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Four Ability Levels of Using a Technique

What required in original

and novel research

Extend —e@ Extend

* How is it related to other techniques
* What are other potential scenarios

Optimize Optimize
* How to improve it: efficiency, reliability,
Implement Implement distributed environments

* How to implement
* What are pros of cons Understand Understand

Focus of the talk

* What itis
* Where it could be applied



Why SVD?

* SVD 1s the foundation of Recommender Systems that are at the heart of

huge companies like Google, YouTube, Amazon, Facebook, Netflix...

= ... 1t (SVD) 1s not nearly as famous as it should be.” -- Gilbert Strang
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Why SVD?

* SVD is an enduringly popular technique
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Why SVD

* Even now still appear 1n top venues like NeurIPS, ICML, TKDE....

Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. NeurIPS 2021: 8419-8431

Aming Wu, Suqi Zhao, Cheng Deng, Wei Liu:
Generalized and Discriminative Few-Shot Object Detection via SVD-Dictionary Enhancement.
NeurlPS 2021: 6353-6364

Vasileios Kalantzis, Georgios Kollias, Shashanka Ubaru, Athanasios N. Nikolakopoulos, Lior Horesh,
Kenneth L. Clarkson:

Projection techniques to update the truncated SVD of evolving matrices with applications. ICML
2021:5236-5246

Xiang Li, Shusen Wang, Kun Chen, Zhihua Zhang:
Communication-Efficient Distributed SVD via Local Power Iterations. ICML 2021: 6504-6514

Wenwen Min @, Juan Liu @, Shihua Zhang @:
Group-Sparse SVD Models via $L_1$L1- and $L_0$L0-norm Penalties and their Applications in
Biological Data. |IEEE Trans. Knowl. Data Eng. 33(2): 536-550 (2021)



Preliminaries: How to see a matrix?

= As a simple yet useful data structure,

€.g., an 1mage as a matrix
" As a linear equation
" As a mappings of vectors

A[an] ~ f() : IR" — IR™

®» As a linear transformation
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Preliminaries: Matrix as linear transformations
| (A) stretched, (B) compressed, (C) rotated,
(D) reflected or flipped, and (E) sheared.

M = !3 ﬂ [] l N

M = | 2 | M




SVD Theorem
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Geometric Explanation of SVD

M
>
“ l Any linear transformations can be

represented by rotation, scaling, and
rotation again.

M=U-»%-V*
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SVD - Properties S

* Always possible to decompose any real matrix A=UXV?!
* Singular values 1n Sigma are all positive, and sorted in descending order
* The number of nonzero singular values of A equals the rank of A

e Matrix could be approximated using the first r singular values and the
corresponding singular vectors

* The sum of the first r singular values over the total sum of singular values
indicate the approximation ratio



Popular applications of SVD

* Noise removal
* Data compression

 Dimension reduction

* Latent semantic analysis



Noise removal

Motivation

e Sensors are vulnerable to noises, sensor
readings are thus inaccurate

How

* Set those singular values that are smaller than a
threshold to zero
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Data compression

Motivation

 Resources are limited in IoT devices

* Storage
* Bandwidth

How
* Choose n largest singular values Y./, n-rank approximation A ~ U ./ Vi

* The percentage of “information” contained in the approximation
matrix is sum(%’)
sum(2)
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Dimension reduction

Motivation
* Visualize high dimensional data
 Redundant features

 Combine features

1d=1
How PCA algorithm
* Principal component analysis 1. Formulate an input matrix A
(PCA) 2. Computer covariance matrix C of A

3. [USV]=svd(C)
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Latent semantic analysis

Motivation LSA or LSI (latent semantic indexing)
means analyzing documents to find the

* Polysemy (one word with multiple
underlying meaning or concepts of

concepts)
, , those documents.
* Synonymy (multiple words with one

concept)

How
word-1 concept-1 .

* Word matrix (term frequency)

word-1 » concept-1 word-2 concept-2 . . . .

rordeo p— * Fill in missing values

concept-3

* SVD

word-n P concept-n

word-n concept-n
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SVD as a feature extractor

===

= L—lll---l EEEEEEN The first nonzero
<« % 10 eigenvalue
‘q&; g [rEEETE W e e E EEEEEEEEEEEEE E EEEEEE
T O I
= R 5
h < The last nonzero
% . N EEN EEEN H  EEEEEE EEEEE EEEEEN eigenvalue
One day 0 “ 4 6
One hour
PR I 0 u
2 6
mE| ™ N I o
IS H_n C
éé’. . - SEEE _ERER R o 4
PC | umomm m -
= . HE BN = = .
0

0 2 4 6
(@) Consumption Matrix —> (b) Dietary Matrix (binary) —> (c) Histogram of Eigenvalues




Other matrix factorizations
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