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Abstract—With the flourish of the smart devices and their
applications, controlling devices using gestures has attracted
increasing attention for ubiquitous sensing and interaction.
Recent works use acoustic signals to track hand movement and
recognize gestures. However, they suffer from low robustness
due to frequency selective fading, interference and insufficient
training data. In this work, we propose RobuCIR, a robust
contact-free gesture recognition system that can work under
different usage scenarios with high accuracy and robustness.
RobuCIR adopts frequency-hopping mechanism to mitigate
frequency selective fading and avoid signal interference. To
further increase system robustness, we investigate a series of data
augmentation techniques based on a small volume of collected
data to emulate different usage scenarios. The augmented data
is used to effectively train neural network models and cope
with various influential factors (e.g., gesture speed, distance to
transceiver, etc.). Our experiment results show that RobuCIR
can recognize 15 gestures and outperform state-of-the-art works
in terms of accuracy and robustness.

I. INTRODUCTION

Motivation. Contact-free gesture recognition techniques

facilitate human-computer interaction (HCI) methods that

enable users to control digital devices without any physical

contact. Imagine that we may simply perform a gesture nearby

a smart speaker at home to switch music, control speaker

volume while chatting in the car, block an incoming call in

meeting without touching the device, or enable contact-free

human computer interaction in virtual and augmented reality

applications. These contact-free systems provide immersive

user experience and support a variety of novel applications

in gaming, smart home, and education. Except accurate

recognition, such applications demand high robustness under

various usage scenarios. In this paper, we aim to design a

robust contact-free gesture recognition system that can achieve

accurate and robust gesture recognition.

Prior works and limitation. Existing RF-based HCI tech-

nologies explore the potential of controlling devices using

wireless signals [2, 14, 26]. Such technologies require spe-

cialized hardware (e.g., USRP [14, 26], FMCW radar [2]),

which incurs high costs and prohibits a wide deployment.

Recent acoustic sensing systems leverage speakers and

microphones, embedded in smart devices, to enable contact-

free motion tracking [17, 18, 22, 41, 46]. FingerIO [22] is able

to accurately track moving objects (e.g., a waving hand) by

transmitting OFDM modulated acoustic signals and analyzing

the signal variations caused by the moving object. LLAP [41]

is able to track finger movements by measuring the phase

change of the received signals. Strata [46] achieves a higher

accuracy in tracking one moving object by estimating the

Channel Impulse Response (CIR) of the reflected signal.

Those works model the whole finger/hand as a single
reflection point and intentionally neglect weak multi-path sig-

nals. Note that such a single reflection model can effectively

enhance its performance in tracking one moving object. Yet,

modeling a hand as a single reflection point cannot provide

sufficient resolution for gesture recognition due to relatively

complex finger movements. For instance, in order to recognize

spread or pinch gesture (illustrated in Fig.1), we need to

differentiate and track five fingers simultaneously.

Since it is very hard to accurately model the complex

signal reflections, recent works attempt to leverage neural

networks to automatically extract effective features from re-

ceived signals [13, 17]. For example, UltraGesture [17] uses

a deep neural network to extract features from measured CIR

magnitude for identifying different gestures. However, due

to insufficient training data, the trained model cannot handle

various real usage scenarios in practice.

Challenges. Implementing a robust acoustic gesture recog-

nition system is a non-trivial task due to complicated move-

ments of fingers. One challenging issue of acoustic based

gesture recognition is frequency selective fading (FSF) due to

the multi-path transmissions of acoustic signals as well as the

speaker and microphone distortion at high frequencies (e.g.,

≥ 18KHz). Previous work only sends an acoustic signal at a

fixed frequency [17], which may experience dramatic fading

in signal magnitude in particular environments. Intuitively,

one can simultaneously transmit acoustic signals at multiple

frequencies to alleviate the impact of FSF and the signal

distortion at high frequencies. However, the computational

cost involved in processing the multi-frequency signal is high

and prohibitive to meet real-time processing requirement on

lightweight smart devices (e.g., smart watch).

Another practical challenge arises from insufficient training

data. To ensure robust gesture recognition, the neural network

requires sufficient training data to cover different variations of

gestures under diverse practical scenarios [45]. In practice, it

is inconvenient and sometimes impractical to collect sufficient

training data from users.

Our solution. We propose RobuCIR, a robust gesture

recognition system based on acoustic signals transmitted by

the smartphone, which achieves high recognition accuracy

under various usage scenarios. RobuCIR can identify 15
standardized gestures, as illustrated in Fig.1. RobuCIR can

detect a gesture ranging up to approximately 50cm from the

smartphone.

