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I. Background & Motivation

§ Why group gender?
• Social interaction and group dynamics [1], [2]
• Foundation of promising research 

(e.g., gender inequality [3] and gender difference [4])

§ Why using privacy-sensitive (PS) audio?
• Spontaneous face-to-face communication in natural settings
• Ethical issues in collecting the data
üsampling at 700Hz and averaging amplitude reading every 

50 milliseconds [5]
PS audio is to ensure raw audio is 
not recorded nor can it be 
reconstructed.

Group Gender Identification Using Privacy-Sensitive Audio Data



II. Existing works

§ Voice-based methods
• Acoustic features caused by physiological differences and phonetic differences
• Features are extracted from raw audio 

§ Difficulties caused by PS audio 
• PS audio is too coarse-grained to extract valuable acoustic features
• Uncertainties caused by natural settings are difficult to address
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III. The proposed system

§ Problem: Gender identification with PS audio 
• Input: PS audio of a group of people in a meeting 
• Output: gender of each participant

§ Main idea:
• Conversational behaviors instead of acoustic features 

§ Challenges
• C1: Low resolution and unexpected dynamics of PS audio in voice activity detection 
• C2: The instability of conversational behaviors reduces the robustness and 

effectiveness of gender identification

Smart badge for 
data collection 



• The proposed solutions to the challenges 
• C1: correlation-based multichannel voice activity detection algorithm 
• C2: ensemble feature selection & two-stage classification

Overview of the proposed system

III. The proposed system (cont’d)



- Voice activity detection

Observation: When only one person speaks, 
his badge signal is correlated other people’s 
badge signals.

Cutoff point of mean volume

Badge data
Voice activities 

False voice activities caused by crosstalk 

Detected voice activity



- Conversational feature extraction (turn-taking)
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- Conversational feature extraction (Interruption)



• Hard to find a subset of informative features
• All the features have large variances

- Conversational feature extraction (cont’d)



- Gender identification
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IV. Evaluation

§ Dataset 
• 21 study groups, each with 4~5 students (100 in total)
• 273 effective meetings with a total length of 438.25 hours



Performance of gender composition detection

IV. Evaluation
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