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Abstract—Fault Scenario Identification (FSI) is a challenging task that aims to automatically identify the fault types in communication
networks from massive alarms to guarantee effective fault recoveries. Existing methods are developed based on rules, which are not
accurate enough due to the mismatching issue. In this paper, we propose an effective method named Knowledge-Enhanced Graph
Neural Network (KE-GNN), the main idea of which is to integrate the advantages of both the rules and GNN. This work is the first work
that employs GNN and rules to tackle the FSI task. Specifically, we encode knowledge using propositional logic and map them into a
knowledge space. Then, we elaborately design a teacher-student scheme to minimize the distance between the knowledge embedding
and the prediction of GNN, integrating knowledge and enhancing the GNN. To validate the performance of the proposed method, we
collected and labeled three real-world 5G fault scenario datasets. Extensive evaluation conducted on these datasets indicates that our
method achieves the best performance compared with other representative methods, improving the accuracy by up to 8.10%.
Furthermore, the proposed method achieves the best performance against a small dataset setting and can be effectively applied to a
new carrier site with a different topology structure.
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1 INTRODUCTION

R Ecently, the rapid development of communication net-
works impressively revolutions our lives. At the same

time, new advanced communication networks deepen the
difficulty of network fault management [1]. In advanced
communication networks (e.g., 5G networks), the high den-
sity at both the hardware level and software level leads
to large amounts of alarms [2], which are the reflection of
network faults. Such large amounts of faults are hard to be
accurately identified by human operators effectively, which
will significantly impact the network performance.

Fault Scenario Identification (FSI) is an emerging task
for better processing network faults/alarms and keeping
networks running healthily [3], [4], [5], [6], [7], [8], [9]. It
aims to effectively identify concrete fault scenario types
from large amounts of alarm sets. In terms of its benefits,
it can help network operators complete fast fault recoveries
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by giving definite fault scenario types in some situations
without experiencing the fault localization step. It can also
improve existing fault localization methods by helping fo-
cus on potential devices. Due to the complexity and het-
erogeneity of advanced communication networks [10], it is
challenging to design an effective FSI method. In academic
fields, there is no extensive research on the FSI task. In
industry, network practitioners have accumulated a lot of
expert knowledge that can easily and directly transform into
rules. Thus, most of the general FSI methods are based on
rules that are regarded as the way to represent knowledge
[3], [4], [5].

However, when employing the rule-based methods to
deal with real-world fault scenarios, the methods usually
encounter two problems. The first problem is that some-
times the rules fail to match the alarm. The second problem
is that some rules are conflicted with each other. There
are two reasons that lead to the first problem. On the
one hand, some network alarms are delayed or stopped
to report due to several reasons, such as network conges-
tion and communication interruption. On the other hand,
designing a set of general rules to cover all fault scenario
instances is impractical due to the network complexity and
heterogeneity. The second problem is derived from the first
problem. When general rules cannot tackle some specific
fault scenario instances, many specific rules are designed.
With more and more specific rules generating, it is hard to
guarantee that the designed rules are not conflicted with
each other.

To address these issues, we consider introducing deep
learning technology into FSI method design. Since a deep
learning method is based on the constructed neural net-
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works to learn a function, which is similar to simulating
a large number of rules, they can avoid confronting the two
problems of rule-based methods to some extent. Addition-
ally, deep learning methods are likely to infer fault scenarios
accurately, where the rules cannot cover. Moreover, they can
easily integrate diverse information, such as alarm types,
occurrence locations, attribute information, and physical
topology. However, deep learning-based methods are diffi-
cult to distinguish similar scenarios with slight differences.
By contrast, rule-based methods can accurately identify
similar fault scenarios through activating different rules.
Therefore, to guarantee identification effectiveness, we con-
sider integrating knowledge into deep learning methods to
combine the advantages of both fields.

In this work, we propose an effective method named
Knowledge-Enhanced Graph Neural Network (KE-GNN).
We believe that this is the first work that employs GNN and
rules to tackle the FSI task. There are two main challeng-
ing problems for integrating knowledge into deep learning
methods to deal with the FSI task: (1) How to express com-
plex knowledge related to identifying fault scenarios in the
communication networks; (2) How to integrate knowledge
and deep learning models effectively? For the first prob-
lem, we change the knowledge into propositional formulae
(rules) by propositional logic. And then, we project the rules
onto a manifold by an encoder to get continuous vector
representations, which can help enhance the deep learning
model in later steps. For the second problem, we employ the
graph neural networks (GNNs) [11], [12], [13], [14] as the
deep learning model to identify faults by capturing the nat-
ural network topologies. Then, we design a teacher-student
scheme to inject knowledge into deep learning. The teacher-
student scheme uses knowledge rules (as the teacher) to
modify the weights in GNN (as the student) through adding
a regularization term to the training objective. The main
contributions of this paper are summarized as follows:

1) We propose a hierarchical knowledge expression
method, especially for complex knowledge. It can
divide knowledge into three levels and adopt
propositional logic to generate a series of rules with
the purpose of preparing the essential support for
integrating GNN.

2) We design a teacher-student scheme to connect
knowledge and GNN, which can help GNN cap-
ture certain knowledge and increase fault scenario
identification accuracy.

3) We collect three real-world fault scenario datasets
from the 5G networks and build extensive experi-
ments on them. The experimental results show that
KE-GNN outperforms other representative meth-
ods. Significantly, it can improve the accuracy by
5.41%∼9.83% compared with others. Furthermore,
the proposed method achieves the best performance
when the size of the dataset is small and applied to a
new carrier site with a different topology structure.

The rest of the paper is organized as follows. Section 2
describes preliminaries. Section 3 describes the concrete
structure of KE-GNN. Section 4 evaluates the performance
of our proposed method. Section 5 describes related work.
Finally, Section 6 and Section 7 concludes the paper and

presents future works. Note that in this paper, we focus on
the 5G communication networks.

2 PRELIMINARIES

In this section, we introduce the necessary preliminaries,
including Network Topology, Alarm, Fault Scenario, Fault
Scenario Graph, and Logical Formulae. The network topol-
ogy represents the actual physical links in communication
networks and provides topology information for identifying
faults. The alarm is the basic element of a fault scenario. A
fault scenario is composed of alarms, topology and some
extra information. A fault scenario graph is constructed
based on a fault scenario. A logical formula is used to
express related knowledge. We will introduce them in detail
below.

2.1 Network Topology
The network topology reflects the physical links among
devices and components in communication networks, in
which three types of devices and four link relationships are
mainly considered in this paper. The three types of devices
are Network Element, Card, and Port, respectively. Network
Element is a basic device with independent transmission
function. Card belongs to the Network Element and is the
circuit board that carries the functional modules. Port is
the I/O port of Card for communication with the outside
world. The four link relationships are Network Element has a
Card, Card has a Port, Port link to Port, Network Element link to
Network Element, respectively. Note that a network element
usually has several cards, and a card has several ports in
physical links. The ports are usually linked to the ports of
other network elements for photoelectric signal or informa-
tion transmission, but there are also a large number of non-
enabled ports in the topology. We also add links between
two network elements connected by their respective ports
to reduce the physical distance between them.

2.2 Alarm
2.2.1 Alarm Type
When the communication network devices or components
encounter failures, their core functions are limited or dam-
aged, resulting in alarms. We call these devices or compo-
nents that generate alarms as reporting positions, including
three types of devices, i.e., Network Element, Card, and Port.
As alarms are reported at different reporting positions and
reflect different failure functions, they usually have various
types. Here, we introduce the six representative alarm types
related to the subsequent examples in this paper, i.e., PW
Abnormal, N N Login, N COM, TEMP Abnormal, E LOS, Port
Abnormal, while the rest of alarm types used in experiments
can be found in Appendix B. The alarms with types PW
Abnormal, N N Login and N COM are reported by Network
Element when encountering power supply problem, offline
status, and gateway switching, respectively. The alarms
with TEMP Abnormal are emitted by Card and reflect the
abnormal temperature, and those with E LOS are reported
by Port when it cannot receive any photoelectric signal from
the port on the other side. The alarms with Port Abnormal
are also reported by Port when the port devices cannot run
normally.
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TABLE 1
Alarm Data Definition.

Field Name Information type Explanation Concrete Value
Name Attribute Alarm Name E LOS
Network Element Type Attribute Product name PTN 7900
Reporting Time Attribute - 44326.80786
Alarm Number Attribute Unique alarm number 2021051014340
Alarm Set Number Attribute Unique number of different alarm sets 34982
Network Element Name Location - 11366-Route(66)
Full Location Location Device position that reports the alarm 11366-Route(66)-3-1
Chain Information Extra Assert if the network element is in the chain True
Gateway Extra Gateway device that controls the network element 213-BankBoard
Fault Scenario Label Label The type of current alarm set labeled by experts Chain Network Element Log Out

2.2.2 Alarm Data
As the topology information is essential to identify the fault,
the devices generating alarms usually package the loca-
tion information into alarm data as the Network Element
Name, and Full Location fields. Based on the two pieces
of information, we can locate the reporting positions of
alarms in network topology and then obtain the concrete
topology information. Name is the name of a reported
alarm. Additionally, every alarm type has a unique alarm
name. Network Element Type is the serial number of a
device. Reporting Time includes the time information of an
alarm. Chain and Gateway Information belongs to extra in-
formation, which can further help FSI in some cases. Alarm
Number corresponds to a specific reported alarm. Every
alarm belongs to a unique alarm set after the fault detection
task that can cluster alarms into different alarm sets. Alarm
Set Number corresponds to a unique alarm set that contains
the current alarm. Note that the Fault Scenario Label field is
manually tagged by experts for offline training FSI models.
Tab. 1 shows an example of alarm data in our collected
three real-world fault scenario datasets. Note that not all
the collected alarm data have the extra information because
if the collected alarm data has no related fault scenarios
that need extra information to identify, it is unnecessary for
network operators to offer us extra information.