In our solution, we adopt frequency hopping to mitigate FSF

and carefully design low pass filters to avoid inter-subframe
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Fig. 1. 15 types of hand gestures and their corresponding CIR patterns. To standardize the tested gestures, we divide the test gestures into different categories
including (1) the typical gestures involving hand movements along 3 axes in 3D space (slide down/up (Z-axis), push/pull (X-axis), and slide right/left (Y-axis));
(2) rotation around an axis; and (3) some complex hand gestures (punch, spread, pinch, swipe, tap, double taps, and hover). To better depict the test gestures,

in the figure, we use
x→ to represent a hand movement along an axis (e.g., X axis), and use a double-headed arrow (e.g.,

x↔) to represent a back-and-forth
movement (e.g., punch) along the axis.

interference (described in §III-B). In particular, we modulate

a known baseband signal, up-convert to different frequencies,

and transmit at each frequency periodically. We regard this

periodical signal as a channel measurement frame, which con-

sists of multiple subframes at different frequencies. To further

enhance the robustness of RobuCIR, different from prior work

that only exploits the magnitude component, we synthetically

consider both magnitude and phase components to capture

more information of the multi-path. We notice that the phase

component is generally more robust to interference and noise,

which is promising to achieve high accurate localization and

tracking [4, 41, 46].

To address the challenge of lacking of training data, instead

of manually collecting all training data, we collect a small

amount of raw data and apply a series of selective data

augmentation techniques to enhance the data. Such well-

orchestrated data augmentation techniques come from our key

observation that the variations of the CIR measurements under

different usage scenarios (e.g., different gesture speeds, dis-

tance to transceiver, NLOS, noises) generate different patterns,

which are traceable and correlate to the gesture variations.

RobuCIR thus can handle various usage scenarios which may

not be fully captured by the raw data but by the augmented

data. To the best of our knowledge, we are the first to

correlate the variations of CIR measurements with different

usage scenarios.

Different gestures generate different CIR images with dif-

ferent patterns, as shown in Fig.1, which are estimated by

Least Square (LS) channel estimation technique. To identify

gestures, motivated by recently impressive performance on

image classification, we train a classifier using neural networks

via supervised learning. In specific, our classifier consists

of a Convolutional Neural Network (CNN) and a Long-

Short Term Memory (LSTM) network to automatically extract

complicated features from the augmented data and perform

gesture recognition.

Our contributions. Such a holistic design allows us to

achieve higher channel measurement resolution and sufficient

training data, while meanwhile mitigating FSF and ISI without

posing extra computational overhead on lightweight smart

devices. In our experiment, RobuCIR achieves 98.4% recog-

nition accuracy under various usage scenarios in the task of

recognizing the 15 gestures.

We make the following contributions:

• We address the challenge of frequency selective fading

caused by multipath effect by periodically transmitting

the acoustic signals with different frequencies.

• We leverage the correlation of the CIR measurements and

gesture variations to overcome the challenge of insuffi-

cient training data. The augmented data is automatically

generated without user involvement.

• We implement RobuCIR and conduct extensive evalu-

ation. The experiment results show that RobuCIR out-

performs state-of-the-art work in terms of accuracy and

robustness under various usage scenarios.

II. BACKGROUND

Existing acoustic signal based gesture recognition systems

detect the finger/hand movement by measuring the CIR of the

reflected signal frames. The transmitter modulates a known

signal, up-converts to a high frequency fc, and continuously

sends this inaudible audio signal frame. The frame is then

reflected from a moving finger/hand and received by the

receiver. The received frame is down-converted to generate

an imaginary and real components of the baseband signal.

The acoustic channel can be modeled as a Linear Time-

Invariant system, which is effective to model propagation

delay and signal attenuation along multiple propagation paths.

The received signal can be mathematically represented as

r[n] = s[n] ∗ h[n], where h[n] represents CIR of the acoustic

channel, r[n] and s[n] represent the received signal and

transmitted signal, respectively.

In practice, one may estimate the CIR by sending a known

signal frame as a probe. With the received frame, Least Square

(LS) channel estimation method can estimate CIR [17, 46].

In particular, LS channel estimation measures the channel
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Fig. 2. Overview of RobuCIR.

h = argmin
h

‖r − Mh‖2, where M is the training matrix

consisting of transmitted circulant orthogonal codes (e.g.,

training sequence code (TSC) [46], Barker code [17]). CIR

measurement is represented with a set of complex values, in

which each complex value measures the channel information

of a certain propagation delay range and the corresponding

amplitude and phase of the CIR can be obtained.

III. SYSTEM DESIGN

A. Overview

Fig.2 illustrates the overview of RobuCIR. RobuCIR con-

sists of three main components, which are Transceiver, Chan-
nel Estimator and Gesture Identifier. In Transceiver, a speaker

plays an inaudible frame for channel measurement and a

microphone records the received frame. Within each inaudible

frame, the carrier frequency hops among multiple frequencies

to mitigate FSF. Then, Channel Estimator estimates the CIR

with the LS channel estimation. Finally, Gesture Identifier
regards CIR phases and magnitudes measured across a certain

time as a CIR phase image and a CIR magnitude image,

respectively. To improve the robustness of our system, we

perform data augmentation on each CIR image so that the

augmented data can cover various real usage scenarios. As

such, the final model trained with augmented data can cope

with various factors (e.g., gesture speed, distance, noise, etc).

In particular, the augmented data are used to train a CNN

to automatically extract features and an LSTM network to

perform gesture recognition.

B. Design of Transceiver

Fig.3 illustrates the design of transceiver. The transceiver

consists of a speaker acting as an acoustic transmitter and

a microphone acting as a receiver, which are collocated and

synchronized in a single device. The transmitter sends a pre-

defined signal frame and the receiver measures the CIR by

analyzing the received signal frame [17, 46]. In particular,

the transmitter sends a 26-bit Training Sequence Code (TSC)

that has good autocorrelation property and facilitates channel

measurements [36]. The TSC are then up-sampled and up-

converted to the carrier frequency fc before transmission.

