This indicates when addressing the APR problem, multi-label techniques may not
achieve satisfying results. A potential reason for the poor performance of LP is that unique label
combinations will inevitably reduce the number of training data for each new class label.
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Fig. 16. Comparison of selected methods for evaluating trait correlation and gender difference.

Effectiveness of Trait Correlation and Gender Difference. Since the effectiveness of multi-
level features has been confirmed, we select the top two baseline approaches (BR_KNN and
BR_NN) to compare with the proposed gender-aware MTL method (GAMTL). The results are
also obtained with repeated cross-validation.
All four methods have the same input but differ in the classifier and how they make use of

the gender information. Figure 16 shows that GAMTL outperforms the other three methods by
12.93%–15.14% in F1-score on average. This demonstrates both trait correlation and gender differ-
ence are effective in improving the performance of personality recognition. By comparing MTL
and BR_NN, we could further find that the effectiveness of trait correlation is relatively limited. A
feasible explanation is that the correlations between tasks are relatively sparse and weak and thus
have limited contribution to the performance gain. However, if we look at GAMTL and BR_NN,
there is a significant improvement when combining trait correlation with gender information. We
summarize the latent reasons could be twofold. On the one hand, correlation patterns of both gen-
ders are different; some associations cannot be revealed when treated as a whole. On the other,
both genders have distinct conversational patterns, which are difficult to capture with one neural
structure and one set of parameters.

Discussion on Definitions of Trait Levels. Instead of using the proposed absolute thresh-
olds, the existing approach [2] defines trait levels with relative thresholds derived from popula-
tion norms. Both definitions have their physical meanings. Absolute thresholds aim to recognize
personality in a global view while relative thresholds are expected to identify levels in a certain
population.
The accuracy of [2] ranges between 37% and 44% for triple classification. The average F1-score

of GAMTL with relative thresholds is 54%. The proposed method significantly outperforms the
existing approach by at least 20%. However, there is a non-negligible performance decrease. A
latent explanation is that when using relative thresholds, some tasks (like C), which are originally
close to binary classification, become triple classification. The increased difficulty results in the
decreases in recognition performance.
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5 RELATEDWORKS

Recent decades have witnessed the rapid development of human sensing using various modalities
[9, 42, 43, 51, 52]. It also facilitates a wide range of applications [8, 22, 23, 31]. Here we discuss
three research areas that are most related including voice activity detection, gender identification,
and personality computing.

Voice Activity Detection. Traditional VAD methods rely on multi-class classification. First,
acoustic features are extracted from raw audio. Then classification models like Hidden Markov
Model [53] or Gaussian Mixture Model [33] are utilized to detect voice activities. However, most
valuable features could not be extracted from PS audio. In addition, it is difficult to adapt to sce-
narios without training data.
Another type of methods regards VAD as a blind source separation problem and solves it with

Independent Component Analysis (ICA) [25]. However, ICA assumes stationary mixing of
the signal, i.e., requires participants to remain motionless. Such a constraint is difficult to meet as
people may walk around in real situations. Also, it is still non-trivial to separate speech and noise
on the de-mixed signals, which is not resilient to different environments.

Gender Identification. Voice-based gender identification relies on discriminative features ex-
tracted from human voices. The intuition is that different genders have different acoustic character-
istics due to physiological differences (like glottis, vocal tract thickness) and phonetic differences.
Various identification systems with different classification models and different types of features
have been reported in the literature [1, 16, 35]. The most frequently used features are pitch [16]
and first formant [35], which are closely related to voice sources and vocal tract, respectively.

Personality Computing. Personality Computing addresses three fundamental problems
[7, 14, 27, 49]. The recognition of the true personality of an individual ( APR), the prediction of
the personality others attribute to a given individual (Automatic Personality Perception (APP)),
and the generation of artificial personalities through embodied agents (Automatic Personality
Synthesis).
Despite extensive efforts on personality computing, most attention is on APP rather than APR

[2]. One of the potential reasons is that getting true personality via self-reports is more difficult
than getting personality ratings from others. In addition, APR is more challenging. In a very com-
prehensive study, both self-reported and observer-rated personality scores are predicted from the
essay and conversational data, using psycholinguistic, and prosodic feature sets. Models of ob-
served personality achieved good results while no results above baseline are derived with models
of self-reported personality [24].
APR has been studiedwith variousmodalities in literature. Mairessemixed verbal and nonverbal

cues [24]. The extracted features include mean, extremes and standard deviation of pitch, intensity,
and speaking rate. The experiments aim to discriminate between individuals in the upper and lower
halves of the observed scores of each trait. Pianesi and Sebe explored visual nonverbal features
combine acoustic features like pitch and intensity to assess personality [5]. Their results show
that C and N are the best recognizable traits.
A comprehensive set of features is extracted by An et. al. in [2, 3]. The features consist of linguis-

tic features (like Linguistic Inquiry andWord Count (LIWC)) and acoustic features (like pitch). Psy-
cholinguistic studies indicate that people choose words not only because of the linguistic meaning
but also because of psychological conditions, such as emotion, personality, and relational attitude.
Therefore, it is possible to detect personalities through text analyses associated with psycholin-
guistic techniques. In addition, previous researches have proved a variety of speech factors, such
as fundamental frequency (pitch), voice quality, intensity, frequency, and duration of silent pauses,
could reflect different personality traits.
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6 CONCLUSION

In this work, we are the first to build a user profiling system from nonlinguistic audio to infer gen-
der and personality. The effectiveness is verified with extensive experiments conducted with real
study groups. Our main contributions are threefold. First, we proposed a Bayesian algorithm that
could adaptively detect voice activities for nonlinguistic audio. Second, the extracted multi-level
features and the proposed gender-assisted multi-task learning model are effective in user profiling.
Multi-level features could capture intra-group interaction and model contextual factors leading to
more effective performance. Also, due to the existence of gender differences in conversational be-
haviors and personality, data from the same gender are more cohesive for learning. Lastly, we
analyzed face-to-face conversations in natural settings and provided evidences of gender differ-
ences in conversational behaviors and personality.
For future directions, there are two lines of research. The first direction is to improve the per-

formance of conversational behavior-based user profiling by considering more contextual factors
and developing more advanced signal processing and machine learning techniques. In real situ-
ations, there are many more contextual factors affecting conversational behaviors like language
systems and the culture underneath. Capturing those factors would lead to a better understanding
of conversational behaviors and thus increase the profiling performance. The second direction is
to explore possibilities of profiling other AoIs like occupation, which is also of great interest in
many applications.
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