2.3 Fault Scenario
Different fault scenarios have different combinations of
alarms, topologies, and some extra information. The com-
binations of different information are various, leading to
different levels of identification complexity. In this paper,
we divide the fault scenarios into three levels:

• Unique Alarm: A fault scenario of this level can be
easily identified according to a specific alarm. For
example, once experts find an alarm, whose type is
TEMP Abnormal, they can overlook the other infor-
mation to give the fault scenario, Equipment Tempera-
ture High, which means that the current device need
to be rectified because of its high temperature.

• Fixed Combination: If some devices, which report
specific alarms, have specific position relations in
topology, a fault scenario can be identified. For
example, when two linked port devices report two
E LOS alarms, the fault scenario Port Double No Light
is determined. The Port Double No Lights means that
the current link between the two ports encounters a
fault.

• Complex Combination: The rest fault scenarios of
this level have large amounts of combinations of
alarms and topologies, which may require extra
information, leading to the difficulty of identifying.
For example, Identifying Network Element Out Of
Service needs to judge if the device which reports
an E LOS has the extra information, In Chain. This
extra information can help exclude the fault scenario
type, Chain Network Element Log Out. Note that the
Network Element Out of Service means that one or
several network elements cannot work normally,
and Chain Network Element Log Out further indicates
that the abnormal devices lie in the chain in network
topology.

A more detailed description of fault scenarios is shown in
Appendix B

2.4 Fault Scenario Graph
A fault scenario graph is denoted as an attributed graph
G = (V,E) with node attributes xv for v ∈ V and edge
attributes euv for (u, v) ∈ E, where V is a set of vertices
and E ⊆ (V × V ) is a set of edges. Nodes represent
possible fault locations in communication networks. A node
represents a piece of device (i.e., Network Element, Card,
and Port) or an alarm (e.g., E LOS, N N Login, ...). And
the attributes represent characteristics of the node. Edges
describe physical and logical connections between them.
An edge represents a physical connection between two
devices (i.e., Network Element has a Card, Card has a Port,
Network Element link to Network Element, Port link to Port)
or a logical connection between a device and an alarm
(i.e., device generate an alarm). And the attributes represent
characteristics of the edge. Fig. 1 gives some examples of
fault scenario graphs. In some real-world cases, for better
distinguishing the fault scenarios whose level is Complex
Combination, related extra information is added to every
node as attributes, such as In Chain information. If the alarm
data have no extra information, these features are not added.

2.5 Logical Formulae
Logical statements provide a flexible declarative language
for expressing structured knowledge. In this paper, we
focus on propositional logic, where a proposition p is a
statement which is either True or False [15]. A statement
(proposition) consists of subject, predicate and object. It can
also be regarded as a ground clause that does not contain
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Network Element Card Port Alarm Has Link Has Link Generate

E LOS

PW Abnormal

E LOS

(a) Power Error

N N Login

N N Login

N N Login
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(b) Port Double No Light

N N Login
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N COM
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(c) Network Element Out Of Service

N N Login
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(d) Network Element Out Of Service

Fig. 1. Fault scenario graph examples for three levels of knowledge. In subfigure (d), Network Element A links to Network Element B, and Port C
links to Port D in topology. And the edge between an device and an alarm, like Network Element B and N N Login F, indicates an device generate
the alarm. Besides, Network Element A has a Card E device. Card E has a Port C.
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Fig. 2. An overview of the KE-GNN method: Knowledge Expression and FSI Teacher-Student Scheme modules are used to guide the training of
GNN Identifier module. Obtaining the trained GNN Identifier module, real-world fault scenario graphs can pass through the module and be assigned
predicted fault scenario types.

any variables [16]. A propositional formula F is a compound
of propositions connected by logical connectives [17], [18],
e.g., ¬, ∧, ∨, ⇒. Also, a propositional formula is equal to a
grounding first-order logic formula. The concrete proposi-
tion formats designed for FSI are introduced in Section 3.

3 KNOWLEDGE-ENHANCED GRAPH NEURAL NET-
WORK FOR FAULT SCENARIO IDENTIFICATION

In this section, we focus on three specific problems: (1)
How to design a reasonable knowledge expression module
to express the communication network expert knowledge;
(2) How to design a scheme for combining the knowledge
and the deep learning method; (3) How to design and train
an effective deep learning method based on knowledge.
To tackle these problems, we propose a method called KE-
GNN, which includes three modules Knowledge Expression,
FSI Teacher-Student Scheme, and GNN Identifier. The overview
is shown in Fig. 2. In Knowledge Expression module, we use
propositional logic to express the FSI knowledge. Then, in
the FSI Teacher-Student Scheme, we encode the expressed
knowledge and then design a scheme to inject the know-
ledge into GNN Identifier. The FSI knowledge is regarded
as the teacher, and the GNN Identifier is regarded as the
student. Through this scheme, the FSI knowledge embed-
ding and the output of the GNN Identifier are in the same
space and becoming comparable. This scheme builds the
bridge between Knowledge Expression and GNN Identifier and

enhances the performance of GNN Identifier. GNN Identifier
module is composed of a GNN model and a multi-layer
perceptron, which takes the fault scenario graphs with labels
as input and output the predictions of fault scenario types.
Specifically, the training loss is adjusted by FSI Teacher-
Student Scheme module. In the following, we will provide
the details of the KE-GNN method, including Knowledge
Expression, FSI teacher-student scheme, and GNN Identifier.

3.1 Knowledge Expression
Based on the propositional logic mentioned in Section 2, we
design the Knowledge Expression module, which can gen-
erate the formula for fault scenario types. This module has
three steps: (1) Proposition Generation from Fault Scenario
Graphs, (2) Specific Formula Generation for Fault Scenario
Graphs, and (3) Generic Formula Generation for Fault
Scenario Types. In the first step, the key information can
be expressed by propositional logic according to different
propositions. In the second step, we use logical connectives
to link different propositions. And the formulae for fault
scenario graphs are generated accordingly. Especially, each
fault scenario graph corresponds to a specific formula. In
the last step, generic formulae for fault scenarios are ob-
tained. Specifically, the formulae for fault scenario graphs
are further classified into different groups based on the
fault scenario types. Then, a generic formula for a fault
scenario is obtained by refining the formulae in the same
group through disjunction logical connectives (i.e., ∨). The



5

TABLE 2
Relation Predicate Definition.

Predicate Function Example Tuple

Ne Next To Ne Two alarms are reported respectively by two Network Element
devices, which are linked to each other. Ne Next To Ne (N N Login, N N Login)

Twice Ne Next To NE Two alarms are reported respectively by two Network Element
devices, which are twice-order neighbors in the graph.. Twice Ne Next To Ne (N N Login, N N Login)

Port Next To Port Two ports are linked to each other report two alarms, respectively. Port Next To Port (E LOS, Port Abnormal)
Same Ne Two alarms in the same Network Element device. Same Ne (N N Login, E LOS)
Same Card Two alarms in the same Card devices. Same Card (TEMP Abnormal, E LOS)
Same Port Two alarms in the same Port devices. Same Port (E LOS, Port Abnormal)

In Chain An alarm is reported by a Network Element device that lies in the
network chain. In Chain (E LOS)

Same Gateway Two alarms are reported respectively by two Network Element
devices belonging to the same gateway. Same Gateway (N N Login, N N Login)

rest contents of this subsection detailed describe these three
steps.

3.1.1 Proposition Generation from Fault Scenario Graphs
The key information includes the topology (or extra) re-
lations between alarms, the behavior of reporting alarms,
and the phenomenon of happening fault scenarios. It is
firstly obtained from network operational experts. Then, we
express it as different propositions by propositional logic.
There are overall three types of propositions to illustrate
the key information. Note that Section 2 mentions that a
proposition consists of three components (a predicate, a
subject, and an object). The subject and object can be alarm
names or fault scenario names, and a predicate can combine
them to a proposition. Therefore, we defined three types of
predicates as the following. Relation Predicate: It describes
the position relation in topology or the environment relation
between the devices that report alarms. The environment
relation corresponds to the extra information (i.e., Chain
Information and Gateway) mentioned in Section 2.2.2. An
example of ground relation predicate, Ne Next To Ne (E
LOS, N N Login) , describes that the Network Element
devices are linked to each other. They or their inside devices
respectively report E LOS and N N Login. Any alarm type
can act as the object when grounding the relation predicate.
Tab. 2 shows all the defined relation predicates. Happen
Predicate: It indicates that a fault scenario instance of a
specific type happens. For example, Happen (Power Error)
describes that a network device happens a fault scenario,
Power Error. The objects of this predicate are composed of
fault scenario types. Report Predicate: It aims to describe
an alarm reported by a device. When only a fault scenario
graph has one alarm, we adopt Report Predicate. For exam-
ple, Report (E LOS) means an E LOS alarm is reported by a
device in a fault scenario graph.

According to predicate definitions, the three types of
propositions (relation proposition, happen proposition, and
report proposition) are naturally defined. Therefore, ap-
plying the related definitions to express the extracted key
information can generate propositions accordingly for fault
scenario graphs.