To ensure the transmitted frame are inaudible, the carrier

frequency is set to be higher than 18KHz (i.e., fc ≥ 18KHz).

To avoid inter-subframe interference (ISI), previous works

add guard intervals (GI) between frames. In particular, zero
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Fig. 3. Design of transceiver.

samples are added between frames so that the echoes of

current frame would not be mixed in the following frames.

1) Mitigate Frequency Selective Fading: Existing works

modulate and up-convert the pre-defined TSC symbols to a

single frequency. Single-frequency based method may suffer

from FSF, since the audio signals reflected from multiple

objects may add up destructively with each other, which

greatly decreases the system performance.

To better understand how FSF influences the channel mea-

surements, we conduct experiments and measure the CIR mag-

nitude and phase when transmitting at multiple frequencies.

In the experiment, we perform push and pull gestures 5 times

in front of the transceiver. We send the BPSK modulated TSC

at three frequencies.

Fig.4 shows the CIR magnitudes measured during the

experiment. In the figure, X-axis represents time, while Y-

axis represents CIR tap positions. The brightness represents

the CIR magnitude. Each tap corresponds to a certain delay

range and reflected signals with similar propagation delays are

summarized in the same tap. In Fig.4, when transmitting at

fc1 (upper panel), the CIR magnitude changes substantially

due to pull and push activities. When transmitting at fc2 (mid

panel), due to frequency selective fading, the CIR magnitude

dramatically decreases and exhibits less clear patterns. Similar

to the influence on CIR magnitude, frequency selective fading

also affects the phase measurements at different frequencies.

The experiment results indicate that the frequency selective

fading, if not handled properly, could dramatically influence

the channel measurement results, leading to low accuracy and

degraded robustness in gesture recognition.

Transmitting at multiple frequencies (e.g., OFMD) could

enhance robustness against FSF since different frequency

components are less likely to add up destructively at the same

time. However, existing multi-frequency based methods incur

high computational overhead due to FFT and IFFT operations

[22, 41]. Instead, we adopt frequency hopping to periodically

transmit at different carrier frequencies (i.e., fc1, · · · , fcN ) to

alleviate FSF. In particular, we transmit at a certain carrier

frequency (e.g., fci) and hop to an adjacent frequency (e.g.,

fcj). Thus, the whole channel measurement frame consists of

N subframes transmitted at N different frequencies.

The receiver starts to record the reflected frame immediately

after the first sample is emitted by the transmitter. To detect

the position of the first sample in the received frame, we
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Fig. 4. CIR when performing push and pull.

calculate the Pearson Correlation Coefficients (PCC) of the

transmitted and the received audio samples and locate the

peak of correlation. Once the first sample of the frame is

detected, the boundary of subframes in the current frame and

the subsequent frames can be easily located and perfectly

synchronized due to fixed length of the subframe. Note that

the frequency hops periodically from fc1 to fcN within each

received frame. The receiver down-converts the frame by mul-

tiplying each subframe with its corresponding cos(2πfcit) and

− sin(2πfcit), where i ∈ {1, · · · , N}. The down-converted

frame then passes through a lowpass filter to filter out high-

frequency components. Finally, the complex vector r(t) of the

same frequency are used for extracting CIR magnitude as well

as CIR phase.
2) Remove Inter-Subframe Interference: Note that such

a down-conversion technique can naturally remove the ISI.
To see how such a down-conversion technique avoids inter-
subframe interference, we assume the current subframe is
with frequency fcj , which can be interfered by previous
N subframes. Thus, the currently received subframe can be

represented as y(t) =
∑N+1

i=1 Ai cos(2πfcit + θi), where Ai
is the amplitude of the subframes and θi is the phase offset
caused by multipath effects, i ∈ [1, N ]. By down-converting
with cos(2πfcjt), we have:

N+1∑
i=1

Ai cos(2πfcit+ θi)× cos(2πfcjt)

=

N+1∑
i=1

Ai

2
[(cos(2π(fci + fcj)t+ θi)︸ ︷︷ ︸

hight-frequency component

+cos(2π(fci − fcj)t+ θi)︸ ︷︷ ︸
low-frequency component

)]

(1)

Looking at low-frequency component in Eq.(1), we have:
N+1∑
i=1

Ai

2
cos(2π(fci − fcj)t+ θi)

=
Aj

2
cos(θj) +

N∑
i=1

Ai

2
cos(2π(fci − fcj)t+ θi)

(2)

The high-frequency components in Eq.(1) and the second

term in Eq.(2) can be simultaneously removed by applying

a low-pass filter with a cutoff frequency set according to the

difference of carrier frequencies (i.e., min(|fci−fcj |), i �= j).

Besides, the cutoff frequency should exceed the frequency of

the subframe such that the subframe can be recovered accu-

rately. After passing the low-pass filter, we obtain
Aj

2 cos(θj),
where θj = cos(2πfcjτj), and τj is the propagation delay.

Down-conversion with the same carrier frequency fc1

Down-converted at fc1 Down-converted at fc1

subframe at fc1 subframe at fc2

Inter−subframe Interference

(a) Received baseband frame.