3.1.2 Specific Formulae Generation for Fault Scenario
Graphs
After the proposition generation, specific formulae are
generated by processing the fault scenario graphs. There

are three ways to form these formulae according to
the three-level identification complexity defined in Sec-
tion 2.3. The following three examples show the de-
tailed description. Unique Alarm: If an PW Abnormal
alarm is reported, the fault scenario can be directly iden-
tified as Power Error. The formula can be denoted as
Report (PW Abnormal) =⇒ Happen (Power Error).
Fixed Combination: If there is a specific ground relation
predicate, Port Next To Port (E LOS, E LOS), the type of the
fault scenario, Port Double No Light, is determined. This can
be formed as Port Next To Port (E LOS,E LOS) =⇒
Happen (Port Double No Light). Complex Combination:
The formulae of two fault scenario graphs shown in Fig. 1c
and Fig. 1d, are formed by Formula. (1) and Formula. (2).

Ne Next To Ne (N N Login, N N Login) ∧
Ne Next To Ne (N N Login, N COM)

=⇒ Happen (Network Element Out Of Service)
(1)

Ne Next To Ne (N N Login, N N Login) ∧
Same Ne (E LOS, N N Login) ∧
Ne Next To Ne (N N Login, E LOS)

=⇒ Happen (Network Element Out Of Service)

(2)

3.1.3 Generic Formula Generation For Fault Scenario
Types

After the specific formula generation, we firstly classify
these specific formulae into different groups based on their
fault scenario types. Then, in each group, we use a formula
signed as fij to express the j − th formula in the i − th
group. For better understanding, the fij can be regarded
as the specific formula generated from the j − th fault
scenario instance of the i − th fault scenario type. After
that, we compose the formulae in groups. Finally, for each
fault scenario type, we generate a unique composed formula
fi = ∨jfij .

When the level of a fault scenario type i is Unique
Alarm, different fault scenario instances of this type form
the same formulae. So the composed formula can be
extracted from any fault scenario instance j, i.e., fi =
∨jfij = fij . For example, Report (PW Abnormal) =⇒
Happen (Power Error) shown in Fig. 1a form the unique
formula for identifying Power Error fault scenario.
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For the Fixed Combination level, the formula is com-
posed in the same way with Unique Alarm. For ex-
ample, Port Next To Port (E LOS,E LOS) =⇒
Happen (Port Double No Light) define the unique for-
mula for Port Double No Light fault scenario identifica-
tion, shown by Fig. 1b.

The rest formulae for the fault scenario types, whose
level is Complex Combination, are composed of all the specific
formulae formed by different fault scenarios. The Com-
plex Combination level’s fault scenario types are the most
complicated among the three levels. And one of the main
contributions of this proposed method is to deal with such
kinds of fault scenarios. Designing artificial rules for these
types requires network experts to summarize related know-
ledge from large amounts of fault scenario graphs. However,
experts often overlook some essential match items, which
leads to the fact that the designed rules cannot cover some
fault scenario instances that belong to the same type. On
the contrary, the process of generic formula generation is
completely automatic. Although the automatically extracted
generic formula is complicated for people to understand,
it is easy for deep learning methods to learn from them.
Besides, they can represent related FSI knowledge inside
and out in a more comprehensive way.

In this paper, we mainly focus on three kinds of com-
plex fault scenarios (i.e., Network Element Out Of Service,
Chain Network Element Log Out, and Inside Network Element
Log Out). For example, Formula. (1) and Formula. (2) are
composed by ∨ operator. And they can be changed into the
form as Formula. (3). If only two specific formulae belong
to Netowrk Element Out Of Service, the composed formula
is Formula. (4). This formula is perceptibly more complex
than the other rules. Some composed formulae may contain
hundreds of ground clauses because of large amounts of
specific formulae generated for fault scenario graphs.

¬Ne Next To Ne (N N Login, N N Login) ∨
¬Ne Next To Ne (N N Login, N COM) ∨
Happen (Network Element Out Of Service)

∨
¬Ne Next To Ne (N N Login, N N Login) ∨
¬Same Ne (E LOS, N N Login) ∨
¬Ne Next To Ne (N N Login, E LOS) ∨
Happen (Network Element Out Of Service)

(3)

Ne Next To Ne (N N Login, N N Login) ∧
Same Ne (E LOS, N N Login) ∧
Ne Next To Ne (N N Login, N COM) ∧
Ne Next To Ne (N N Login, E LOS)

=⇒ Happen (Network Element Out Of Service)

(4)

The overall processes of knowledge expression are sum-
marized in Algorithm 1. Through Algorithm 1, we finally
get a generic formula for each type of fault scenario.

3.2 FSI Teacher-Student Scheme

The teacher-student scheme is designed for enabling sym-
bolic logical rules to guide the training of GNN. Note that
these rules are represented as formulae by propositional

Algorithm 1 Knowledge Expression Module
Input:

G: Fault scenario graph set;
L: Fault scenario graph label set;
t: The number of fault scenario types;

Output:
F : Generic formulae for fault scenario types;
SPF : The basic training data applied by the module
Mapping SLR

1: initialize f1, ..., ft as Empty Formula to represent the
generic formulae of t fault scenario types, respectively;

2: initialize F as Empty Formula Set to include all generic
formulae;

3: initialize SPF as Empty Formula Set to include the
training data of Encoder(·);

4: for all each l ∈ L and g ∈ G do
5: Observep ← Extract all relation and report proposi-

tions from g
6: labelp ← Extract the happen propositions according

to l;
{Proposition Generation from Fault Scenario Graphs
Section 3.1.1}

7: fobserve ← Link all the propositions in Observep by
the logical connective ∧

8: tempf ← (fobserve =⇒ labelp) ;
{Specific Formula Generation for Fault Scenario
Graphs in Section 3.1.2}

9: fl ← fl ∨ tempf ;
10: SPF ← SPF ∪ tempf
11: end for
{Generic Formula Generation for Fault Scenario Types
in Section 3.1.3}

12: F ← {f1, ..., ft};
13: return F , SPF .

logic in Knowledge Expression module. However, there
is a gap between symbolic logical rules and deep neural
networks because they are two dramatically different things.
To eliminate the gap, we project the logical rules and the
predictions of deep neural networks (GNN Identifier) to
the same logic embedding space. Then, we propose an FSI
Teacher-Student Scheme to improve the training process
of the GNN Identifier. We assign three parts to detail the
scheme. Firstly, we map the symbolic logical rules to an
embedding space. And then, we project the output of GNN
Identifier to the embedding that represents rules. Finally, we
can use the rules to guide the training of GNN Identifier by
the approach of adding a regularization term.

3.2.1 Mapping the Symbolic Logical Rules (the Teacher) to
An Embedding Space and Save the Embedding

We utilize a graph structure to represent a formula fi and
then construct a multi-layer Graph Convolutional Network
[19] as an encoder to project the formula, Encoder(fi).
Training the Encoder(·), we need the specific formulae
generated from fault scenario graphs. The training data of
encoder is referred to the second output, SPF , of Algorithm
1. Note that Encoder(·) is trained before the training of
GNN Identifier. The details of training data and the model
detail are shown in Appendix C. Next, we input its generic
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Algorithm 2 Compute Constraint of FSI Teacher-Student
Scheme
Input:

F : N symbolic logic rules for different fault scenarios;
ω: An N-dim probability vector;
EMB = {embi}i=1∼N : The logic embedding set corre-
sponding to N fault scenario type;
l: The label value of the fault scenario graph;

Output:
d: The distance from vprediction to a labeled rule Fl;

1: vprediction ← (v1, ..., vn), where v1, ..., vn = 0;
2: vlabel ← embl;
3: vprediction ← (vprediction +

∑N
i=1(ωi ∗ embi));

4: d = ∥vlabel − vprediction∥22;
5: return d;

formula to Encoder(·) for each fault scenario type and
generate a logic embedding. Finally, we sign these logic
embeddings by a set, EMB = {embi}i=1∼N , embi =
Encoder(fi). fi means the generic formula represents i− th
fault scenario type. embi is the corresponding logic embed-
ding computed by Encoder(·). N is the number of fault
scenario types.
3.2.2 Projecting the output of GNN Identifier (the Student)
to the Same Embedding Space with Symbolic Logical Rules
(the Teacher)
Completing the mapping process of symbolic logical rules is
the basis to eliminate the mentioned gap. Next, we introduce
the logic embedding space to the training of GNN Identifier.
The most important thing to accomplish this process is
to find concrete relations between rules and deep neural
networks. In other words, whether there are similar insights
when the two methods identify fault scenarios.

In this paper, we find the prediction result of GNN Iden-
tifier is a breakthrough entrance. The rule matching result
implies how well the information in a fault scenario graph
matches N rules of identifying fault scenario types. Driving
the GNN Identifier to learn certain real-world FSI know-
ledge, we consider regarding the N rules as the symbolic
logical rules. A deep neural network represents a complex
mathematical function. And using the function to identify
fault scenarios can be considered as a rule matching process
from another perspective. Though the rules included in the
function are hard for people to understand, the prediction
results are understandable. The prediction is an N-dim
probability vector ω. It can be regarded as the rule matching
result of GNN Identifier. Then, we take an average of N logic
embeddings in EMB weighted by the prediction shown by
Eq. (5). The obtained embedding vprediction can be seen as
the process of mapping a symbolic rule (a specific formula)
to the logic embedding space. Therefore, we name it the
prediction logic embedding.

vprediction =
N∑
i=1

(ωi ∗ embi) (5)

3.2.3 Assigning the Embedding of symbolic Logical Rules
(the Teacher) to Guide the training of GNN Identifier (the
Student)
The previous steps project symbolic logical rules (the
teacher) and the prediction results of GNN Identifier (the stu-

Algorithm 3 Training Process of the KE-GNN
Input:

G: Fault scenario graph set;
L: Fault scenario graph label set;
t: The number of fault scenario types

Output:
w∗: Optimal Weights of GNN Identifier;

1: F, SPF ← Algorithm1(G, L, t);
/* Knowledge Expression */

2: Train Encoder(·) by formula set extracted from fault
scenario graphs SPF ;

3: initialize EMB as empty set for saving the logic embed-
ding corresponding to N fault scenario type;

4: for all each fi ∈ F do
5: EMB ← EMB ∪ Encoder(fi)

/*The first step of FSI Teacher-Student Scheme*/
6: end for
7: initialize a GNN Identifier gnn(·) and its weights w;
8: for all each g ∈ G and l ∈ L do
9: pre← gnn(g);

10: compute the prediction loss Lpre by prediction vector
pre and label l;

11: distance← Algorithm2(F, pre, EMB, l);
/*The second and third step of FSI Teacher-Student
Scheme.*/

12: loss← Lpre + λ · distance;
13: w∗ ← update the weight w according to loss;

/*Using the symbolic logical rules to guide the train-
ing of GNN Identifier*/

14: end for;
15: return w∗;

dent) to the same logic embedding space. The next problem
is how to inject symbolic logical rules into the prediction
results of GNN Identifier. In other words, how the teacher
teaches the student. To solve this problem, we compute the
Euclidean Distance between the prediction logic embedding
and the practical logic embedding (embi=label). The compu-
tation process is shown by Eq. (6). In the logic embedding
space defined by the trained Encoder(·), we assume that
the prediction logic embedding (the output of the student)
should be close to the practical logic embedding(the em-
bedding of the teacher). Then, the distance is added to
the standard objective function (prediction loss) of GNN
Identifier as a regularization term. When training the GNN
Identifier, the parameters are updated based on not only the
ground truth but also the symbolic logical rules. In this way,
we build a bridge between knowledge of rules and GNN
Identifier.

distance = ∥embi=label − vprediction∥22 (6)

Algorithm 2 gives the concrete process to compute
distance by the proposed FSI Teacher-Student Scheme.
3.3 GNN Identifier
GNN Identifier includes a GNN and a multi-layer perceptron,
which aims to identify fault scenario graphs. It takes the
fault scenario graphs as input and output predicted fault
scenario types. Its standard objective function is based on
a prediction loss, Lpre. Adding the distance computed by
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TABLE 3
Dataset Description.

FSD1-15 FSD1-13 FSD2-4
Site City-1 City-1 City-2
Year 2020 2019 2021
Month July, October, November November -
Alarm Number 12548 3902 192
Alarm Type Number 31 20 2
Fault Scenario Instance Number 6335 1982 64
Fault Scenario Type Number 15 13 4
Extra Information∗ Yes No No
* The extra information mentioned in Section 2.2.2 belongs to supplementary information. It can help experts further distinguish specific fault

scenario types, such as Chain Network Element Log Out.

FSI Teacher-Student Scheme, the complete training objective
function is shown by Eq. (7). In the objective function, λ is a
trade-off factor.

Lke−gnn = Lpre + λ · distance (7)

Algorithm 3 shows the overall process of training GNN
Identifier. Additionally, the regularization term in our pro-
posed method is built by the logic embeddings, while in
the traditional teacher-student scheme, it is built by the
prediction results [20], [21], [22], [23].

Naturally, the Predicting stage follows the Training stage.
It is the stage that finally completes the real-world FSI task.
During this stage, Knowledge Expression and FSI Teacher-
Student Scheme modules are skipped and GNN Identifier
module executes a forward propagation process. For real-
world fault scenario graphs without labels passing through
the GNN Identifier, a concrete fault scenario type is given.

4 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to validate
the effectiveness of the proposed method by answering the
following four questions:

• Q1: Whether the performance of KE-GNN can out-
perform the baselines, and how much does the
knowledge enhance GNN?

• Q2: Does the value of λ influence the experimental
results, and what is the substantial influence?

• Q3: How about the identification ability of KE-
GNN, especially on a small sample dataset?

• Q4: How about the identification ability of KE-GNN
when we apply the trained KE-GNN on a new
carrier site?

Different GNN models can be adopted by GNN Identifier,
such as GraphSage, GCN, GAT, DGI, and GIN [11]. In this
paper, we apply GAT [24] and GCN [19] to GNN Identifier,
as they are two of the most popular models. And the
corresponding methods are named KE-GAT and KE-GCN
separately. Thereafter, in order to answer the four questions,
we first introduce the basic Settings of the related exper-
iments and then we design four experiments: Q1 Answer:
Performance analysis and comparison of KE-GNN on FSD1-
15, Q2 Answer: The impact of the λ value in KE-GNN
on FSD1-15, Q3 Answer: The identification ability of KE-
GNN on a small sample dataset (FSD1-13), Q4 Answer: The
identification ability of trained KE-GNN on a new carrier
site (FSD2-4).

4.1 Settings
4.1.1 Setup & Data Collection
The communication network environments that we con-
duct experiments on are 5G network environments, which
are built based on the technology, Software-defined Packet
Transport Network (SPTN) [25]. In our experiments, we fo-
cus on three types of devices. The three types are mentioned
in Section 2: Network Element, Card, and Port. The number of
fault scenario types we obtained is 15. These faults can cause
devices to report 35 alarm types totally.

Since there are few public fault scenario datasets col-
lected on the 5G network built by SPTN, we ask a network
operator in China for help. The network operator offers
three real-world fault scenario datasets (FSD1-15, FSD1-13,
and FSD2-4). They are collected in two 5G carrier sites that
belong to two cities (City-1 and City-2) in China. The City-
1 topology without alarms has 200,336 device nodes and
512,019 edges, and the average degree of the topology is
approximately 5. The City-2 topology without alarms has
74 device nodes and 117 edges, and the average degree
is around 2, which is simply shown by Fig. 3. The alarm
information in these datasets has been handled by the fault
detection module. This means that every alarm is given an
Alarm Set Number that is mentioned in Section 2.2.2. Table 3
gives the concrete dataset descriptions. According to the
topology and alarm information in these datasets, we build
the corresponding quantity of fault scenario graphs.

Fig. 3. A simple schematic diagram of City-2 with only showing the links
among network element devices.

4.1.2 Manual Data Labeling
The collected datasets from the network operator have no
labels, and it is challenging for us to label these datasets.
Firstly, we have to learn large volumes of FSI knowledge
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in advance from experts. Secondly, it is extremely time-
consuming to discuss with network operational experts
when we encounter complex fault scenarios. These two
challenges limit the scale of our collected datasets, but it is
actually sufficient for performance evaluation. More details
of why the process of labeling datasets is challenging are
further described in Appendix D.

4.1.3 Metrics
We use the identification accuracy to judge the performance
of different FSI methods from a macroscopical view. Eq. (8)
shows the computation process. True Number means how
many fault scenario graphs are identified accurately, and
the Total Number means the number of all fault scenario
graphs.

Accuracy =
True Number

Total Number
(8)

Further, we select several well-performed methods and use
Precision, Recall, and F1-Score to compare their abilities to
identify different fault scenario types. Thereafter, we can
know which fault scenario types our proposed method can
enhance. The related definitions are shown by Fig. 4.

: Target Label

: Non-target label

Truth

Id
en

ti
fi

ca
ti

on

Fig. 4. The Target label corresponds to the fault scenario type that
we measure. The Non-target label corresponds to other fault scenario
types.

4.1.4 Baselines
In this paper, we implement the methods included in [6]
and introduce them into our comparison experiments as
state-of-the-art, as it is nearly the latest work related to
our fault scenario identification task. We implement the
methods used in [6], including Bayesian Network (BN),
Random Forest (RF), Artificial Neural Network (ANN), and
Support Vector Machine (SVM), and the ensemble method
of Artificial Neural Network and Support Vector Machine
(ANN-SVM), as multi-class forms to tackle the FSI task.
Since the XGBoost method [26] is a classical machine learn-
ing method together with SVM and RF, we also implement
it. Further, we extra implement the rule-based method for
the comparison with KE-GNN. Besides, we implement two
widely used GNN methods to process graph-based data.
Note that it is the two GNNs that we use knowledge to
enhance. Table 4 shows the baselines. The implementation
detail can be found in Appendix A.

4.2 Q1 Answer: Performance analysis and comparison
of KE-GNN on FSD1-15
To evaluate the performance of KE-GCN and KE-GAT, we
train them by using the fault scenario dataset, FSD1-15.
Then, we compare the performance of KE-GCN and KE-
GAT with the performance of baseline methods trained with
FSD1-15. In this experiment, we select 756 fault scenario
instances as the training set and 5579 fault scenario instances
as the test set. Every fault scenario type in the training set

TABLE 4
Baselines: Nine methods are selected as the baselines in the

comparison experiment about identification accuracy, including the
state-of-the-art.

Method Input Reference
BN Fault Scenario Variables [6], [27]
RF Fault Scenario Features [6], [28]
ANN Fault Scenario Features [6], [29]
SVM Fault Scenario Features [6], [30], [31]
ANN-SVM Fault Scenario Features [6], [32]
XGBoost Fault Scenario Features [26]
Rule-based Fault Scenario Sequence -
FsiGCN1 Fault Scenario Graphs [19]
FsiGAT2 Fault Scenario Graphs [24]

The Concrete Settings are illustrated in Appendix A
1 It is divided into FsiGCN-NO and FsiGCN-O. FsiGCN-NO is im-

plemented by according to [19], with the same structure. FsiGCN-O
is an improved FsiGCN-NO.