Down-converted at fc1 Down-converted at fc2

subframe at fc1 subframe at fc2

Down-conversion with the same carrier frequency fc1 and fc2

(b) Received baseband frame without ISI.
Fig. 5. Remove the impacts of inter-subframe interference.

Since the speed of sound is known, with τj we can calculate

the distance between the transceiver and the reflecting point.

To evaluate the effectiveness of our design, we conduct an

experiment to compare ISI with/without our filtering method

in Fig.5. We transmit the first subframe at fc1, followed by

the second subframe at fc2, and the carrier frequency hops

at around the 320th sampling point. In the experiment, to

better visualize ISI, the first subframe transmits TSC bits,

while the second subframe contains zero samples, only to

measure whether the first subframe would influence the second

subframe. Fig.5(a) shows the received frame down-converted

with the same carrier frequency fc1 for both subframes.

We see that the transmitted signal indeed echoed after the

frequency hopping, which could have distorted the second

subframe transmitted at the same fc1. Fig.5(b) plots the

received signals when the first subframe is down-converted

with frequency fc1, while the second subframe with zero

samples is down-converted with an adjacent frequency fc2.

We see that the first subframe transmitted at fc1 is correctly

down-converted, and more importantly there is no interference

or distortion in the second subframe. The experiment result

shows that our filtering method can effectively remove Inter-

symbol Interference.

3) Extract Effective CIR Phase and Magnitude: The ex-

tracted channel measurements involve both static objects in

the environment (e.g., direct path from speaker to microphone,

wall, desk, etc.) as well as dynamic objects (e.g., people

passing by, etc.). Thus, the CIR measurements are the combi-

nations of all signals reflected from both static and dynamic

objects within the sensing range. To avoid the influence of

static objects as well as moving objects irrelevant to the hand

gesture, we need to extract the reflected signal from hands

and fingers close to the transceiver.

Focus on nearby objects. In order to mitigate the influence

of distant moving objects, we need to filter out the reflected

signal from distant objects and only keep reflected signal from

hands and fingers close to the transceiver. In the channel

measurement, each tap of CIR corresponds to a certain delay

range and reflected signals with similar propagation delays are

grouped into one tap. Therefore, the tap index (e.g., Y-axis in

Fig.4) indicates the distance between the reflecting objects

and the transceiver: The smaller the index, the closer to the

transceiver. Thus, the detection range Dr can be set according
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to the number of taps L, since we have Dr = L× v
2fs

, where

v is the speed of sound and fs is the sampling frequency. By

tuning the detection range and only keeping a few effective

taps, we can filter out the impact caused by objects outside

a certain range to improve system robustness. This method

ensures robust CIR measurement inside the detection range,

even with people walking nearby but outside the detection

range.

Focus on moving objects. The changes of combined phase

and magnitude of CIR are illustrated in Fig.6(a).
−−→
OC repre-

sents the static component with constant magnitude and phase,

while
−→
CA and

−−→
CB are the dynamic components with varying

phases and magnitudes. The direct transmission from speaker

to microphone and the static background reflection from the

environment jointly comprise the static component. Due to

the dynamic components, the combined components
−→
OA and−−→

OB change accordingly. Note that the CIR measurement

only measures the combined components, while the static

component and the dynamic component cannot be directly

measured. To cancel the static component and extract the

dynamic components from the measured CIR, we calculate

the CIR difference between two consecutive complex samples

at time t − 1 and t. Note that the hardware of transmitter

and receiver introduce constant phase offset throughout the

experiment, which can be removed as well by calculating

the phase difference between two adjacent measurements. By

doing this, the dynamic component can be extracted and the

effects caused by surrounding static objects can be removed.

Fig.6(b) and Fig.6(c) show the CIR magnitude and phase

of the same tap at the same carrier frequency extracted from

the second experiment in Section III-B1. Due to the strong

direct transmission from speaker to microphone, the pattern

of original CIR magnitude and phase is not clear (upper

panel in Fig.6(b) and Fig.6(c)). However, we observe that

the extracted phase changes clearly exhibit linearly increasing

patterns. Besides, we observe that CIR phase and magnitude

vary differently since magnitude captures signal attenuation

while phase captures propagation distance. Therefore, we may

obtain more reliable information using both measurements.
C. Gesture Identifier

The main objective of the gesture identifier is to classify the

CIR measurements and recognize different gestures. We notice

that the CIR magnitude and phase across a certain time over

multiple taps can be regarded as a CIR magnitude image and

a CIR phase image, respectively. CIR images extracted from

different frequencies can be considered as RBG channels.

Recent advances in neural network and its breakthrough in

image recognition motivate us to leverage such a powerful

classification tool and build the gesture identifier. To this end,

we weave the CIR measurements into tensors (named CIR

images), which is similar to images in the context of image

classification.