2 It is divided into FsiGAT-NO and FsiGAT-O. FsiGAT-NO is imple-
mented by according to [24], with the same structure. FsiGAT-O is
an improved FsiGAT-NO.

RF
SVM ANN

ANN-SVM

Rule-based

XGBoost BN
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89.47% 89.32%

90.07% 90.32%
90.86% 91.06% 91.09%

93.49% 93.74%

97.11%
97.65% 97.92%

99.15%

FSD1-15

Fig. 5. Accuracy comparison of different representative methods on
FSD1-15, including the state-of-the-art.

and test set has about 50 and 371 instances, respectively.
Additionally, we first trained our proposed method on the
training set, and then we had a business trip to City-1
to validate the real performance of the proposed method,
collecting the test set. This is why the scale of the training
set is smaller than the test set.

As illustrated in Fig. 5, KE-GAT outperforms the base-
line methods, achieving overall identification accuracy of
8.29% higher than rule-based methods. Though the average
accuracy of the other two methods based on GNN can
achieve approximately 97.5%, it is still lower than KE-GAT
and KE-GCN, showing that knowledge can further enhance
not only FsiGAT-O but also FsiGCN-O in different degrees.
According to the analysis of Precision, Recall, and F1-score
shown in Table 5, Table 6, and Table 7, we further analyze
FsiGCN-O, KE-GCN, FsiGAT-O, and KE-GAT.

Obviously, FsiGCN-O completely fails to handle the fault
scenarios, Surrounding Temperature High and Port Double No
Light, where belong to the level of Unique Alarm and Fixed
Combination. However, KE-GCN successfully addresses the
first one and dramatically improves the effectiveness of
Port Double No Light with the precision achieving 1.0. The
fault scenarios, which belong to Complex Combination (Inside
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TABLE 5
Precision comparison under different fault scenarios for FsiGAT-O,
KE-GAT, FsiGCN-O, and KE-GCN. Complex fault scenarios (Chain

Network Element Log Out and Inside Network Element Log Out) are
improved noticeably by knowledge. Note that FsiGCN-O completely
fails to identify Surrounding Temperature High and Port Double No

Light, while KE-GCN can improve them.

Fault Scenario Type Method
GAT1 KE-GAT GCN2 KE-GCN

Network Element Out
Of Service 0.995 0.990 0.989 0.991

Card Error 0.993 1.000 0.988 0.999

Power Error 0.520 0.951
(+82.9%) 1.000 0.951

Port Self No Light 0.910 0.966
(+6.2%) 0.905 0.905

Port Light Error 0.982 0.996 0.992 0.994

Fan Error 0.818 1.000
(+22.3%) 1.000 1.000

Light Module Error 1.000 0.500 1.000 1.000
Surrounding

Temperature High 1.000 1.000 0.000 1.000
(+∞)

Equipment
Temperature High 1.000 0.993 1.000 1.000

Inside Network
Element Log Out 0.407 0.667

(+63.9%) 0.353 0.394
(+11.6%)

Port Double No Light 1.000 0.933 0.000 1.000
(+∞)

Port Mask Exceed
Limitation 0.996 1.000 0.998 1.000

Link Error 0.994 0.991 0.997 0.997
Memory Exceed

Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.184 0.909

(+394.0%) 0.047 0.190
(+304.3%)

1 FsiGAT-O
2 FsiGCN-O

Network Element Log Out and Chain Network Element Log
Out), can be identified better by KE-GCN. These elevations
show the ability of knowledge enhancing FsiGCN-O.

In terms of FsiGAT-O and KE-GAT, the difference is
noticeable, showing the function of knowledge in FsiGAT-
O. From Table 5, we can see nearly all the precision values
of KE-GAT are higher than FsiGAT-O, except for the value
of Port Double No Light. From Table 6 and Table 7, nearly all
the other recall and F1-score values of KE-GAT are higher
than FsiGAT-O, including the recall and F1-score values of
Port Double No Light. Since the number of Light Module Error
instances is small in the test set, a small number of errors can
lead to low recall and F1-score values of KE-GAT. In general,
from Table 7, we find that knowledge mainly helps FsiGAT-
O improve seven fault scenarios (Power Error, Port Self No
Light, Fan Error, Surrounding Temperature High, Inside Network
Element Log Out, Port Double No Light and Chain Network
Element Log Out). Note that the fifth and seventh fault
scenario types belong to Complex Combination level, which
is vitally important for network operators. This elevation
indicates that knowledge can help improve the identifica-
tion performance of different fault scenarios, which belong
to different levels, including Complex Combination.

The above analysis shows the ability of knowledge
enhancing FsiGCN-O and FsiGAT-O, especially the im-
provements of FsiGAT-O. A clearer performance analysis
displayed by the confusion matrix can be referred to Ap-
pendix E. Next, for vividly understanding the mechanism of

TABLE 6
Recall comparison under different fault scenarios for FsiGAT-O,
KE-GAT, FsiGCN-O, and KE-GCN. Utilizing knowledge, KE-GAT

and KE-GCN can improve the recall of four fault scenarios
(Surrounding Temperature High, Port Double No Light, Inside

Network Element Log Out, and Chain Network Element Log Out)
together. The four scenarios include two complex scenarios.

Fault Scenario Type Method
GAT1 KE-GAT GCN2 KE-GCN

Network Element Out
Of Service 0.961 0.995 0.982 0.965

Card Error 0.997 0.994 0.999 0.998
Power Error 1.000 1.000 1.000 1.000

Port Self No Light 0.857 0.969
(+13.1%)

0.844 0.844

Port Light Error 0.999 1.000 0.999 0.999
Fan Error 0.900 1.000

(+11.1%)
1.000 1.000

Light Module Error 1.000 1.000 1.000 1.000
Surrounding

Temperature High 0.769 1.000
(+30.0%)

0.000 1.000
(+∞)

Equipment
Temperature High 0.993 0.998 1.000 1.000

Inside Network
Element Log Out 0.647 0.706

(+9.1%)
0.706 0.765

(+8.4%)
Port Double No Light 0.391 0.609

(+55.8%)
0.000 0.652

(+∞)
Port Mask Exceed

Limitation 0.988 0.990 0.986 0.986

Link Error 0.908 0.988
(+8.8%)

0.985 0.982

Memory Exceed
Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.636 0.909

(+42.9%)
0.182 1.000

(+449.5%)
1 FsiGAT-O
2 FsiGCN-O

the knowledge of enhancing the original GNNs, we take the
fault scenario graph shown by Fig. 6 as an example. Without
considering the extra information, the graph structure can
represent Chain Network Element Log Out and Port Self No
Light. In this case, extra information is the key factor for
GNN identifying the two fault scenarios. When we use
FsiGAT-O to identify the fault scenario graph, Chain Network
Element Out Of Service, the graph is identified as a Port Self
No Light. The reason is that the information in two fault
scenario graphs is too similar for FsiGAT-O to distinguish
the little difference (i.e., different extra information in just
one node of a fault scenario graph). However, KE-GAT
can give an accurate identification result. The reason is
that KE-GAT captures specific knowledge, which can help
distinguish the difference of extra information. Formula (9)
and formula (10) show the knowledge of the two fault
scenarios.

Report (E LOS)

=⇒ Happen (Port Self No Light) (9)

Report (E LOS) ∧
In Chain (E LOS)

=⇒ Happen (Chain Network Element Log Out)

(10)
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TABLE 7
F1-score comparison under different fault scenarios for FsiGAT-O,
KE-GAT, FsiGCN-O, and KE-GCN. F1-score can reflect the overall

ability to identify different fault scenario types. The bold words in the
table show the fault scenarios improved by knowledge.

Fault Scenario Type Method
GAT1 KE-GAT GCN2 KE-GCN

Network Element Out
Of Service 0.977 0.992 0.986 0.978

Card Error 0.995 0.997 0.993 0.998
Power Error 0.684 0.975

(+42.5%)
1.000 0.975

Port Self No Light 0.883 0.968
(+9.6%)

0.873 0.873

Port Light Error 0.990 0.998 0.996 0.996
Fan Error 0.857 1.000

(+16.7%)
1.000 1.000

Light Module Error 1.000 0.667 1.000 1.000
Surrounding

Temperature High 0.870 1.000
(+17.2%)

0.000 1.000
(+∞)

Equipment
Temperature High 0.996 0.995 1.000 1.000

Inside Network
Element Log Out 0.500 0.686

(+37.2%)
0.471 0.520

(10.4%)
Port Double No Light 0.563 0.737

(+30.9%)
0.000 0.789

(+∞)
Port Mask Exceed

Limitation 0.992 0.995 0.992 0.993

Link Error 0.949 0.990
(+4.3%)

0.991 0.990

Memory Exceed
Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.286 0.909

(+217.8%)
0.074 0.319

(+331.1%)
1 FsiGAT-O
2 FsiGCN-O

TABLE 8
Precision Comparison for KE-GAT assigned three different λ values.

The bold fault scenario types are improved by KE-GAT with different λ
in various degrees, but KE-GAT with λ = 0.1 performs the best.

Fault Scenario Type
Method

GAT1 KE-GAT
λ = 0.01 λ = 1 λ = 0.1

Network Element Out
Of Service 0.995 0.995 0.988 0.990

Card Error 0.993 0.980 1.000 1.000
Power Error 0.520 0.929

(+78.7%)
0.951

(+82.9%)
0.951

(+82.9%)
Port Self No Light 0.910 0.910 0.832 0.966

(+6.2%)
Port Light Error 0.982 0.980 0.997 0.996

Fan Error 0.818 0.900
(+10.0%)

1.000
(+22.3%)

1.000
(+22.3%)

Light Module Error 1.000 1.000 0.333 0.500
Surrounding

Temperature High 1.000 1.000 1.000 1.000

Equipment
Temperature High 1.000 0.993 0.993 0.993

Inside Network
Element Log Out 0.407 0.379 0.333 0.667

(+63.9%)
Port Double No Light 1.000 0.714 0.909 0.933

Port Mask Exceed
Limitation 0.996 1.000 1.000 1.000

Link Error 0.994 0.997 0.993 0.991
Memory Exceed

Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.184 0.600

(+226.1%)
0.750

(+307.6%)
0.909

(+394.0%)
1 FsiGAT-O

E LOS

A B

Fig. 6. The fault scenario can represent not only a Port Self No Light
fault scenario but also a Chain Network Element Log Out when the fault
scenario graph has no extra information. Note that this figure is just a
simple case abstracted from real-world fault scenario graphs. In real-
world fault scenarios, the topology structure can be more complex.

4.3 Q2 Answer: The impact of the λ value in KE-GNN
on FSD1-15
According to Eq. (7), knowledge can hardly enhance the
performance of FsiGAT-O when λ is assigned a small value.
Moreover, if the λ is assigned a big value, the FsiGAT-O
cannot capture graph structure information well. Therefore,
it is necessary to evaluate the impact of λ values, and we
need to leverage the λ values to achieve a fine performance.
To support our assumptions, we design the following ex-
periment. The segmentation of FSD1-15 is the same as the
experimental setting of Q1 Answer.

In this experiment, three different λ values (0.01, 0.1,
and 1) are selected. The accuracies of FsiGAT-O, KE-GAT
(λ = 1), KE-GAT (λ = 0.01), and KE-GAT (λ = 0.1),
respectively are 97.11%, 97.67%, 97.99%, and 99.15%. Note
that all three KE-GAT implementations perform better than
FsiGAT-O, especially when the λ = 0.1. Next, we focus on
the comparisons among the three implementations. Table 8,
Table 9, and Table 10 show the concrete performance of
identifying different fault scenario types. Combining the
three tables to analyze together, we find that when the λ is
assigned 0.01, the improvement of FsiGAT-O is not enough.
When λ = 0.1, KE-GAT achieves the best performance,
compared with the other λ settings. When the λ is raised
from 0.1 to 1, the overall identification ability of different
fault scenario types drops in varying degrees. More intuitive
performance analysis by using a bar chart and several
confusion matrixes can be found in Appendix E.

From the results of this experiment, we show the impact
of different λ values, indicating that not any values can be
used to train KE-GAT and λ = 0.1 can be a good selection.

4.4 Q3 Answer: The identification ability of KE-GNN on
a small sample dataset (FSD1-13)
Since it is hard to obtain labeled fault scenario data some-
times, it is necessary for us to evaluate our method on a
small training set. We design a small sample experiment
on FSD1-13, where the training set has 97 fault scenario
instances and the test set has 1885 fault scenario instances.
Every fault scenario type in the training set has about 7 and
145 instances, respectively. The instances in training sets are
selected manually by experts, which cover the core fault
scenarios. Besides, for further validating the effectiveness
of KE-GAT and KE-GCN trained with a small training set,
we train them with sufficient training data (normal training
setting).
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TABLE 9
Recall Comparison for KE-GAT assigned three different λ values. Note

that when KE-GAT adopts λ = 0.1, the number of improved fault
scenario types doubles. Also, in terms of the overlapped improved

types, KE-GAT with λ = 0.1 performs better.

Fault Scenario Type
Method

GAT1 KE-GAT
λ = 0.01 λ = 1 λ = 0.1

Network Element Out
Of Service 0.961 0.990 0.961 0.995

Card Error 0.997 0.994 0.994 0.994
Power Error 1.000 1.000 1.000 1.000

Port Self No Light 0.857 0.959
(+11.9%)

0.963
(+12.4%)

0.969
(+13.1%)

Port Light Error 0.999 0.999 0.999 1.000
Fan Error 0.900 0.900 0.900 1.000

(+11.1%)
Light Module Error 1.000 1.000 1.000 1.000

Surrounding
Temperature High 0.769 0.923

(+20.0%)
1.000

(+30.0%)
1.000

(+30.0%)
Equipment

Temperature High 0.993 0.998 0.998 0.998

Inside Network
Element Log Out 0.647 0.647 0.647 0.706

(+9.1%)
Port Double No Light 0.391 0.435

(+11.3%)
0.435

(+11.3%)
0.609

(+55.8%)
Port Mask Exceed

Limitation 0.988 0.984 0.988 0.990

Link Error 0.908 0.875 0.908 0.988
(+8.8%)

Memory Exceed
Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.636 0.273 0.273 0.909

(+42.9%)
1 FsiGAT-O

TABLE 10
F1-score Comparison for KE-GAT assigned three different λ values.
Corresponding to the analysis of precision and recall, KE-GAT with

λ = 0.1 elevates the most quantity of fault scenario types.

Fault Scenario Type
Method

GAT1 KE-GAT
λ = 0.01 λ = 1 λ = 0.1

Network Element Out
Of Service 0.977 0.989 0.977 0.992

Card Error 0.995 0.997 0.987 0.997
Power Error 0.684 0.975

(+42.5%)
0.963

(+40.8%)
0.975

(42.5%)
Port Self No Light 0.883 0.891 0.936

(+6.0%)
0.968

(+9.6%)
Port Light Error 0.990 0.998 0.990 0.998

Fan Error 0.857 0.947
(+10.5%)

0.900
(+5.0%)

1.000
(+16.7%)

Light Module Error 1.000 0.500 1.000 0.667
Surrounding

Temperature High 0.870 0.960
(+10.3%)

1.000
(+17.2%)

1.000
(+17.2%)

Equipment
Temperature High 0.996 0.995 0.995 0.995

Inside Network
Element Log Out 0.500 0.440 0.478 0.686

(+37.2%)
Port Double No Light 0.563 0.588 0.541 0.737

(+30.9%)
Port Mask Exceed

Limitation 0.992 0.992 0.994 0.995

Link Error 0.949 0.931 0.950 0.990
(+4.3%)

Memory Exceed
Limitation 1.000 1.000 1.000 1.000

Chain Network
Element Log Out 0.286 0.400

(+39.9%)
0.375

(+31.1%)
0.909

(+217.8%)
1 FsiGAT-O

�����������������������	� ����� �����
Fig. 7. Identification accuracy comparison on FSD1-13. The red dotted
line corresponds to KE-GAT (Small). It shows that the performance
of KE-GAT trained with a small sample dataset outperforms FsiGAT-O
(Small), FsiGCN-O (Small), and KE-GCN (Small). At the same time, the
performance of KE-GAT (Small) is the closest to the methods trained
with sufficient sample data. The difference between KE-GAT (Small) and
FsiGAT-O (Normal) is only 1.22%.

1 2 3 4 5 6 7 8 9 10 11 12 13

True Fault Scenario Type

Card Error(1)
Power Error(2)

Port Self No Light(3)
Port Light Error(4)

Port Double No Light(5)
Port Mask Exceed Limitation(6)

Fan Error(7)
Light Module Error(8)

Surrdounding Temperature High(9)
Link Error(10)

Equipment Temperature High(11)
Network Element Out Of Service(12)
Inside Network Element Log Out(13)

0.99
0.69

1.00
0.99

1.00
1.00

1.00
0.89

1.00
0.92

1.00
0.95

0.77

Precision

Fig. 8. Confusion Matrix of KE-GAT trained with FSD1-13.

Fig. 7 gives the experimental comparison results. KE-
GAT (Small) achieves the best accuracy of 96.45% compared
with the methods trained with FSD1-13. It can improve the
accuracy of FsiGAT-O (Small) by up 3.4%. FsiGCN-O (Small)
can also be enhanced by up 2.5% through knowledge, but
the performance of KE-GCN (Small) is worse than KE-GAT
(Small). Further, we find that the difference between KE-
GAT (Small) and other methods trained with sufficient data
is from 1.22%∼1.53%. This means the proposed method
trained with the small sample dataset has the ability to
improve the performance of FsiGAT-O (Small) and FsiGCN-
O (Small). Further, the performance of KE-GAT (Small) is the
closest to the other methods trained with sufficient data.

According to the confusion matrix of KE-GAT (Small)
shown by Fig. 8, every fault scenario type is tackled rela-
tively satisfactorily. This indicates that KE-GAT under the
small sample dataset can also perform well.

4.5 Q4 Answer: The identification ability of trained KE-
GNN on a new carrier site (FSD2-4)
For evaluating the identification ability of trained KE-GNN
on a new carrier site, we apply the method trained by FSD1-
13 directly on FSD2-4, whose network topology in City-
2 is different from the topology in City-1. Besides, some
extra information, which can help identify complex fault
scenario types, varies from City-1 to City-2, such as different
gateway configurations. The difference sometimes leads to
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TABLE 11
Identification accuracy comparison on FSD2-4: Identification number of the four classes and Total Accuracy.