However, the neural networks require a huge amount of

effective training data to achieve high accuracy and robust-

ness. Ideally the training data should cover various practical

scenarios. Yet, it takes a long time and a lot of effort to collect

a sufficient amount of quality data in practice. To ease the pain

of data collection, we conduct data augmentation to enrich our

training data so that the augmented data can reflect different

variations of CIR measurements without manually collecting

the data in all possible scenarios.
1) Data Augmentation: The data augmentation technique

relies on our key observation that the CIR measurements vary

along with the gesture variations (e.g., gesture speeds, angles,

positions and etc.). Based on our initial measurement results,

we mainly consider five factors that could affect the CIR

data in real usage scenarios including gesture speed, distance

to microphone, angle of arrival, blockage of line-of-sight

path, and background noise. We then apply data augmentation

techniques that are widely used in image processing [9, 37, 47]

on original CIR data (e.g., translation and scaling) so that the

augmented CIR data can cover potential scenarios and the

trained models can cope with the above influential factors.

Different distances to the receiver. In commodity smart-

phones, the speaker and microphone are typically collocated

and built into a single device. To measure the influence of

the distance between a hand and the transceiver, we perform

push and pull at a distance between hand and transceiver

ranging from 0cm to 20cm, and then 20cm to 40cm in front

of the transceiver, respectively. Fig.7(a) and Fig.7(b) show the

CIR magnitude (upper panel) and phase measurements (lower

panel), respectively.

Comparing Fig.7(a) and Fig.7(b) (upper panel), we observe

vertical drift in tap indexes in CIR magnitude measurements.

That is because the gestures are performed at different dis-

tances to the transceiver. A larger tap index indicates a further

distance to the transceiver. Similarly, we find corresponding

shifts in CIR phase measurements. As illustrated in Fig.7(a)

and Fig.7(b) (lower panel), we observe similar linearly in-

creasing patterns in CIR phase measurements. Therefore, CIR

measurements of gestures performed at different distances

to the smartphone can be emulated by vertical drifts in tap
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(b) Push and pull at 20 ∼ 40cm.

Fig. 7. CIR phase and magnitude of push and pull.

indexes within the sensing range of the receiver.

Different speeds. To illustrate the impact of different

moving speeds of gestures, we perform push and pull at a

relatively slow speed in front of the transceiver within 20cm.

Fig.8 shows the CIR magnitude for all taps and CIR phase

for one particular tap. The CIR phase rotation indicates the

path length change caused by the moving hand. The key

observation is that the CIR measurements corresponding to

the gesture expand in time in both CIR magnitude and phase

compared to Fig.7(a) due to the slower speed. To compensate

for different speeds of gestures, we perform data augmentation

by horizontally expanding or contracting an original CIR

measurement to emulate different speeds.

Blockage of transceiver. People may attempt to control

their smart devices under NLOS case. To simulate this sce-

nario, we place a smartphone inside a cotton bag to capture

the moving hand. In upper panel of Fig.9, we observe less

bright patterns if we directly use raw CIR data. In practice,

NLOS may cause signal attenuation, which results in very

small values of CIR magnitude.

To address this problem, we use the Min-Max Normal-

ization method to scale and normalize the CIR magnitude

measurements. After normalization, all the magnitude values

are scaled to the same level (i.e., 0 ∼ 1) such that the impact of

signal attenuation can be mitigated. The lower panel in Fig.9

shows the normalized CIR measurements of the raw CIR data

in the upper panel. After normalization, we observe similar

patterns compared to the scenario without any blockage in

Fig.7(a). We observe consistent patterns when we place a

thick paper between transceiver and hand. On the contrary,

the CIR phase measurements are not greatly affected due to

similar relative moving distances of hand. In all experiments,

we conduct normalization to all raw CIR data before data

augmentation.

Noisy Environment. To evaluate the impact of background

noise, during CIR measurement, we use a smartphone to

play music 5cm away from the receiver. In this case, the

received signal is a mixed signal of both TSC signal and

the background music signal. However, we notice that the

music resides in the frequency band much lower than the

transmitted inaudible signal. As such, the receiver can separate

the transmitted inaudible signal from the background noise in

the environment (e.g., music) in the frequency domain.

Actually, many other background noises (e.g., human voice,
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Fig. 8. Push and pull at slow speed.
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Fig. 9. Push and pull with blockage.

fans, air conditioner, traffic noise, etc.) reside in low-frequency

bands, which can be similarly filtered out by our down-

conversion and demodulation method. Therefore, there is no

need to add a high-pass filter before down-conversion. In

other words, the down-conversion and demodulation method

is inherently robust against background noises.

Different angles. In order to evaluate the impact of angle-

of-arrival on the transceiver, we perform gestures around

the transceiver at different angles within 20cm range to the

transceiver. In particular, we divide the 0◦ ∼ 180◦ area in

front of the transceiver into three 60◦ sectors (i.e., 0◦ ∼ 60◦,

60◦ ∼ 120◦, and 120◦ ∼ 180◦) and perform push and pull

multiple times in each sector. The experiment results show

that the CIR measurements exhibit similar patterns when we

perform the same gesture from different angles (0◦ ∼ 60◦, and

120◦ ∼ 180◦) as in Fig.7(a) (60◦ ∼ 120◦). This is because

both speaker and microphone are omnidirectional. In fact,

omnidirectional speakers and microphones are widely used

in commodity smart devices in order to achieve good quality

in all directions. Besides, the speaker and the microphone are

collocated in a single device with short distance. As such, the

impact of angle-of-arrival on the CIR measurement is limited.