Sample Scale Small Normal
Method GAT1 KE-GAT GCN2 KE-GCN GAT1 KE-GAT GCN2 KE-GCN

Network Element Out Of Service 2/2 2/2 0/2 0/2 2/2 2/2 2/2 2/2
Inside Network Element Log Out 2/10 7/10 6/10 7/10 6/10 10/10 5/10 5/10

Port Self No Light 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35
Port Double No Light 17/17 17/17 17/17 17/17 17/17 17/17 17/17 17/17

Accuracy 87.50% 95.31% (+7.81%) 90.63% 92.18% (+1.55%) 93.75% 100.00% (+6.25%) 92.18% 92.18%
1 FsiGAT-O
2 FsiGCN-O

the identification failure of rule-based methods in industry,
but our proposed method has the ability to make accurate
identifications. The reason may be that the proposed method
can learn some general local topology information or key
features of alarm relations that can also be used in different
carrier sites.

The concrete performance is shown by Table 11. The
small sample scale corresponds to the methods trained with
FSD1-13, such as KE-GAT (Small). The normal sample scale
corresponds to the methods trained with sufficient data in
the previous section, such as KE-GAT (Normal). From the
table, we can find that the proposed method can be directly
applied in City-2 without much performance decay, but the
performance of FsiGAT-O and FsiGCN-O is unsatisfactory.
Note that KE-GAT (Normal) achieves an overall accuracy
of 100%. According to the table, almost all the methods
suffer from lower performance on the Inside Network Element
Log Out scenario compared with other scenarios, while all
the methods perform well on the Port Double No Light
scenario. The instances of Port Double No Light scenario can
be identified well by both common GNN and KE-GNN
because they usually contain a small number of alarms (two
E LOS alarms) in FSD2-4. Differently, the instances of the
Inside Network Element Log Out scenario contain much more
alarms compared with other scenarios in FSD2-4, increasing
the complexity of fault scenario identification. Thus, the
instances of Inside Network Element Log Out scenario are
hard to tackle by common GNN. By contrast, our proposed
method performs well because of introducing knowledge,
such as 100% accuracy of KE-GAT (Normal). Additionally,
the reason why the KE-GCN trained with the complete data
do not be enhanced is that from Fig. 7, we can find that
though knowledge can enhance GCN, the rising degree is
not significant.

The experimental results show that our proposed
method has a certain generalization ability.

5 RELATED WORK

5.1 Network Fault Management
The flourishing of new advanced communication networks
drives the rapid development of network fault management
(NFM). In existing NFM, fault detection (FD) and fault
localization (FL) are two of the components. FD determines
whether the current network works in normal conditions or
if a fault has occurred. Generally taking the FD output as
the input, FL aims to deduce the exact root cause from a
set of observed failure indications (e.g., alarms), finding the
target minimum operational unit (e.g., the precise location
of a broken fiber in the network) [1], [33].

In the field of communication networks, there are many
effective methods applied in the FD task, such as multi-layer
perceptron, random forest, and support vector machine
(SVM) [6], [7], [8], [9], [34], [35], [36], [37]. Further, in the FL
task, Bayes-based methods are popular methods to tackle
the FL task [38], [39], [40], [41], [42], [43], [44], [45]. Some
methods used in the FD task are also included in the FL
task, such as SVM [46], [47]. Next, we give some detailed
descriptions of recently proposed methods applied in the
FL task. Machine learning-based technique methods (SVM,
Random Forest, and Multi-layer perceptron) [47] are utilized
to localize the link faults in topology. A Bayesian network is
constructed based on sequentiality between alarms, where
the Bayesian inference is executed for localizing the prob-
able root cause alarms. Because of the network complexity
and heterogeneity, the common problems of current meth-
ods in the FL task of advanced communication networks can
be: (1) low localization efficiency; (2) identifying probable
root cause alarms instead of minimum operational units.

To sum up, existing methods applied in the FD task can
perform well in communication networks. Though there is
extensive research on the FL task, existing methods have not
tackled the FL task satisfactorily in present-day communica-
tion networks [3], [4], [5]. In this paper, compared with FD
and FL tasks, the FSI task also belongs to NFM, but it is an
emerging task [3], [4], [5].

5.2 Graph Neural Networks
GNN has been widely applied for graph representation
learning in recent years because of its well-performed char-
acteristics. Existing GNNs are mainly based on the Fourier
transform theory of graphs developed by [48] and the mes-
sage passing mechanism [24]. GCN and GAT are two of the
popular representatives [19], [24], [49], [50], [51].

In communication networks, every device links to sev-
eral other devices, and then large volumes of devices con-
stitute a large-scale network topology. When devices en-
counter faults and report alarms, the alarms can be regarded
as the dynamic nodes linked to the topology, constructing
different graphs. These graphs are named the fault scenario
graphs defined in Section 2. Therefore, the fault scenario
graph can be naturally handled by GNN. Finally, according
to the summary of GNN, we mainly pay attention to the
application of two popular GNN methods (GCN and GAT)
to the FSI task in communication networks.

5.3 Neural-symbolic Systems
The symbolic system and the neural system can make
good use of knowledge and data, respectively. However,
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both knowledge and data are essential for people to make
decisions.

Now, AI researchers are growing their interest in comb-
ing symbolic and neural systems to integrate the advan-
tages of both systems [52], [53], [54], [55], [56], [57]. The
conceptual comparison of neural-symbolic systems with
neural and symbolic systems can be stated from three di-
mensions. Efficiency: Neural-symbolic systems can be fast,
thus promoting reasoning over large-scale data. Generaliza-
tion: Neural-symbolic systems do not completely depend
on massive labeled data, and therefore they have sufficient
generalization capabilities. A neural-symbolic system can
apply background or expert knowledge to make up for
the lack of training data, enabling the model to reach the
satisfying performance with decent generalization ability.
Interpretability: The neural-symbolic system can embody
a transparent reasoning process and hence is interpretable
[58]. This is particularly useful in some applications such
as medical image analysis when people need not only a
decision but also the reason and the decision-making pro-
cess. The neural-symbolic system has become an important
approach for explainable artificial intelligence but has not
yet been applied to the NFM of communication networks.

6 CONCLUSION

This paper presents an effective FSI method, called KE-
GNN, for communication networks. In order to combine the
advantages of the rule-based methods and deep learning
methods for identifying fault scenarios, this paper adopts
the Propositional Logic to express complex knowledge
firstly. Then a Teacher-Student Scheme is proposed for us-
ing the knowledge to guide the training of deep learning
methods. The experiment results show that knowledge can
really enhance the GNN methods, especially the KE-GAT,
which outperforms other representative baseline methods
and achieves an overall identification accuracy of 99.15%
on FSD1-15. When the scale of the selected training set
(i.e., FSD1-13) is relatively small, KE-GAT still achieves a
competitive accuracy of 96.45%. Moreover, when we directly
apply a trained KE-GNN method to a new carrier site
(i.e., FSD2-4), the performance of KE-GNN method is still
effective compared with the original GNN, showing the
better generalization ability. Therefore, KE-GAT is an effec-
tive method for the identification of the fault scenario and
satisfies the requirements of the advanced communication
networks, showing the advantage of KE-GNN.

7 FUTURE WORK

In this paper, the proposed method can effectively identify
fault scenarios, which can be further improved from the
technique and the usage scenario aspects.

For the technique aspects, in the future, we would like
to be devoted to three research directions about our current
design. (1) Consider analyzing and improving the inference
speed of KE-GNN. (2) Consider more strict training settings
for small datasets. Few-shot and zero-shot technologies aim
to tackle the small sample size problem, and introducing
them into KE-GNN is a promising research direction. (3)
Consider different encoding methods for domain rules to

realize a good teacher model could be a potential direc-
tion. Other encoding methods, such as sequence data-based
methods (e.g., RNN, LSTM) and graph data-based methods,
could be exploited to further improve the GNN perfor-
mance.

For the usage scenario aspect, we can also consider
evaluating the proposed method on the other scenarios in
communication networks [59], [60], [61], [62]. The optical
transport network, another advanced communication net-
work, is a natural choice for us to apply the KE-GNN [62].
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APPENDIX A
METHOD SETTING

In our paper, GNNs were implemented based on the library
Deep Graph Library [63]. The concrete method settings are
shown by Table 12.

TABLE 12
The Concrete Method Settings in baselines

Method Setting

Rule-based The rule-based method is designed by expert
knowledge

SVM

SVM cannot be trained by the graph data, so we
extract 3+N features to generate the feature vector
according to the fault scenario sequence, where
the N means the number of the alarm types. The
first three features are the number of the network
elements, card and port in the sequence, and the
rest features record the the number of different
alarms. For example, if current 5G network has
three alarm types in all fault scenarios, a feature
vector can be [3,4,5,2,0,1]. This vector represent
there are three network elements, four cards, five
ports and three alarms in the current fault sce-
nario sequence

RF Same with the SVM
XGBoost Same with the SVM

ANN

A multi-layer perceptron is an implementation
way of Artificial Neural Network(ANN). The in-
put is the same with SVM, XGBoost, and RF. The
output is the prediction result.

ANN-SVM

ANN-SVM is an ensemble learning method based
on a stacking technique. In this work, ANN and
SVM are selected as base classifiers for stacking
[6]. The input of the base classifier is the same
with SVM, XGBoost, RF, and ANN. The output is
the prediction result.

BN

A Bayesian network (BN) [27] is a directed acyclic
graph, where the nodes represent different vari-
ables designed by experts, including Alarm Type,
Fault Scenario Type, Level. The edge represents the
causalities among nodes, including Alarm Type
to Level, Alarm Type to Alarm Type, and Level to
Faule Scenario Type. Fig. 9 gives a simple instance
designed for Alarm type.