Thus, in this work, we do not augment the raw measurements

for different angle-of-arrivals.

In summary, we find that the last three factors (i.e., block-

age, noise and angle-of-arrival) do not require any particular

data augmentation, while different speeds and distances to

the receiver do influence the CIR measurements and need

careful treatment. Note that different hand sizes of users may

influence the CIR measurements. However, with multiple taps,

our method can reduce the impact of hand sizes.

We assume that the gestures are performed while the user is

standing or sitting still with static torso but only moving his

hand. In practice, people often perform gestures at distance

10 ∼ 50cm to the transceiver, which indicates tap indexes

ranging from 30 to 150. We guarantee the successful trans-

mission and reception of the audio signal within this detection

range. Thus, we vertically shift a raw CIR data according

to the targeted tap index ranges. One may freely adapt the

tap index range according to different usage scenarios by

tuning appropriate volume of speaker if the distance between

hand and transceiver increases. On the other hand, we find

that the largest difference between the speeds for the same

gesture is typically at most 5× (i.e., 0.4s to 2s). As such,
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the number of horizontal expanding and contacting rates are

varied from 2 to 5. Although the largest speed difference in

our dataset is up to 5×, the data augmentation technique is not

limited to this range and can be extended to a larger range

to emulate more variances in practice (e.g., 4s for push in

Fig.8). We randomly combine the above settings for various

gesture speeds and distances and augment 100× for each

collected gesture to emulate the gestures performed under

various practical scenarios.
2) Gesture Recognition: We input the augmented training

CIR data into a classifier to identify different gestures. Re-

cently, CNN exhibits significant advances in image recogni-

tion while LSTM is promising to process time series data.

Therefore, our classifier consists of a CNN for extracting

significant features of CIR images and an LSTM network for

gesture identification.
In specific, we separately process CIR magnitude and phase

and automatically extract features with two independent CNNs

but with the same architectures. We apply a CNN with three

convolution layers. Each input of the first convolution layer is

a CIR image with size [K × L×N ], where L is the number

of taps, K denotes the number of consecutive subframes

aggregated during a certain period and N is the number

of frequencies. Note that similar to the real images, CIR

images extracted from different frequencies can be regarded

as different image channels (e.g., RGB channels). We use

32 kernels with size [5 × 5 × N ] to scan the input image,

followed by a max-pooling layer with [2 × 2] kernel and

stride length 2. The design of the remaining 2 convolution

layers are similar to the first layer with the kernel sizes [5×5]
and [3× 3], and the number of kernels are set to 32 and 64,

respectively. The activation function is ReLU. We set a fully

connected layers with size 512 to output the feature vector.

The extracted features of CIR magnitude and phase are then

processed separately with two individual LSTM.
When performing different gestures (e.g., up and down, left

and right), the same feature extracted with CNNs may appear

in different order and the order matters in distinguishing

the different gestures. Unlike other traditional classifiers (i.e.,

SVN, Random Forest, etc.), LSTM is capable of memorizing

the context information in sequential data [10], which can

capture the temporal information of the gestures. In our

implementation, the LSTM architecture takes multiple outputs

of the CNN across time into one vector as the input data. We

use one stacked LSTM layer grouped by 8 memory cells. A

softmax function layer is used after the LSTM layer to predict

the gesture types. The output of the LSTM is a probability

vector indicating the likelihood of different gestures. Note that,

we separately build two LSTMs for CIR magnitude and phase

image and generate two probability vectors. The gesture type

is then determined by the equally weighted sum of the two

probability vectors.

IV. EXPERIMENT AND EVALUATION

A. Experiment Setting
Parameter setting. To transmit channel measurement frame

with frequency hopping, frequencies that satisfy with condi-

tions in Section III-B2 can be applied to mitigate the frequency

selective fading and remove inter-subframe interference. In

our experiment, RobuCIR emits inaudible signals at three

frequencies 18KHz, 20KHz and 22KHz, respectively. We

notice that the acoustic signals played at the maximum volume

may still be noticed by some users, especially when they

really pay attention in quiet rooms. To guarantee the acoustic

signals do not cause inconvenience to users, we apply a filter

to smooth the sudden change at the transition between two

frequencies. Users can adjust the volume to their comfortable

level (e.g., 75% of maximum volume) without affecting much

the system performance.

In our design, we choose a 26-bit TSC, which has excellent

autocorrelation and synchronization property [27]. The up-

sampling rate is set to 12. Therefore, a single TSC symbol

is represented by 12 audio samples and each transmitted

subframe contains NTSC × 12 = 312 audio samples, which

takes 6.5ms in transmission with sampling rate of 48KHz.

Data collection. We implement RobuCIR on a Samsung

S9 Plus, a Samsung S7 Edge and a Google NEXUS5 phone.

Experiment results show that the diversity of smartphones

(e.g., signal distortion at high frequencies) can be mitigated

by frequency hopping, normalization, and data augmentation.

We invite 8 volunteers (5 males and 3 females) to perform

15 types of gestures. Each gesture is repeated 6 times (3 for

each hand) under 5 usage scenarios described in Section III-C.

The users stand or sit still at 0.5m to 1m from the device and

perform gestures with relatively static torso and move their

hands within the detection range of up to 0.5m. The largest

speed difference in our dataset is 5× (e.g., from 0.4s to 2s)

and the gestures are performed at different angles to the device

ranging from 0◦ ∼ 180◦. In the noisy environment scenario,

we use another mobile phone as an external speaker to play

music with the largest volume placed 0.5m away from the

target device. The gestures are performed at different time

and different environments containing some rich multipath

office rooms between size 10 × 8 × 3m3 and 4 × 4 × 3m3

with different layouts. These office rooms are surrounded by

furniture, computers and small objects nearby, which result in

different signal decay. People are allowed to move near the

target device when we are collecting the data. In total, we

collect 3600 real gesture samples.

Benchmark. We evaluate the performance in comparison

with the state-of-the-art UltraGesture [17] as our benchmark.

UltraGesture is configured and optimized according to [17]

to achieve its best performance. We set the same number of

estimated taps to L = 140 in magnitude measurements. We

choose K = 32 and Nlstm = 5 such that the LSTM takes

features of K ×Nlstm × 6.5ms ≈ 1sec as each input.

Model training and gesture recognition. We use 10-

fold cross-validation to evaluate the robustness of the system.

Each round of cross-validation involves training a new model

with the collected samples from 6 users and testing with

the collected samples from the other 2 users. We make sure

that the training data and the testing data are collected from

different users and different rooms in each round. For each
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Fig. 10. Overall performance of RobuCIR.

gesture in the training group, we conduct data augmentation

with rate = 100×. We notice that the augmented samples are

consistent with the corresponding real-world scenarios.

The classifier are trained using TensorFlow in a high-end

server with Intel(R) Xeon(R) E5-2620 v4 CPU @2.10GHz,

32GB memory, and two Nvidia GTX 1080 Ti GPU graphics

cards. It takes around 65s for each training iteration. Note that

the model training is a one-off procedure and can be carried

out offline. The size of the model when using 3-layer CNN

and 8-cell 1-layer LSTM is around 5.5M. We use the high-end

server with the same specifications to simulate a cloud/edge

server and conduct performance evaluation.

B. Evaluation
Overall system performance. Fig.10 shows the overall

confusion matrix of our RobuCIR system for all 15 gestures

performed at different environments (e.g., room with or with-

out rich multipath). The test data was collected at different

distances to the transceiver and the volunteers perform the

gestures at their comfortable speeds in office rooms. RobuCIR

achieves an average recognition accuracy of 98.4%, and each

gesture exceeds 95% accuracy even under different usage

scenarios. Different environments with different signal fading

have limited impact on system performance, since the detec-

tion range can be set with the number of CIR taps to filter

out interference and multipath reflection outside the detection

range (e.g., people walking around).

We evaluate the recognition accuracy under different us-

age scenarios, as shown in Fig.11. The accuracy of all

gestures exceeds 96%, which demonstrates high robustness

of RobuCIR under various scenarios. The accuracy when

performing gesture at different speeds and different distances

to the transceiver is slightly lower than other three scenarios

since these two scenarios may cause larger variations in CIR

measurements while other three scenarios do not introduce

dramatic influence in CIR measurements.

Improvement of robustness. To evaluate system robustness

of RobuCIR compared to the existing works, we compare

the performance with the state-of-the-art work UltraGesture

[17] which is trained and evaluated with the same dataset.

We set the same parameters as presented in UltraGesture and

evaluate both RobuCIR and UltraGesture under various usage

scenarios. Fig.12 shows the comparing result.

Fig. 11. Performance with different usage scenarios.

As illustrated in Fig.12, RobuCIR substantially outperforms

UltraGesture and achieves overall recognition accuracy of

13% higher than UltraGesture. When performing gestures

at different speeds and different distances to the transceiver,

RobuCIR remains robust with an accuracy of over 96%, while

the performance of UltraGesture dramatically decreases to

75% and 77% mainly due to FSF and considerable impacts on

CIR measurements under those two scenarios. For other three

usage scenarios, the performance of UltraGesture exceeds

90% while RobuCIR achieves higher accuracy of over 98%
since the augmented training data covers different variations

of gestures under practical scenarios.

Impact of frequency-hopping. To evaluate the frequency

hopping scheme, we evaluate RobuCIR with different single-

frequency signals. In this experiment, we separately train three

neural networks according to different frequencies. To focus

on the impact of frequency-hopping scheme, we keep all the

parameters unchanged. Fig.13 illustrates the recognition ac-

curacy of RobuCIR under different usage scenarios evaluated

using three single-frequency signals.

We observe that the performance of RobuCIR varies under

the same usage scenarios when transmitting different single-

frequency signals. When only transmitting signal with fre-

quency2, the performance decreases significantly to 81% and

78.2% under different speeds and distances to transceiver

scenarios since the measured signal might be destructively

added up when a hand is at a specific location. As such,

the extracted CIR measurements fail to reflect the patterns of

corresponding gestures. In contrast, when applying frequency-

hopping scheme, we can simultaneously acquire consistent

CIR measurements derived from other frequencies. Therefore,

more effective features can be extracted by the neural net-

works, which enhances the system robustness.