FsiGCN

The structure of FsiGCN-NO is same with [19].
The improved FsiGCN-NO has two graph convo-
lutional layers. Every hidden layer includes 256
hidden units. Besides, for identifying the fault sce-
narios, a multi-layer perceptron is applied to com-
pute the outputs of the FsiGCN-NO/FsiGCN-O
to get the predictions.

FsiGAT

The structure of FsiGAT-NO is same with [24].
The improved FsiGAT-NO has two attention lay-
ers. Each layer has eight attention heads. Like
the implementation of FsiGCN-NO/FsiGCN-O,
for identifying the fault scenarios, a multi-layer
perceptron is applied to compute the outputs of
the FsiGAT-NO/FsiGAT-O to get the predictions.

Power ErrorUnique Alarm LevelPower Abnormal

Fig. 9. A simple Bayesian network instance designed for fault scenario
Power Error, whose level is Unique Alarm.

APPENDIX B
RELATED KNOWLEDGE OF FAULT SCENARIO

Tabel. 13 further gives some other representative alarm
types’ descriptions. Besides, Tabel. 14 introduces some fault
scenario type and their corresponding difficulty levels.

APPENDIX C
ENCODER: TRAINING DATA AND DESIGN

Preliminaries: A formula that is a conjunction of clauses
(a disjunction of literals) is in Conjunctive Normal Form
(CNF). Let S be the set of propositional variables. A sentence
in Negation Normal Form (NNF) is defined as a rooted
directed acyclic graph (DAG) where each leaf node is la-
beled with True, False, s, or¬s, s ∈ S; and each internal
node is labeled with ∧ or ∨ and can have discretionar-
ily many children. Deterministic Decomposable Negation
Normal Form (d-DNNF) [64], [65] further imposes that the
representation is: (i) Deterministic: An NNF is deterministic
if the operands of ∨ in all well-formed boolean formula in
NNF are mutually inconsistent; (ii) Decomposable: An NNF
is decomposable if the operands of ∧ in all well-formed
boolean formula in the NNF are expressed on a mutually
disjoint set of variables. Opposite to CNF and more general
forms, d-DNNF has many satisfactory tractability properties
(e.g., polytime satisfiability and polytime model counting).
Because of having tractability properties, it is appealing for
complex AI applications to adopt d-DNNF [66].

The training input of the Encoder(·) is the specific
graphs constructed by the formulae extracted from
different fault scenario graph, which can be referred
to the second output of Algorithm 1. To construct
the specific graphs based on these formulae, we first
change the formulae in Conjunctive Normal Form
(CNF) and then use c2d to compile these formulae in
Deterministic Decomposable Negation Normal Form
(d-DNNF) [64], [65], [67]. For example, based on
Formula. (1) in Section 3.1, we construct a concise
expression by Formula. (11). m,n represent the relation
propositions, Ne Next To Ne (N N Login, N N Login)
and Ne Next To Ne (N N Login, N COM),
separately. q represents the happen proposition,
Happen (Network Element Out Of Service). Both
the equations are in CNF. Then, after executing c2d,
Formula. cnfexample can be expressed in d-DNNF shown
by Formula. (12).

(m ∧ n) =⇒ q (11)

(¬m ∧ n) ∨ ¬n ∨ q (12)

Then a logical formula can be represented as a directed
or undirected graph G = (V,E) with N nodes, vi ∈ V , and
edges (vi; vj) ∈ E. Individual nodes are either propositions
(leaf nodes) or logical operators (∧; ∨; =⇒), where propo-
sitions are connected to their respective operators. Fig. 10
can help understand the concrete structure. In addition to
the mentioned nodes, every graph, like Fig. 10, is further
augmented by a global node linked to all other nodes. In
Encoder(·), the graphs are regarded as undirected graphs.
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TABLE 13
Alarm Type Definition Examples

Alarm Type Reporting Position Related Fault Scenario

N N Login Network Element

1. Network Element Out Of Service
2. Inside Network Element Log Out
3. Equipment Temperature High
4. . . .

E LOS Port

1. Port Double No Light
2. Port Self No Light
3. Network Element Out Of Service
4. . . .

CLK Abnormal Network Element
1. Equipment Temperature High
2. Light Module Error
3. . . .

TEMP Abnormal Card 1. Equipment Temperature High

N COM Network Element 1. Other
2. Network Element Out Of Service

SUR Temp Abnormal Network Element 1. Surrounding Temperature High
PW Abnormal Network Element 1. Power Error
Hard Abnorma Card 1. Card Error
... ... ...

TABLE 14
Fault Scenario Type Examples and the difficulty level of identifying fault scenario by experts

Fault Scenario Level Recognition Complexity
Equipment Temperature High Unique Alarm Low
Light Module Error Unique Alarm Low
Surrounding Temperature High Unique Alarm Low
Power Error Unique Alarm Low
Card Error Unique Alarm Low
Port Self No Light Complex Combination Low
Port Double No Light Fixed Combination Middle
Network Element Out Of Service Complex Combination High
Inside Network Element Log Out Complex Combination High
Chain Network Element Log Out Complex Combination High
. . . . . . . . .

Fig. 10. The d-DNNF graph structure generated based
on Formula. (12): m represents the relation propositions,
Ne Next To Ne (N N Login, N N Login); n represents
Ne Next To Ne (N N Login, N COM), separately; q represents the
happen proposition, Happen (Network Element Out Of Service)

The layer-wise propagation rule of GCN is,

Z(l+1) = σ(D̃− 1
2 ÃD̃− 1

2Z(l)W (l)) (13)

where Z(l+1) represent the learnt latent node embeddings
at lth (note that Z(0) = X), Ã = A + IN represents the
adjacency matrix of the undirected graph G with added self-
connections through the identity matrix IN . D̃ is a diagonal
degree matrix with D̃ii =

∑
j Ãij . The weight matrices

for layer-specific training are W (l), and σ(·) represents
the activation function. For better acquiring the semantics
associated using the graphs, Encoder(·) furthurly adopts
two modifications: heterogeneous node embeddings and

semantic regularization [17]. The concrete code can be found
in https://github.com/ZiweiXU/LENSR.

APPENDIX D
EXPLANATION FOR THE DIFFICULTY OF LABELING
DATASETS

The reasons why the process of labeling datasets is challeng-
ing are stated as follows:

1) 5G networks are more complex and heterogeneous
than the previous networks, so the fault scenario
graph cannot be labeled by simple rules. For ex-
ample, the combinations of alarm types and alarm
locations in topology have large amounts of vari-
ants. Some similar fault scenario instances belong
to different fault scenario types, and some different
fault scenario instances belong to same types. This
situation requires us to learn and capture consider-
able expert knowledge to clearly analyze the fault
scenario graphs to determine the fault scenario type
of different graphs.

2) The relations among alarms can also influence the
process of labeling. For example, some alarms in
a fault scenario graphs are the key alarms, which
imply the cause of the fault and generate the other
correlative alarms. Therefore, when we identify the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
0.99

1.00
0.91

0.99
1.00

1.00
0.00

1.00
0.35

0.00
1.00

1.00
1.00

0.05

Precision

(a) FsiGCN-O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
1.00

0.95
0.91

0.99
1.00

1.00
1.00

1.00
0.39

1.00
1.00

1.00
1.00

0.19

Precision

(b) KE-GCN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
0.99

0.52
0.91

0.98
0.82

1.00
1.00

1.00
0.41

1.00
1.00

0.99
1.00

0.18

Precision

(c) FsiGAT-O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
1.00

0.95
0.97

1.00
1.00

0.50
1.00

0.99
0.67

0.93
1.00

0.99
1.00

0.91

Precision

(d) KE-GAT(λ = 0.1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
1.00

0.95
0.83

1.00
1.00

0.33
1.00

0.99
0.33

0.91
1.00

0.99
1.00

0.75

Precision

(e) KE-GAT(λ = 0.01)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True Fault Scenario Type

Network Element Out Of Service(1)
Card Error(2)

Power Error(3)
Port Self No Light(4)

Port Light Error(5)
Fan Error(6)

Light Module Error(7)
Surrounding Temperature High(8)

Equipment Temperature High(9)
Inside Network Element Log Out(10)

Port Double No Light(11)
Port Mask Exceed Limitation(12)

Link Error(13)
Memory Exceed Limitation(14)

Chain Network Element Log Out(15)

0.99
0.98

0.93
0.91

0.98
0.90

1.00
1.00

0.99
0.38

0.56
1.00

1.00
1.00

0.60

Precision

(f) KE-GAT(λ = 1)

Fig. 11. Confusion matrix comparison for FsiGAT-O, FsiGCN-O, KE-GCN and KE-GAT assigned three different λ values on FSD1-15.

fault scenario type, we have to decide which alarms
are the key alarms.

3) Some fault scenario types need extra information,
such as In Chain information mentioned in Sec-
tion 2.2.2, to be further identified.

FsiGAT-O
KE-GAT( =1)

KE-GAT( =0.01)

KE-GAT( =0.1)
0.96

0.97

0.98

0.99

1.00
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97.11%

97.67%

97.99%

99.15%

FSD1-15

Fig. 12. Accuracy comparison among FsiGAT-O and KE-GAT assigned
different λ values on the FSD1-15.

APPENDIX E
RELATED EXPERIMENTAL RESULTS

Fig. 12 shows the accuracy of FsiGAT-O and KE-GAT with
different λ. Fig. 11 vividly shows the identification ability of
FsiGCN-O, FsiGAT-O, KE-GCN, and KE-GAT with different
λ. According to the color shapes, we can find the KE-GAT
with λ = 0.1 achieves the best performance.