Impact of data augmentation. We vary the data augmenta-

tion rates (i.e., 5× ∼ 100×) and train classifier with different

augmented data. In this experiment, we transmit TSC using

frequency-hopping scheme with three carrier frequencies, and

other parameters remain the same.

The results show that the recognition accuracy of Robu-

CIR under all scenarios improves as the augmentation rate

increases. In particular, the accuracy when performing ges-

ture under different speeds and distances experiences higher

increase than other three scenarios since data augmentation

is carefully applied under these two scenarios and a larger

augmentation rate covers more variations of the gesture. As

the augmentation rate raises to 100×, the accuracy for each
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Fig. 12. Results of RobuCIR and UltraGesture.

3

Fig. 13. Accuracy without frequency-hopping. Fig. 14. Accuracy with different rate.

TABLE I
THE RUNNING TIME OF ROBUCIR.

CIR measurements Calculation Gesture Recognition
Frame detection Down-conversion LS Coupled NN model

1.3ms 2.2ms 4.8ms 23ms

scenario exceeds 96%. The experiment results demonstrate

that the data augmentation techniques indeed provide more

insights and quality data to the neural networks and help

improve the system robustness.

Execution Time We run 20000 inferences and measure

the average execution time. Frame detection is performed

every time before a gesture and down-conversion step is

needed throughout the CIR measurement processing stage,

which take approximately 1.3ms and 2.2ms, respectively. Our

trained classifier can process each CIR measurement within

an average of 23ms at the high-end server.

Our current implementation of RobuCIR primarily fo-

cuses on enhancing the robustness of the acoustic sensing

performance. To reduce the computational overhead at the

mobile device side, we offload the computation-intensive

task involved in gesture recognition to the high-end server.

Recent advances in running deep neural network models

on mobile devices have achieved remarkable results through

model compression, cloud-free DSP, system optimization, etc

[5, 6, 8, 12, 16, 43, 47]. We plan to support lightweight

resource-constrained smart devices in the future work.

V. RELATED WORK

As speakers and microphones are widely deployed in var-

ious smart devices (e.g., smartphone, smart speaker, smart

watch), acoustic sensing has attracted wide attention in both

industry and academia [3, 7, 15, 17, 19, 21–24, 29, 30, 32,

33, 38, 40, 41, 44, 46, 48–50]. SoundWave [7] can detect

gestures by tracking hand motion (e.g., speed, direction, and

amplitude) based on the Doppler shift of the audio signals

reflected from the hands. AudioGest [29] can identify six

types of gestures with high accuracy by measuring Doppler

shift. EchoTrack [3] recognizes gestures based on the Time-of-

Flight information. FingerIO [22] measures the change in the

cross-correlation of the consecutive received acoustic signals

to track the moving hand. LLAP [41] enables trajectory

tracking of a finger by extracting signal phase information.

Strata [46] achieves higher accuracy by measuring CIR of the

reflected audio signals. Those works regard the finger/hand as

a single reflection point and achieve high tracking accuracy.

However, modeling the whole hand as a single point fails

to provide sufficient resolution. UltraGesture [17] measures

CIR magnitude of the reflected audio signal and recognizes

hand gestures. However, UltraGesture suffers from frequency

selective fading and needs a huge amount of training data to

effectively train neural network models. Unlike these works,

we present a holistic design and implementation of robust CIR

measurement, data augmentation, and learning based classifi-

cation, which as a whole improves the overall performance in

terms of accuracy and robustness.
Radio frequency (RF) signals are used to track body motion

[1, 4, 11, 14, 25, 26, 34, 35, 39, 42]. AllSee [14] recognizes

gestures using power-harvesting sensors. Rf-IDraw [39] and

RFIPad [4] track the trajectory of finger movement and enable

in-air handwriting. WiGest [1] leverages WiFi signal strength

to recognize gestures near mobile devices. WiSee [26] can

track different home gestures by extracting minute Doppler

shifts of WiFi signals induced by human body. WiFinger

[35] can recognize gestures by detecting unique patterns in

Channel State Information (CSI). WiDraw [34] enables hands-

free in-air drawing by processing the Angle-of-Arrival values

of incoming WiFi signals. Such works require RF devices and

support different applications.
Vision based gesture tracking are well-studied [20, 28, 31].

Microsoft HoloLens [20] uses specialized cameras to provide

contact-free human gesture tracking. Sony PlayStation VR

[31] require users to wear helmets and controllers, which are

cumbersome compared to contact-free systems. DigitEyes [28]

can model hand movement from ordinary gray-scale images.

However, vision based methods require good light conditions,

which limits their applications.
VI. CONCLUSION

This paper presents a holistic design and implementation of

an acoustic based gesture recognition system that can identify

15 types of gestures with high robustness and accuracy. In

order to alleviate frequency selective fading, this paper adopts

frequency hopping and carefully designs down-conversion and

demodulation to avoid inter-subframe interference. Based on

the insights obtained in the initial experiments, this paper

conducts data augmentation on raw CIR data to synthesize

new augmented data, which is used to effectively train neural

network models. In particular, the augmented data captures

different variations in practical scenarios such as different

gesture speeds, distances to transceiver, and signal attenua-

tion. The experiment results show that RobuCIR substantially

outperforms state-of-the-art work and achieves an overall

accuracy of 98.4% under different usage scenarios.
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